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Abstract
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Mathew Zaleski

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2007

The design of new programming languages benefits from interpretation, which can provide a

simple initial implementation, flexibility to explore new language features, and portability to

many platforms. The only downside is speed of execution, as there remains a large performance

gap between even efficient interpreters and mixed-mode systems that include a just-in-time

(JIT) compiler. Augmenting an interpreter with a JIT, however, is not a small task. Today, Java

JITs are loosely-coupled with the interpreter, with callsites of methods being the only transition

point between interpreted and native code. To compile wholemethods, the JIT must duplicate

a sizable amount of functionality already provided by the interpreter, leading to a “big bang”

development effort before the JIT can be deployed. Instead,adding a JIT to an interpreter

would be easier if it were possible to leverage the existing functionality.

First, we show that packaging virtual instructions as lightweight callable routines is an

efficient way to build an interpreter. Then, we describe how callable bodies help our interpreter

to efficiently identify and run traces. Our closely coupled dynamic compiler can fall back on the

interpreter in various ways, permitting a incremental approach in which additional performance

gains can be realized as it is extended in two dimensions: (i)generating code for more types

of virtual instructions, and (ii) identifying larger compilation units. Currently, Yeti identifies

straight line regions of code and traces, and generates non-optimized code for roughly 50 Java

integer and object bytecodes. Yeti runs roughly twice as fast as a direct-threaded interpreter on

SPECjvm98 benchmarks.
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Chapter 1

Introduction

Modern computer languages are commonly implemented in two main parts – a compiler that

targets a virtual instruction set, and a so-calledhigh level language virtual machine(HLL VM)

to run the resulting virtual program. This approach simplifies the compiler by eliminating

the need for any machine dependent code generation. Tailoring the virtual instruction set can

further simplify the compiler by providing operations thatperfectly match the functionality of

the language.

There are two ways a HLL VM can run a virtual program. The simplest approach is to

interpret the virtual program. An interpreter dispatches avirtual instruction bodyto emulate

each virtual instruction in turn. A more complicated, but faster, approach deploys a dynamic,

or just in time (JIT), compiler to translate the virtual instructions to machine instructions and

dispatch the resulting native code.Mixed-modesystems interpret some parts of a virtual pro-

gram and compile others. In general, compiled code will run much more quickly than virtual

instructions can be interpreted. By judiciously choosing which parts of a virtual program to

JIT compile a mixed-mode system can run much more quickly than the fastest interpreter.

Currently, although many popular languages depend on virtual machines, relatively few JIT

compilers have been deployed. Notable exceptions include research languages like Self and

several Java Virtual Machines (JVM). Consequently, users ofimportant computer languages,
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including JavaScript, Python, and many others, do not enjoythe performance benefits of mixed-

mode execution.

The primary goal of our research is to make it easier to extendan interpreter with a JIT

compiler. To this end we describe a new architecture for a HLLVM that significantly increases

the performance of interpretation at the same time as it reduces the complexity of deploying a

mixed-mode system. Our technique has two main features.

First, our JIT identifies and compiles hot interprocedural paths, or traces. Traces are single

entry multiple exit regions which are easier to compile thanthan the inlined method bodies

compiled by current systems. In addition, hot traces predict the destination of virtual branches.

This means that even before traces are compiled they providea simple way to improve the

interpreted performance of virtual branches.

Second, we implement virtual instruction bodies as lightweight, callable routines at the

same time as closely integrate the JIT compiler and interpreter. This gives JIT developers a

simple alternative to compiling each virtual instruction.Either a virtual instruction is translated

to native code, or instead, a call to the corresponding body is generated. The task of JIT devel-

opers is thereby simplified by making it possible to deploy a fully functional JIT compiler that

compiles only a subset of virtual instructions. In addition, callable virtual instruction bodies

have a beneficial effect on interpreter performance becausethey enable a simple interpretation

technique, subroutine threading, that very efficiently executes straight-line, or non-branching,

regions of a virtual program.

We prototype our ideas in Java because there exist many high-quality Java interpreters and

JIT compilers with which to compare our results. We are able to determine that the perfor-

mance of our prototype compares favourably with state-of-the art interpreters like JamVM and

SableVM. An obvious next step would be to apply our techniques to enhance the performance

of languages that currently do not offer a JIT.

RCSfile : intro.lyx, v Revision : 1.27 2 July 19, 2007 11:57



CHAPTER 1. INTRODUCTION

1.1 Challenges of Evolving to a Mixed-Mode System

Today, the usual approach taken by mixed-mode systems is to identify frequently executed, or

hot, methods. Hot methods are passed to the JIT compiler which compiles them to native code.

Then, when the interpreter sees an invocation of a compiled method, it dispatches the compiled

code instead.

Up Front Effort This method-oriented approach has been followed for many years, but re- “big bang”

quires a large up-front investment in effort. Such a system cannot improve the performance of

a method until it can compile every feature of the language that appears in it. For significant

applications this requires the JIT to compile the whole language, including complicated fea-

tures already implemented by high level virtual instruction bodies, such as those for method

invocation, object creation, and exception handling.

Compiling Cold Code Just because a method is frequently executed does not mean that all

the instructions within it are frequently executed also. Infact, regions of a hot method may

becold, that is, have never executed. Compiling cold code has more implications than simply

wasting compile time. Except at the very highest levels of optimization, where analyzing cold

code may prove useful facts about hot regions, there is little point compiling code that never

runs. A more serious issue is that cold code increases the complexity of dynamic compilation.

We give three examples. First, for late binding languages such as Java, cold code likely contains

references to program values which are not yet bound. In casethe cold code does eventually

run, the generated code and the runtime that supports it mustdeal with the complexities of late

binding [69]. Second, certain dynamic optimizations are not possible without runtime profiling

information. Foremost amongst these is the optimization ofvirtual function calls. Since there

is no profiling information for cold code the JIT may have to generate relatively slow, conser-

vative code. This issue is even more important for languageslike Python. Without runtime in-

formation a Python JIT may not know whether the inputs of a simple arithmetic operation such
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1.2. CHALLENGES OF EFFICIENT INTERPRETATION

as addition are integers, floats, or strings. Third, as execution proceeds, some of the formerly

cold regions in compiled methods may become hot. The conservative assumptions made dur-

ing the initial compilation may now be a drag on performance.The straightforward-sounding

approach of recompiling the method containing the cold codeis complicated by problems such

as what to do about threads that are still executing in the method or which will return to the

method in the future.

1.2 Challenges of Efficient Interpretation

After a virtual program isloadedby an interpreter into memory it can be executed bydispatch-

ing each virtual instruction body (or justbody) in the order specified by the virtual program.

This is not a typical workload because the control transfer from one body to the next is data

dependent on the sequence of instructions making up the virtual program. This makes the dis-

patch branches hard for a processor to predict. Ertl and Gregg observed that the performance

of otherwise efficient interpretation is limited by pipeline stalls and flushes due to extremely

poor branch prediction [25].

1.3 What We Need

These considerations suggest that the architecture of agraduallyextensible mixed-mode virtual

machine should have three important properties.

1. Virtual bodies should be callable. This allows JIT implementors to compile only some

instructions, and fall back on the emulation functionalityalready implemented by the

virtual instruction bodies for others.

2. The unit of compilation must be dynamically determined and of flexible shape. This

allows the JIT compiler to translate hot regions while avoiding cold code.

RCSfile : intro.lyx, v Revision : 1.27 4 July 19, 2007 11:57



CHAPTER 1. INTRODUCTION

3. As new regions of hot code reveal themselves and are compiled, a way is needed of

gracefully linking them on to previously compiled hot code.

Callable Virtual Instruction Bodies Packaging bodies as callable can also address the pre-

diction problems observed in interpreters. When a virtual program is loaded, every straight-line

sequence of virtual instructions can be translated to a verysimple sequence of generated ma-

chine instructions. Corresponding to each virtual instruction we generate a single direct call

machine instruction which dispatches the corresponding virtual instruction body. Executing

the resulting generated code thus emulates each virtual instruction in the linear sequence in

turn. No branch mispredictions occur because the destination of each direct call is explicit and

the return instruction ending each body is predicted perfectly by the return branch predictor

present in most modern processors.

Traces Our system compiles frequently executed, dynamically identified interprocedural paths,todo: al-
lude to in-
terp tracesor traces. Traces contain no cold code, so our system leaves all the complexities of running

cold code to the interpreter. Since traces are paths throughthe virtual program they explicitly

predict the destination of each virtual branch. As a consequence even a very simple imple-

mentation of traces can significantly improve performance by reducing branch mispredictions

caused by dispatching virtual branches.

1.4 Overview of Our Solution

In this dissertation we describe a system that supports dynamic compilation units of varying

shapes. Just as a virtual instruction body implements a virtual instruction, aregion bodyim-

plements a region of the virtual program. Possible region bodies include single virtual instruc-

tions, basic blocks, methods, partial methods, inlined method nests, and traces (i.e., frequently-

executed paths through the virtual program). The key idea isto package every region body as

callable, regardless of the size or shape of the region of thevirtual program that it implements.
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1.4. OVERVIEW OF OUR SOLUTION

The interpreter can then execute the virtual program by dispatching each region body in se-

quence.

Region bodies corresponding to longer sequences of virtual instructions will run faster than

those compiled from short ones because fewer dispatches arerequired. In addition, larger

region bodies should offer more opportunities for optimization. However, larger region bodies

are more complicated and so we expect them to require more development effort to detect

and compile than short ones. This suggests that the performance of a mixed-mode VM can

be gradually extended by incrementally increasing the scope of region bodies it identifies and

compiles. Ultimately, the peak performance of the system should be at least as high as current

method-based JIT compilers since, with basically the same engineering effort, inlined method

nests could be compiled to region bodies also.

The practicality of our scheme depends on the efficiency of dispatching bodies by calling

them. Thus the first phase of our research, described in Chapters 4 and5, was to retrofit

SableVM, a Java virtual machine, andocamlrun, an Ocaml interpreter [12], to a new hybrid

dispatch technique we callcontext threading. We evaluated context threading on PowerPC

and Pentium 4 platforms by comparing branch predictor and run time performance of common

benchmarks to unmodified, direct threaded, versions of the virtual machines. We show that

callable bodies can be dispatched more efficiently than dispatch techniques currently thought

to be very efficient. However, it proved difficult to cleanly add trace detection and profiling

instrumentation to our implementation of context threading. Consequently, to build our trace

based JIT we decided to start afresh.

In the second phase of this research, described in Chapters 6 and 7, we gradually extended

JamVM, a cleanly implemented and relatively high performance Java interpreter [49], with

a trace oriented JIT compiler. We built Yeti, (graduallY Extensible Trace Interpreter) in five

stages: First, we repackaged all virtual instruction bodies as callable. Our initial implementa-

tion executed only single virtual instructions which were dispatched via an indirect call from a

simple dispatch loop. This is slow compared to context threading but very easy to instrument.
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CHAPTER 1. INTRODUCTION

Second, we identifiedlinear blocks, or sequences of virtual instructions ending in branches.

Third, we extended our system to identify and dispatchtraces, or sequences of linear blocks.

Traces are significantly more complex region bodies than linear blocks because they must ac-

commodate virtual branch instructions. Fourth, we extended our trace runtime system to link

traces together. In the fifth and final stage, we implemented anaive, non-optimizing compiler

to compile the traces. An interesting feature of our JIT is that it performs simple compilation

and register allocation for some virtual instructions but falls back on calling virtual instruction

bodies for others. Our compiler currently generates PowerPC code for about 50 integer and

object virtual instructions.

We chose traces because they have several attractive properties: (i) they can extend across

the invocation and return of methods, and thus have an inter-procedural view of the program,

(ii) they contain only hot code, (iii) they are relatively simple to compile as they aresingle-

entry multiple-exitregions of code, and (iv), it is straightforward to generatenew traces and

link them onto existing ones as new hot paths reveal themselves.

Instrumentation built into our prototype shows that, on theaverage, traces accurately predict

paths taken by the Java SPECjvm98 benchmark programs. Performance measurements show

that the overhead of trace identification is reasonable. Even with our naive compiler Yeti runs

about twice as fast as unmodified JamVM.

1.5 Thesis Statement
todo:
touch upon
branch
prediction

The implementation of a new High Level Language Virtual Machine should be extensible to a

high performance mixed-mode system as the language matures. To achieve this, an interpreter

should be designed to dispatch virtual instructions by calling them. This achieves efficient

dispatch, and hence high performance interpretation, by making it easy to eliminate branch

mispredictions caused by the dispatch of straight-line virtual code. Callable virtual instruction

bodies also facilitate extending the interpreter with a JITcompiler because the bodies can be
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called from generated code. The unit of compilation translated by the JIT compiler should be

a dynamically identified region containing only hot code. Hot interprocedural paths, or traces,

are a good choice because they are simple to compile and link together. Since hot traces predict

the destination of virtual branch instructions they can also be used to improve the interpretation

performance of virtual branch instructions. Thus, a trace based interpreter performs better than

current interpreter techniques and also is more easily extended with a JIT compiler.

1.6 Contributions

The contributions of this thesis are twofold:

1. We show that organizing an interpreter to call virtual instruction bodies is desirable on

modern processors because the additional cost of call and return is more than made up for

by improvements in branch prediction. We show that subroutine threading significantly

outperforms direct threading, for Java and Ocaml on Pentiumand PowerPC. We show

how with a few extensions a subroutine threaded interpretercan perform as well as or

better than a selective inlining interpreter, previously the state of the art.

2. We propose an architecture for, and describe our implementation of, a trace-oriented JIT

compiler. We show how to extend our interpreter to identify interprocedural paths, or

traces through the program. We describe a novel design for a simple JIT compiler that

compiles only a subset of the virtual instructions in each trace.

1.7 Outline of Thesis

We describe an architecture for a virtual machine interpreter that facilitates the gradual exten-

sion to a trace-based mixed-mode JIT compiler. We demonstrate the feasibility of this approach

in a prototype, Yeti, and show that performance can be gradually improved as larger program

regions are identified and compiled.
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CHAPTER 1. INTRODUCTION

In Chapters 2 and 3 we present background and related work on interpreters and JIT com-

pilers. In Chapter 4 we describe the design and implementation of context threading. Chapter

5 describes how we evaluated context threading. The design and implementation of Yeti is

described in Chapter 6. We evaluate the benefits of this approach in Chapter 7. Finally, we

discuss possible avenues for future work and conclusions inChapter 8.
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Chapter 2

Background

Researchers have investigated how virtual machines should execute high level language pro-

grams for many years. The research has been focused on a few main areas. First, innovative

virtual machine support can play a role in the deployment of qualitatively new and differ-

ent computer languages. Second, virtual machines provide an infrastructure by which ordinary

computer languages can be more easily deployed on many different hardware platforms. Third,

various techniques have been proposed that enable programsto run faster than before.

This chapter will describe research which touches on all these issues. We will briefly dis-

cuss interpretation in preparation for a more in-depth treatment in Chapter 3. We will describe

how modern object-oriented languages depend on the virtualmachine to efficiently invoke

methods by following the evolution of this support from the early efforts to modern speculative

inlining techniques. Finally, we will briefly describe trace based binary optimization to set the

scene for Chapter 6.

2.1 High Level Language Virtual Machine

A static compiler is probably the best solution when performance is paramount, portability is

not a great concern, destinations of calls are known at compile time and programs bind to ex-

ternal symbols before running. Thus, most third generationlanguages like C and FORTRAN

11



2.1. HIGH LEVEL LANGUAGE VIRTUAL MACHINE

are implemented this way. However, if the language is object-oriented, binds to external refer-

ences late and must run on several platforms, it may be advantageous to implement a compiler

that targets a fictitioushigh level language virtual machine(HLL VM) instead.

In Smith’s taxonomy, an HLL VM is a system that provides a process with an execution

environment that does not correspond to any particular hardware platform [61]. The interface

offered to the high level language application process is usually designed to hide differences

between the platforms to which the VM will eventually be ported. For instance, UCSD Pascal

p-code [75, 15] and Java bytecode [48] both express virtual instructions as stack operations

that take no register arguments. Gosling, one of the designers of the Java virtual machine, has

said that he based the design of the JVM on the p-code machine[2]. Smalltalk [33], Self [70]

and many other systems have taken a similar approach. This makes it easier to port the VM

between hardware platforms that have variously sized register files. A VM may also provide

virtual instructions that support peculiar or challengingfeatures of the language. For instance,

a Java virtual machine has specialized virtual instructions (invokevirtual, etc) in support

of virtual method invocation. This allows the compiler to generate a single, relatively high level

virtual instruction instead of a complex machine and ABI dependent sequence of instructions.

This approach has benefits for the users as well. For instance, applications can be dis-

tributed in a platform neutral format. In the case of the Javaclass libraries or UCSD Pascal

programs the amount of virtual software far exceeds the sizeof the VM. The advantage is that

the relatively small amount of effort required to port the VMto a new platform enables a large

body of virtual applications to run on the new platform also.

There are various approaches a HLL VM can take to actually execute a virtual program. An

interpreter fetches, decodes, then emulates each virtual instruction in turn. Hence, interpreters

are slow but can be very portable. Faster, but less portable,a dynamic compiler can translate

to native code and dispatch regions of the virtual application. A dynamic compiler can exploit

runtime knowledge of program values so it can sometimes do a better job of optimizing the

program than a static compiler [64].
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int f(boolean);
  Code:
   iload a
   iload b
   iconst 1
   iadd
   iadd
   istore c

int f(){

     c = a + b + 1

}

Java Source Java Bytecode

Javac 
compiler

Figure 2.1: Example Java Virtual Program showing source (onthe left) and Java virtual in-
structions, or bytecodes, on the right.

2.1.1 Overview of a Virtual Program
todo: make
beefier ex-
ampleA virtual program, as shown in Figure 2.1, is a sequence of virtual instructions and related

meta-data. The figure introduces an example program we will use as a running example, so

we will briefly describe it here. First, a compiler,javac in the example, creates aclass file

describing part of a virtual program in a standardized format. (We show only one method,

but any real Java example would define a whole class.) Our example consists of just one Java

expression{c=a+b+1} which adds the values of two Java local variables and a constant and

stores the result in a third. The compiler has translated this to the sequence of virtual instruc-

tions shown on the right. The actual semantics of the virtualinstructions are not important to

our example other than to note that none are virtual branch instructions.

The distinction between a virtual instruction and aninstanceof a virtual instruction is

conceptually simple but sometimes hard to clearly distinguish in prose. We will always refer

to a specific use of a virtual instruction as an “instance”. For example, the first instruction in

our example program is an instance ofiload. On the other hand, we might also use the term

virtual instruction to refer to a kind of operation, for example that theiload virtual instruction
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takes one parameter.

Java virtual instructions may take implicit arguments which are passed on a run time stack.

For instance, in Figure 2.1, theiadd instruction pops the top two slots of the run time stack

and pushes their sum. This style of instruction set is very compact because there is no need to

explicitly list parameters of most virtual instructions. Consequently many virtual instructions,

like iadd, consist of only the opcode. Since there are fewer than 256 Java virtual instructions,

the opcode fits in a byte, and so Java virtual instructions areoften referred to asbytecode.

In addition to arguments passed implicitly on the stack, certain virtual instructions take im-

mediate operands. In our example, theiconst virtual instruction takes an immediate operand

of 1. Immediate operands are also required by virtual branchinstructions (the offset of the des-

tination) and by various instructions used to access data.

The bytecode in the figure depends on a stack frame organization that distinguishes be-

tween local variables and the operand stack.Local variable arrayslots, orlva slots, are used to

store local variables and parameters. The simple function shown needs only four local variable

slots (referred to as lva[0] through lva[3] in the figure). The first slot, lva[0], stores a hidden

parameter, the object handle1 to the invoked upon object and is not used in this example. Sub-

sequent slots, lva[1], lva[2] and lva[3] storea, b andc respectively. Theoperand stackis used

to maintain the expression stack used for all calculations and parameter passing. In general

“load” form bytecodes push values in lva slots onto the operand stack. Bytecodes with “store”

in their mnemonic typically pop the value on top of the operand stack and store it in a named

lva slot.

2.1.2 Interpretation

An interpreter is the simplest way for an HLL VM to execute a guest virtual program. Whereas

the persistent format of a virtual program conforms to some external specification, when it is

read by an interpreter the structure of itsloaded representationis chosen by the designers of the

1lva[0] stores the local variable known asthis to Java (and C++) programmers.
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interpreter. For instance, designers may prefer a representation that word-aligns all immediate

parameters regardless of their size. This would be less compact, but faster to access, than the

original byte code on most architectures. todo:
move
bodies
here?

An abstraction implemented by most interpreters is the notion of avirtual program counter,

or vPC. It points into the loaded representation of the program andserves two main purposes.

First, thevPC is used by dispatch code to indicate where in the virtual program execution has

reached and hence which virtual instruction to emulate next. Second, thevPC is conventionally

referred to by virtual instruction bodies to access immediate operands.

Interpretation is not efficient

We do not expect interpretation to be efficient compared to executing compiled native code.

Consider Java’siadd virtual instruction. On a typical processor an integer add can be per-

formed in one instruction. To emulate a virtual addition instruction requires three or more

additional instructions to load the inputs from and store the result to the operand stack.

However, it is not just the path length of emulation that causes performance problems.

Also important is the latency of the branch instructions used to transfer control to the virtual

instruction body. To optimize dispatch researchers have proposed variousdispatchtechniques

to efficiently branch from body to body. Recently, Ertl showedthat on modern processors

branch mispredictions caused by dispatch branches are a serious drain on performance [25, 26].

When emulated by most current high level language virtual machines, the branching pat-

terns of the virtual program are hidden from the branch prediction resources of the underlying

real processor. This is despite the fact that a typical virtual machine defines roughly the same

sorts of branch instructions as does a real processor — and that a running virtual program ex-

hibits similar patterns of virtual branch behaviour as doesa native program running on a real

CPU.In Section 3.5 we discuss in detail how our approach to dispatch deals with this issues,

which we have dubbed thecontext problem.
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2.1.3 Early Just in Time Compilers

A faster way of executing a guest virtual program is to compile its virtual instructions to native

code before it is executed. This approach long predates Java, perhaps first appearing for APL

for the HP3000 [44] as early as 1979. Deutsch and Schiffman [21] built an early Just in Time

(JIT) compiler for Smalltalk that obtained a speedup of about two relative to interpretation.

Early systems were highly memory constrained by modern standards. It was of great con-

cern, therefore, when translated native code was found to beabout four times larger than the

originating bytecode2. Lacking virtual memory, Deutsch and Schiffman took the view that dy-

namic translation of bytecode was a space time trade-off. Ifspace was tight then native code

(space) could be released at the expense of re-translation (time). Nevertheless, their approach

was to execute only native code. Each method had to be fetchedfrom a native code cache or

else re-translated before execution. Today a similar attitude prevails except that it has also been

recognized that some code is so infrequently executed that it need not be translated in the first

place. The bytecode of methods that are not hot can simply be interpreted.

A JIT can improve the performance of a JVM substantially. Relatively early Java JIT

compilers from Sum Microsystems, as reported by the development team in 1997, improved the

performance of the Javaraytrace application by a factor of 2.2 andcompress by 6.8[16]3.

More recent JIT compilers, for instance have increased the performance further[1, 3, 66]. For

instance, on a modern personal computer Sun’s Hotspot server dynamic compiler currently

runs the entire SPECjvm98 suite more than 4 times faster than the fastest interpreter. Some

experts suggest that in the not too distant future, systems based on dynamic compilers will run

fasterthan the code generated by static compilers [63, slide 28].

2This is less than one might fear given that on a RISC machine one typical arithmetic bytecode will be naïvely
translated into two loads (pops) from the operand stack, oneregister-to-register arithmetic instruction to do the
real work and a store (push) back to the new top of the operand stack.

3These benchmarks are singled out because they eventually were adopted by the SPEC consortium to be part
of the SPECjvm98 [62] benchmark suite.
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2.2 Challenges to HLL VM Performance

Modern languages offer users powerful features that challenge VM implementors. In this sec-

tion we will discuss the impact of object-oriented method invocation and late binding of ex-

ternal references. There are many other issues that affect Java performance which we discuss

only briefly. The most important amongst them are memory management and thread synchro-

nization.

Garbage collectionrefers to a set of techniques used to manage memory in Java (asin

Smalltalk and Self). In general the idea is that unused memory (garbage) is detected automat-

ically by the system. As a result the programmer is relieved of any responsibility for freeing

memory that he or she has allocated. Garbage collection techniques are somewhat indepen-

dent of dynamic compilation techniques. The primary interaction requires that threads can

be stopped in a well-defined state prior to garbage collection. So-calledsafe pointsmust be

defined at which a thread periodically saves its state to memory. Code generated by a JIT com-

piler must ensure that safe points occur frequently enough that garbage collection is not unduly

delayed. Typically this means that each transit of a loop must contain at least one safe point.

Java supports explicit, built-in support for threads.Thread synchronizationrefers mostly to

the functionality that allows one one thread at a time to access certain regions of code. Thread

synchronization must be implemented at various points and the techniques for implementing it

must be supported by code generated by the JIT compiler.

2.2.1 Polymorphism and the Implications of Object Oriented Program-

ming

Over the last few decades object oriented development grew from vision, to an industry trend,

to a standard programming tool. Object oriented techniquesstressed development systems in

many ways, but the one we need to examine in detail here is the challenge of polymorphic

method invocation.
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void sample(Object[] otab){
for(int i=0; i<otab.length; i++){

otab[i].toString(); //polymorphic callsite
}

}

Figure 2.2: Example of Java method containing a polymorphiccallsite

The destination of a callsite in an object-oriented language is not determined solely by

the signature of a method, as in C or FORTRAN. Instead, it is determined at runtime by a

combination of the method signature and the class of the invoked upon object. Thus callsites

are said to bepolymorphicas the invoked upon object may turn out to be one of potentially

many classes.

Most object-oriented languages categorize objects into a hierarchy ofclasses. Each object

is aninstanceof a class which means that the methods and data fields defined by that class are

available for the object. Each class, except the root class,has asuper-classor base-classfrom

which it inheritsfields and methods.

Each class may override a method and so at runtime the system must dispatch the definition

of the method corresponding to the class of the invoked upon object. In many cases it is not

possible to deduce the exact type of the object at compile time.

A simple example will make the above description concrete. When it is time to debug a

program almost all programmers rely on facilities to view a textual description of their data.

In an object-oriented environment this suggests that each object should define a method that

returns a string description of itself. This need was recognized by the designers of Java and

consequently they defined a method in the root classObject:

public String toString()

to serve this purpose. ThetoString4 method can be invoked on every Java object. Consider

an array of objects in Java. Suppose we code a loop that iterates over the array and invokes the

4It is the text returned by toString that appears in various views of an interactive debugger

RCSfile : background.lyx, v Revision : 1.26 18 July 19, 2007 11:57



CHAPTER 2. BACKGROUND

toString method on each element as in Figure 2.2.

There are literally hundreds of definitions oftoString in a Java system and in most

cases the compiler cannot discern which one will be the destination of the callsite. Since it is

not possible to determine the destination of the callsite atcompile time it must be done when

the program executes. Determining the destination taxes performance in two main ways. First,

locating the method to dispatch at run-time requires computation. This will be discussed in

Section 2.4.1. Second, the inability to predict the destination of a callsite at compile time re-

duces the efficacy of inter-procedural optimizations and thus results in relatively slow systems.

This is discussed below.

Impact of Polymorphism on Optimization

Inter-procedural optimization can be stymied by polymorphic callsites. At compile time, an

optimizer cannot determine the destination of a call, so obviously the target cannot be inlined.

In fact, standard inter-procedural optimization as carried out by an optimizing C or FORTRAN

compiler is simply not possible[51].

In the absence of inter-procedural information, an optimizer cannot guess what calculations

are made by a polymorphic callee. Knowledge of the destination of the callsite would permit

a more precise inter-procedural analysis of the values modified by the call. For instance, with

runtime information, the optimizer may know that only one specific version of the method

exists and that this definition simply returns a constant value. Code compiled speculatively un-

der the assumption that the callsite remains monomorphic could constant propagate the return

value forward and hence be much better than code compiled under the conservative assumption

that other definitions of the method may be called.

Given the tendency of modern object-oriented software to befactored into many small

methods which are called throughout a program, even in its innermost loops, these optimiza-

tion barriers can significantly degrade the quality of code produced. A typical example might

be that common subexpression elimination cannot combine identical memory accesses sep-
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arated by a polymorphic callsite because it cannot prove that all possible callees do not kill

the memory location. To achieve performance comparable to procedural compiled languages,

inter-procedural optimization techniques must somehow beapplied to regions laced with poly-

morphic callsites.

Section 2.4 describes various solutions to these issues.

2.2.2 Late binding

A basic design issue for any language is when external references are resolved. Java binds

references very late in order to support flexible packaging in general and downloadable code in

particular. (This contrasts with traditional languages like C, which rely on a link-editor to bind

to external symbol before they start to run.) The general idea is that a Java program may start

running before all the classes that it needs are locally available. In Java, binding is postponed

until the last possible moment, when the virtual instruction making the reference executes for

the first time. Then, during the first execution, the reference is either resolved or a software

exception is raised. This means that the references a program attempts to resolve depends on

the path of execution through the code.

This approach is convenient for users and challenging for language implementors. When-

ever Java code is executed for the first time the system must beprepared to handle unresolved

external references. An obvious, but slow, approach is to simply check whether an external ref-

erence is resolved each time the virtual instruction executes. For good performance, only the

first execution should be burdened with any binding overhead. One way to achieve this is for

the virtual program to rewrite itself when an external reference is resolved. For instance, sup-

pose a virtual instruction,vop, takes a immediate parameter that names an unresolved class

or method. When the virtual instruction is first executed the external name is resolved and

an internal VM data structure describing it is created. The loaded representation of the virtual

instruction is then rewritten, say tovop_resolved, which takes the address of the data struc-

ture as an immediate parameter. The implementation ofvop_resolved can safely assume
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that the external reference has been resolved successfully. Subsequentlyvop_resolvedwill

execute in place ofvop with no binding overhead.5

The process of virtual instruction rewriting is relativelysimple to carry out when instruc-

tions are being interpreted. For instance, it is possible tofall back on standard thread support

libraries to protect overwriting from multiple threads racing to rewrite the instruction. It is

more challenging if the resolution is being carried out by dynamically compiled native code

[69].

2.3 Early Dynamic Optimization

Early efforts to build dynamic optimizers were embedded in applications or C or FORTRAN

run time systems.

2.3.1 Manual Dynamic Optimization

Early experiments with dynamic optimization indicated that large performance pay backs are

possible. Typical early systems were application-specific. Rather than compile a language,

they dynamically generated machine code to calculate the solution to a problem described by

application specific data. Later, researchers built semi-automatic dynamic systems that would

re-optimize regions of C programs at run-time [47, 4, 31, 35,34].

Although the semi-automatic systems did not enable dramatic performance improvements

across the board, this may be a consequence of the performance baseline they compared them-

selves to. The prevalent programming languages of the time were supported by static compila-

tion and so it was natural to use the performance of highly optimized binaries as the baseline.

The situation for modern languages like Java is somewhat different. Dynamic techniques which

do not pay off relative to statically optimized C code may be beneficial when applied to code

naïvely generated by a JIT. Consequently, a short description of a few early systems seems

5This roughly describes how JamVM and SableVM, and perhaps other interpreters handle late binding.
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worthwhile.

2.3.2 Application specific dynamic compilation

In 1968 Ken Thompson built a dynamic compiler which accepteda textual description of a

regular expression and dynamically translated it into machine code for an IBM 7094 computer

[45]. The resulting code was dispatched to find matches quickly.

In 1985 Pike et al. invented an often-cited technique to generate good code for quickly

copying, or bitblt’ing, regions of pixels onto a display [53]. They observed that there was a be-

wildering number of special cases (caused by various alignments of pixels in display memory)

to consider when writing a good general purpose bitblit routine. Instead they wrote a dynamic

code generator that could produce a good (near optimal) set of machine instructions for each

specific blit. At worst their system executed only about 400 instructions to generate code for a

bitblit.

2.3.3 Dynamic Compilation of Manually Identified Static Regions

In the mid-1990’s Lee and Leone [47] built FABIUS, a dynamic optimization system for the

research language ML [31]. FABIUS depends on a particular useof curried functions.Curried

functions take one or more functions as parameters and return a new function that is a composi-

tion of the parameters. FABIUS interprets the call of a function returned by a curried function

as a clue from the programmer that dynamic re-optimization should be carried out. Their re-

sults, which they describe as preliminary, indicate that small, special purpose applications such

as sparse matrix multiply or a network packet filter may benefit from their technique but the

time and memory costs of re-optimization are difficult to recoup in general purpose code.

More recently it has been suggested that C and FORTRAN programs can benefit from

dynamic optimization. Auslander [4], Grant [35, 34] and others have built semi-automatic

systems to investigate this. Initially these systems required the user to identify regions of
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the program that should be dynamically re-optimized as wellas the variables that are run-

time constant. Later systems allowed the user to identify only the program variables that are

run-time constants and could automatically identify whichregions should be re-optimized at

run-time.

In either case the general idea is that the user indicates regions of the program that may

be beneficial to dynamically compile at run time. The dynamicregion is precompiled into

template code. Then, at run time, the values of run-time constants can be substituted into the

template and the dynamic region re-optimized. Auslander’ssystem worked only on relatively

small kernels like matrix multiply and quicksort. A good wayto look at the results was in

terms ofbreak even point. In this view, the kernels reported by Auslander had to execute from

about one thousand to a few tens of thousand of times before the improvement in execution

time obtained by the dynamic optimization outweighed the time spent re-compiling and re-

optimizing.

Subsequent work by Grant et al. created the DyC system [35, 34]. DyC simplified the pro-

cess of identifying regions and applied more elaborate optimizations at run time. This system

can handle real programs, although even the streamlined process of manually designating only

run-time constants is reported to be time consuming. Their methodology allowed them to eval-

uate the impact of different optimizations independently,including complete loop unrolling,

dynamic zero and copy propagation, dynamic reduction of strength and dynamic dead assign-

ment elimination to name a few. Their results showed that only loop unrolling had sufficient

impact to speed up real programs and in fact without loop unrolling there would have been no

overall speedup at all.
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2.4 Dynamic Object-oriented optimization

2.4.1 Finding the destination of a polymorphic callsite

Locating the definition of a method for a given object at run time is a search problem. To search

for a method definition corresponding to a given object the system must search the classes in

the hierarchy. The search starts at the class of the object, proceeds to its super class, to its super

class, and so on, until the root of the class hierarchy is reached. If each method invocation

requires the search to be repeated, the process will be a significant tax on overall performance.

Nevertheless, this is exactly what occurs in a naïve implementation of Smalltalk, Self , Java,

JavaScript or Python.

If the language permits early binding, the search may be converted to a table lookup at

compile-time. For instance, in C++, all the possible destinations of a callsite are known when

the program is loaded. As a result a C++ virtual callsite can beimplemented as an indirect

branch via a virtual table specific to the class of the object invoked on. This reduces the cost

to little more than a function pointer call in C. The construction and performance of virtual

function tables has been heavily studied, for instance by Driesen [22].

Real programs tend to have loweffective polymorphism. This means that the average call-

site has very few actual destinations. If fact, most callsites areeffectively monomorphic, mean-

ing they always call the same method. Note that low effectivepolymorphism does not imply

that a smart compiler should have been able to deduce the destination of the call. Rather, it is

a statistical observation that real programs typically make less use of polymorphism than they

might.

Inlined Caching and Polymorphic Inlined Caching

For late-binding languages it is seldom possible to generate efficient code for a callsite at

compile time. In response, various researchers have investigated how it might be done at run-

time. In general, it pays to cache the destination of a callsite when the callsite is commonly
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executed and its effective polymorphism is low. Thein-line cache, as invented by Deutsch and

Schiffman [21] for Smalltalk more than 20 years ago, replaces the polymorphic callsite with

the native instruction to call the cached method. The prologue of all methods is extended with

fix-up code in case the cached destination is not correct. Deutsch and Shiffman reported hitting

the in-line cache about 95% of the time for a set of Smalltalk programs.

Hölzle[39] extended the in-line cache to be apolymorphic in-line cache(PIC) by generating

code that successively compares the class of the invoked object to a few possible destination

types. The implementation is more difficult than an in-line cache because the dynamically

generated native code sequence must sequentially compare and conditionally branch against

several possible destinations. A PIC extends the performance benefits of an in-line cache to

effectively polymorphic callsites. For example, on a SPARCstation-2 Hölzle’s lookup would

cost only 8 + 2n cycles, where n is the actual polymorphism of the callsite. A PIC lookup costs

little more than an in-line cache for effectively monomorphic callsites and much less than for

effectively polymorphic ones.

2.4.2 Smalltalk and Self

Smalltalk, an early object oriented language, adopted the position that essentially every soft-

ware entity should be represented as an object. A fascinating discussion of the qualitative

benefits anticipated from this approach appears in Goldberg’s book [32].

The designers of Self took an even more extreme position. They held that even control

flow should be expressed using object oriented concepts.6 They understood that this approach

would require them to invent new ways to efficiently optimizemessage invocation if the perfor-

mance of their system was to be reasonable. Their research program was extremely ambitious

and they explicitly compared the performance of their system to optimized C code executing

the same algorithms.

6In Self, two blocks of code are passed as parameters to an if-else message sent to a boolean object. If the
object is true the first block is evaluated, otherwise the second.
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In addition, the Self system aimed to support the most interactive programming environ-

ment possible. Self supports debugging, editing and recompiling methods while a program

is running with no need to restart. This requires very late binding. The combination of the

radically pure object-oriented approach and the ambitiousgoals regarding development envi-

ronment made Self a sort of trial-by-fire for object-oriented dynamic compilation techniques.

Ungar, Chambers and Hölzle have published several papers [13, 40, 39, 41] that describe

how the performance of Self was increased from more than an order of magnitude slower than

compiled C to only twice as slow. A readable summary of the techniques are given by Ungar

et al. in [70]. A thumbnail summary would be that effective monomorphism can be exploited

by a combination of type-checking guard code (to ensure thatsome object’s type really is

known) and static inlining (to expose the guarded code to inter-procedural optimization). To

give the flavor of this work we will briefly describe two specific optimizations: customization

and splitting.

Customization

Customization is a relatively old object-oriented optimization introduced by Craig Chambers

in his dissertation [13] in 1988. The general idea is that a polymorphic callsite can be turned

into a static callsite (or inlined code) when the type of object on which the method is invoked

is known. The approach taken by a customizing compiler is to replicate methods with type

specialized copies so as to produce callsites where types are known.

Ungar et al. give a simple, convincing example in [70]. In Self, it is usual to write generic

code, for instance algorithms that can be shared by integer and floating point code. An example

is a method to calculate minimum. Themin method is defined by a class calledMagnitude.

All concrete number classes, likeInteger andFloat, thus inherit themin method. A cus-

tomizing compiler will arrange that customized definitionsof min are compiled forInteger

andFloat. Inlining the customized methods replaces the polymorphiccall7 to < within the

7In Self even integer comparison requires a message send.
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original min method by the appropriate arithmetic compare instructions8 in each of the cus-

tomized versions of integer and floatmin.

Method Splitting

Oftentimes, customized code can be inlined only when protected by a type guard. The guard

code is essentially an if-then-else construct where the “if” tests the type of an object, the “then”

inlines the customized code and the “else” performs the original polymorphic method invoca-

tion of the method. Chambers [13] noted that the predicate implemented by the guard estab-

lishes the type of the invoked object for one leg of the if-then-else, but following the merge

point, this knowledge is lost. Hence, he suggested that following code be “split” into paths

for which knowledge of types is retained. This suggests thatinstead of allowing control flow

to merge after the guard, a splitting compiler can replicatefollowing code to preserve type

knowledge.

Incautious splitting could potentially cause exponentialcode size expansion. This implies

that the technique is one that should only be applied to relatively small regions where it is

known that polymorphic dispatch is hurting performance.

2.4.3 Java JIT as Dynamic Optimizer

The first Java JIT compilers translated methods into native instructions and improved polymor-

phic method dispatch by deploying techniques invented decades previously for Smalltalk. New

innovations in garbage collection and thread synchronization, not discussed in this review, were

also made. Despite all this effort, Java implementations were still slow. More aggressive op-

timizations had to be developed to accommodate the performance challenges posed by Java’s

object-oriented features, particularly the polymorphic dispatch of small methods. The writers

of Sun’s Hotspot compiler white paper note:

8i.e. the integer customized version ofmin can issue an arithmetic integer compare and the float customization
can issue a float comparison instruction.
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In the Java language, most method invocations arevirtual (potentially poly-
morphic), and are more frequently used than in C++. This meansnot only that
method invocation performance is more dominant, but also that static compiler
optimizations (especially global optimizations such as inlining) are much harder
to perform for method invocations. Many traditional optimizations are most effec-
tive between calls, and the decreased distance between calls in the Java language
can significantly reduce the effectiveness of such optimizations, since they have
smaller sections of code to work with.[1, pp 17]

Observations similar to the above led Java researchers to perform speculative optimizations

to transform the program in ways that are correct at some point, but may be invalidated by

legal computations made by the program. For instance, Pechtchanski and Sarkar speculatively

generate code for a method with only one loaded definition that assumes it will never be over-

ridden. Later, if the loader loads a class that defines another definition of the method, the

speculative code may be incorrect and must not run again. In this case, the entire enclosing

method (or inlined method nest) must be recompiled under more realistic assumptions and the

original compilation discarded [52].

In principle, a similar approach can be taken if the speculative code is correct but turns out

to be slower than it could be.

The infrastructure to replace a method is complex, but is a fundamental requirement of

speculative optimization in a method-oriented dynamic compiler. It consists of roughly two

parts. First, meta data must be produced when a method is optimized that allows local variables

in the stack frame and registers of a running method to be migrated to a recompiled version.

This is somewhat similar to the problem of debugging optimized code [40]. Later, at run time,

the meta data is used to convert the stack frame of the invalidcode to that of the recompiled

code. Fink and Qian describe a technique called on stack replacement (OSR) [28] which shows

how to restrict optimization so that recompilation is always possible. The key idea is that

values that may be dead under traditional optimization schemes must be kept alive so that a

less aggressively optimized replacement method can continue.
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2.4.4 JIT Compiling Partial Methods

The dynamic compilers described thus far compile entire methods or inlined method nests. The

problem with this approach is that even a hot method may contain cold code. The cold code

may never be executed or perhaps will later become hot only after being compiled.

Compiling cold code that never executes can have only indirect effects such as allowing the

optimizer to prove facts about the portions of the method that arehot. This can have a positive

impact on performance, by enabling the optimizer to prove facts about hot regions that enable

faster code to be produced. Also, it can have a negative impact, as the cold code may contain

code that forces the optimizer to generate more conservative, slower code for the hot regions.

Whaley described a prototype that compiled partial methods,skipping cold code. He mod-

ified the compiler to generate glue code stubs in the place of cold code. The glue code had

two purposes. First, to the optimizer at compile time, the glue code included annotations so

that it appeared to use the same variables as the cold code. Consequently the optimizer has a

true model of variables used in the cold regions and so generated correct code for the hot ones.

Second, when run, the glue code interacted with the run time system to exit the code cache and

resume interpretation. Hence, if a cold region was entered control would simply revert to the

interpreter. His results showed a large compile time savings, leading to modest speed ups for

certain benchmarks [74].

Suganuma et al. [67] investigated this issue further by modifying a method-based JIT to

speculatively optimize hot inlined method nests. Their technique inlines only hot regions,

replacing cold code with guard code. The technique is speculative because conservative as-

sumptions in the cold code are ignored. When execution triggers guard code it exposes the

speculation as wrong and hence is a signal that continued execution of the inlined method nest

may be incorrect. On stack replacement and recompilation were used to recover. They also

measured a significant reduction in compile time. However, only a modest speedup was mea-

sured, suggesting either that conservative assumptions stemming from the cold code are not a

serious concern or their recovery mechanism is too costly.
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2.5 Traces

HP Dynamo [6, 23, 5] is a same-ISA binary optimizer. Dynamo initially interprets a binary

executable program, detecting interprocedural paths, ortraces, through the program as it runs.

These traces are then optimized and loaded into atrace cache. Subsequently, when the inter-

preter encounters a program location for which a trace exists, it is dispatched from the trace

cache. If execution diverges from the path taken when the trace was generated then atrace

exit occurs, execution leaves the trace cache and interpretation resumes. If the program fol-

lows the same path repeatedly, it will be faster to execute code generated for the trace rather

than the original code. Dynamo successfully reduced the execution time of many important

benchmarks. Several binary optimization systems, including DynamoRIO [11], Mojo [14],

Transmeta’s CMS [20], and others, have since used traces.

Dynamo uses a simple heuristic, called Next Executing Tail (NET), to identify traces. NET

starts generating a trace from the destination of a hot reverse branch, since this location is likely

to be the head of a loop, and hence a hot region of the program islikely to follow. If a given

trace exit becomes hot, a new trace is generated starting from its destination. Recently, Hiniker

et al. [37] described improvements to NET that reduce replication and handle loops better.

Software trace caches are efficient structures for dynamic optimization. Bruening and

Duesterwald [8] compare execution time coverage and code size for three dynamic optimiza-

tion units: method bodies, loop bodies, and traces. They show that method bodies require

significantly more code size to capture an equivalent amountof execution time than either

traces or loop bodies. This result, together with the properties outlined in Section 1.4, suggest

that traces may be a good choice for a unit of compilation.

DynamoRIO Bruening describes a new version of Dynamo which runs on the Intel x86

architecture. The current focus of this work is to provide anefficient environment to instru-

ment real world programs for various purposes such as improve the security of legacy applica-

tions [11, 10].
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One interesting application of DynamoRIO was by Sullivan et al [68]. They ran their own

tiny interpreter on top of DynamoRIO in the hope that it would be able to dynamically optimize

away a significant proportion of interpretation overhead. They did not initially see the results

they were hoping for because the indirect dispatch branchesconfounded Dynamo’s trace selec-

tion. They responded by creating a small interface by which the interpreter could programat-

ically give DynamoRIO hints about the relationship between the virtual pc and the hardware

pc. This was their way around what we have described as the context problem (Section 3.5).

Whereas interpretation slowed down by almost a factor of two using regular DynamoRIO, af-

ter they had inserted calls to the hint API, they saw speedupsof about 20% on a set of small

benchmarks. Baron [7] reports similar performance results running a similarly modified Kaffe

JVM [76].

Last Executed Iteration (LEI)

Hiniker, Hazelwood and Smith performed a simulation study evaluating enhancements to the

basic Dynamo trace selection heuristics [37]. They observed two main problems with Dy-

namo’s NET heuristic. The first problem, “trace separation”occurs when traces that turn out to

often execute sequentially happen to be placed far apart in the trace cache, hurting the locality

of reference of code in the instruction cache. LEI maintainsa branch history mechanism as

part of its trace collection system that allows it to do a better job handling loop nests, requiring

fewer traces to span the nest. The second problem, “excessive code duplication”, occurs when

many different paths become hot through a region of code. Theproblem is caused when a trace

exit becomes hot and a new trace is generated that diverges from the preexisting trace for only

one or a few blocks before rejoining its path. As a consequence the new trace replicates blocks

of the old trace from the place they rejoin to their common end. Combining several such “ob-

served traces” together forms a region with multiple paths and less duplication. A simulation

study suggests that using their heuristics, fewer, smallerselected traces will account for the

same proportion of execution.
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2.6 Hotpath

Gal, Probst and Franz describe the Hotpath project. Hotpathextends JamVM (one of the

interpreters we use for our experiments) to be a trace oriented mixed-mode system [30]. They

focus on traces starting at loop headers and do not compile traces other than those in loops.

Thus, they do not attempt trace linking as described by Dynamo, but rather “merge” traces

that originate from side exits leading back to loop headers.This technique allows Hotpath to

compile loop nests. They describe an interesting way of modeling traces using Single Static

Assignment (SSA) [19] that exploits the constrained flow of control present in traces. This both

simplifies their construction of SSA and allows very efficient optimization. Their experimental

results show excellent speedup, within a factor of two of Sun’s HotSpot, for scientific style loop

nests like those in benchmarks like LU, SOR and Linpack, and more modest speedup, around

a factor of two over interpretation, for FFT. No results are given for tests in the SPECjvm98

suite, perhaps because their system does not yet support “trace merging across (inlined) method

invocations” [30, page 151]. The optimization techniques they describe seem complimentary

to the overall architecture we propose in Chapter 6.

2.7 Summary? Tail? What to call this section?
todo: fix
section
head

In this chapter we briefly traced the development of high level language virtual machines from

interpreters to dynamic optimizing compilers. We saw that interpreter designs may perform

poorly on modern, highly pipelined processors, because current dispatch mechanisms cause

too many branch mispredictions. This will be discussed in more detail in Section 3.5. Later, in

Chapter 4, we describe our solution to the problem.

Currently JIT compilers compile entire methods or inlined method nests. Since hot methods

may contain cold code this forces the JIT compiler and runtime system to support late binding.

Should the cold code later become hot a method-based JIT mustrecompile the containing

method or inlined method nest to optimize the newly hot code.In this chapter we described
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how HP Dynamo defines a simple but effective heuristic that can be used to find hot paths of

a running program and also how to link on new paths as they become hot. In Chapter 6 we

describe how a virtual machine can compile traces to incrementally compile code as it becomes

hot.

RCSfile : background.lyx, v Revision : 1.26 33 July 19, 2007 11:57



2.7. SUMMARY? TAIL? WHAT TO CALL THIS SECTION?

RCSfile : background.lyx, v Revision : 1.26 34 July 19, 2007 11:57



Chapter 3

Dispatch Techniques

In this Chapter we expand on our discussion of interpretationby examining current dispatch

techniques. In Chapter 2 we defined dispatch as the mechanism used by a high level virtual

machine to transfer control from the code to emulate one virtual instruction to the next. This

chapter has the flavor of a tutorial as we trace the evolution of dispatch techniques from the

simplest to the highest performing.

Although in most cases we will give a small C language exampleto illustrate the way the

interpreter is structured this should not be understood to mean that all interpreters are hand

written C programs. Precisely because so many dispatch mechanisms exist, some researchers

argue that the interpreter portion of a virtual machine should be generated from some more

generic representation [27, 65].

Section 3.1 describes switch dispatch, the simplest dispatch technique. Section 3.2 intro-

duces call threading, which figures prominently in our techniques. Section 3.3 describes direct

threading, a common technique that suffers from branch misprediction problems. Section 3.4

briefly describes branch prediction resources in modern processors. Section 3.5 defines the

context problem, our term for the challenge to branch prediction posed by interpretation. Fi-

nally, Section 3.7 describes various related work that improves or eliminates dispatch overhead.

35



3.1. SWITCH DISPATCH

3.1 Switch Dispatch

Switch dispatch, perhaps the simplest dispatch mechanism,is illustrated by Figure 3.1. Al-

though the persistent representation of a Java class is standards defined, the representation of

loaded virtual program is up to the VM designer. In this case we show how an interpreter

might choose a representation that is less compact than possible for simplicity and speed of

interpretation. In the figure, the loaded representation appears on the bottom left. Each virtual

opcode is represented as a full word token even though a byte would suffice. Arguments, for

those virtual instructions that take them, are also stored in full words following the opcode.

This avoids any alignment issues on machines that penalize unaligned loads and stores.

Figure 3.1 illustrates the situation just before the expression is executed. ThevPC points

to the word in the loaded representation corresponding to the first instance ofiload. The

interpreter works by executing one iteration of the dispatch loop for each virtual instruction it

executes, switching on the token corresponding the virtualinstruction. Each virtual instruction

is implemented by acase in theswitch statement. Virtual instruction bodies are simply the

compiler-generated code for each case.

Every instance of a virtual instruction consumes at least one word in the internal represen-

tation, namely the word occupied by the virtual opcode. Virtual instructions that take operands

are longer. This motivates the strategy used to maintain thevPC. The dispatch loop always

bumps thevPC to account for the opcode and bodies that consume operands bump thevPC

further, one word per operand.

Although no virtual branch instructions are illustrated inthe figure, they operate by assign-

ing a new value to thevPC for taken branches.todo: add
detail to
bodies A switch interpreter is relatively slow due to the overhead of the dispatch loop and the

switch. Despite this, switch interpreters are commonly used in production (e.g. in the JavaScript

and Python interpreters). Presumably this is because switch dispatch can be implemented in

ANSI standard C and so it is very portable.
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Java

source

Java 

Bytecode

{
  c=a+b+1;
}

vPC

loaded

representation

of virtual 

program

ILOAD

a

ILOAD

b

ICONST

1

IADD

IADD

ISTORE

c

interp(){
  int *vPC;

  while(1){

    switch(*vPC++){

    case ILOAD:
      //push var..
      break;

    case ICONST:
      //push constant
      break;

    case IADD:
      //add 2 slots, pop
      break;

    case ISTORE:
      //pop,store 
      break;

    }

  }

}

iload a
iload b
iconst 1
iadd
iadd
istore c

Figure 3.1: A switch interpreter loads each virtual instruction as a virtual opcode, or token,
corresponding to the case of the switch statement that implements it.

RCSfile : background − related.lyx, v Revision : 1.33 37 July 19, 2007 11:57



3.2. DIRECT CALL THREADING

3.2 Direct Call Threading

Another portable way to organize an interpreter is to write each virtual instruction as a func-

tion and dispatch it via a function pointer. Figure 3.2 showseach virtual instruction body

implemented as a C function. While the loaded representationused by the switch interpreter

represents the opcode of each virtual instruction as a token, direct call threading represents each

virtual opcode as the address of the function that implements it. Thus, by treating thevPC as a

function pointer, a direct call threaded interpreter can execute each instruction in turn.

In the figure, thevPC is a static variable which means theinterp function as shown is

not re-entrant. Our example aims only to convey the flavor of call threading. In Chapter 6 we

will show how a more complex approach to direct call threading can perform about as well as

switch threading.

A variation of this technique is described by Ertl [24]. For historical reasons the name

“direct” is given to interpreters which store theaddressof the virtual instruction bodies in the

loaded representation. Presumably this is because they can“directly” obtain the address of a

body, rather than using a mapping table (or switch statement) to convert a virtual opcode to the

address of the body. However, the name can be confusing as theactual machine instructions

used to dispatch are indirect branches. (In this case, anindirect call).

Next we will describe direct threading, perhaps the most well known “high performance”

dispatch technique.todo: fig
doesn’t
work for
Angela

3.3 Direct Threading

As shown on the left of Figure 3.3, a virtual program is loadedinto a direct-threaded interpreter

by constructing alist of addresses, one for each virtual instruction in the program, pointing to

the body for that instruction. We refer to this list as theDirect Threading Table, or DTT, and

refer to locations in the DTT asslots. Virtual instruction operands are also stored in the DTT,

immediately after the address of the corresponding body.
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vPC

iload

a

iload

b

iconst

1

iadd

iadd

istore

c

DTT   void iload(){ // push var
    vPC++;
  }
  void iconst(){// push constant
    vPC++;
  }
  void iadd(){  //pop,pop,add,push
    vPC++;
  }
  void istore(){ //pop,store...
  }
  vPC = &dtt[0];
  interp(){
   while(1){
   (*vPC)(); //dispatch loop
  } 
}

loaded data

Figure 3.2: A direct call threaded interpreter packages each virtual instruction body as a func-
tion. The shaded box highlights the dispatch loop showing how instructions are called through
a function pointer. Direct call threading requires the loaded representation of the program to
indicate theaddressof the function implementing each virtual instruction.
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vPC

iload a
iload b
iconst 1
iadd
iadd
istore c

{
  c=a+b+1;
} &&iload

a
&&iload
b
&&iconst
1
&&iadd
&&iadd
&&istore
c

DTT
interp(){
  iload:
    //push var..
    
     goto *vPC++;

  iconst:
    //push constant
     
    goto *vPC++;

  iadd://add 2 slots

  istore://pop,store 
}

Java source

Java Bytecode

B
ytecode Loader

Javac
Compiler

Virtual Instruction Bodies

Figure 3.3: Direct Threaded Interpreter showing how Java Source code compiled to Java byte-
code is loaded into the Direct Threading Table (DTT). The virtual instruction bodies are written
in a single C function, each identified by a separate label. The double-ampersand (&&) shown
in the DTT is gcc syntax for the address of a label.

mov %eax = (%rx) ; rx is vPC lwz r2 = 0(rx)

addl 4,%rx mtctr r2

jmp (%eax) addi rx,rx,4

bctr

(a) Pentium IV assembly (b) Power PC assembly

Figure 3.4: Machine instructions used for direct dispatch.On both platforms assume that
some general purpose register,rx, has been dedicated for thevPC. Note that on the PowerPC
indirect branches are two part instructions that first load thectr register and second branch to
its contents.
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Interpretation begins by initializing thevPC to the first slot in the DTT, and then jumping

to the address stored there. Each body then ends by transferring control to the next instruction,

shown in Figure 3.3 asgoto *vPC++. In C, bodies are identified by a label. Common C

language extensions permit the address of this label to be taken, which is used when initializing

the DTT. GNU’sgcc, as well as C compilers produced by Intel, IBM and Sun Microsystems

all support the label as address and computed goto extensions, making direct threading quite

portable.

Direct threading requires fewer instructions and is fasterthan switch dispatch. Assem-

bler for the dispatch sequence is shown in Figure 3.4. When executing the indirect branch in

Figure 3.4(a) the Pentium IV will speculatively dispatch instructions using a predicted target

address. The PowerPC uses a different strategy for indirectbranches, as shown in Figure 3.4(b).

First the target address is loaded into a register, and then abranch is executed to this register

address. Rather than speculate, the PowerPC stalls until thetarget address is known, although

other instructions may be scheduled between the load and thebranch (like theaddi in Fig-

ure 3.4) to reduce or eliminate these stalls.

3.4 Dynamic Hardware Branch Prediction

The primary mechanism used to predict indirect branches on modern computers is thebranch

target buffer(BTB). The BTB is a hardware table in the CPU that associates the destination of

a small set of branches with their address [36]. The idea is tosimply remember the previous

destination of each branch. This is the same as assuming thatthe destination of each indirect

branch is correlated with the address in memory of the branchinstruction itself.

The Pentium IV implements a 4K entry BTB [38]. (There is no mention of a BTB in

the PowerPC 970 programmers manual [42].) Direct threadingconfounds the BTB because

all instances of a given virtual instruction compete for thesame BTB slot. The performance

impact of this can be hard to predict. For instance, if a tightloop of the virtual program happens
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to contain a sequence of unique virtual instructions then the BTB may successfully predict each

one. On the other hand, if the sequence contains duplicate virtual instructions, like the pair of

iload instructions in Figures 3.3 and 2.1, the BTB may mispredict all of them.

Another kind of dynamic branch predictor is used for conditional branch instructions. Con-

ditional branches are relative, or direct, branches so there are only two possible destinations.

The challenge lies in predicting whether the branch will be taken or fall through. For this pur-

pose modern processors implement abranch history table. The PowerPC 7410, as an example,

deploys a 2048 entry 2 bit branch history table [50]. Direct threading also confounds the branch

history table as all the instances of each conditional branch virtual instruction compete for the

same branch history table entry. This will be discussed in more detail in Section 4.3.

Return instructions can be predicted perfectly using a stackof addresses pushed by call

instructions. The Pentium IV has a 16 entryreturn address stack[38] whereas the PPC970

uses a similar structure called thelink stack[42].

3.5 The Context Problem

Mispredicted branches pose a serious challenge to modern processors because they threaten to

starve the processor of instructions. The problem is that before the destination of the branch

is known the execution of the pipeline may run dry. To performat full speed, modern CPU’s

need to keep their pipelines full by correctly predicting branch targets.

Ertl points out that the assumptions underlying the design of indirect branch predictors is

usually wrong for direct threaded interpreters [25, 26]. Ina direct-threaded interpreter, there

is only one indirect jump instruction per virtual instruction. For example, in the fragment of

virtual code illustrated in Figure 2.1, there are two instances ofiload followed by an instance

of iconst. The indirect dispatch branch at the end of theiload body will execute twice.

The first time, in the context of the first instance ofiload, it will branch back to the entry

point of the theiload body, whereas in the context of the secondiload it will branch
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to iconst. Thus, the hardware will likely mispredict the second execution of the dispatch

branch.

To the hardware the destination of the indirect dispatch branch is unpredictable because its

destination is not correlated with the hardwarepc. Instead, its destination is correlated tovPC.

We refer to this lack of correlation between the hardwarepc andvPC as thecontext problem.

3.6 Subroutine Threading

Forth is organized as a large collection of callable bodies of code calledwords. Words can

be user defined or built into the system. Meaningful Forth words are composed of built-in

and user-defined words and execute by dispatching their constituent words in turn. A Forth

implementation is said to besubroutine threadedif a word is compiled to a sequence ofnative

call instructions,one call for each of the word is composed from. Since a built-in Forth word

is loosely analgous to a callable virtual instruction body we could conceivably use subroutine

threading in any high level language virtual machine that implements virtual instruction bodies

as callable. In such a system the loaded representation of a virtual method would include

a sequence of native call instructions, one to dispatch eachvirtual instruction in the virtual

method.

Curley [18, 17] describes a subroutine-threaded Forth for the 68000 CPU. He improves the

resulting code by inlining small opcode bodies, and converts virtual branch opcodes to single

native branch instructions. He credits Charles Moore, the inventor of Forth, with discovering

these ideas much earlier. Outside of Forth, there is little thorough literature on subroutine

threading. In particular, few authors address the problem of where to store virtual instruction

operands. In Section 4.2, we document how operands are handled in our implementation of

subroutine threading.

The choice of optimal dispatch technique depends on the hardware platform, because dis-

patch is highly dependent on micro-architectural features. On earlier hardware,call andreturn

RCSfile : background − related.lyx, v Revision : 1.33 43 July 19, 2007 11:57



3.7. OPTIMIZING DISPATCH

were both expensive and hence subroutine threading required two costly branches, versus one

in the case of direct threading. Rodriguez [58] presents the trade offs for various dispatch types

on several 8 and 16-bit CPUs. For example, he finds direct threading is faster than subrou-

tine threading on a 6809 CPU, because thejsr andret instruction require extra cycles to

push and pop the return address stack. On the other hand, Curley found subroutine thread-

ing faster on the 68000 [17]. On modern hardware the cost of the return is much lower, due

to return branch prediction hardware, while the cost of direct threading has increased due to

misprediction. In Chapter 5 we quantify this effect on a few modern CPUs.

3.7 Optimizing Dispatch

Much of the work on interpreters has focused on how to optimize dispatch. Kogge [46] remains

a definitive description of many threaded code dispatch techniques. These can be divided into

two broad classes: those which refine the dispatch itself, and those which alter the bodies so that

they are more efficient or simply require fewer dispatches. Switch dispatch and direct threading

belong to the first class, as does subroutine threading. Later, we will discuss superinstructions

and replication, which are in the second class. We are particularly interested in subroutine

threading and replication because they both provide context to the branch prediction hardware.

3.7.1 Superinstructions

Superinstructionsreduce the number of dispatches. Consider the code to add a constant integer

to a variable. This may require loading the variable onto thestack, loading the constant, adding,

and storing back to the variable. VM designers can instead extend the virtual instruction set

with a single superinstruction that performs the work of allfour virtual instructions. This tech-

nique is limited, however, because the virtual instructionencoding (often one byte per opcode)

may allow only a limited number of instructions, and the number of desirable superinstructions

grows large in the number of subsumed atomic instructions. Furthermore, the optimal superin-
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struction set may change based on the workload. One approachuses profile-feedback to select

and create the superinstructions statically (when the interpreter is compiled [27]).

3.7.2 Selective Inlining

Piumarta [56] presentsselective inlining. It constructs superinstructions when the virtual pro-

gram is loaded. They are created in a relatively portable way, by memcpy’ing the native code

in the bodies, again using GNU C labels-as-values. The idea is to construct (new) super in-

struction bodies by concatenating the virtual bodies of thevirtual instructions that make them

up. This works only when the code in the virtual bodies is position independent, meaning that

any relative branches remain in the body. Typically this excludes bodies making C function

calls. This technique was first documented earlier [60], butPiumarta’s independent discovery

inspired many other projects to exploit selective inlining. Like us, he applied his optimiza-

tion to OCaml, and reports significant speedup on several micro benchmarks. As we discuss

in Section 5.5, our technique is separate from, but supportsand indeed facilitates, inlining

optimizations.

Languages, like Java, that require run-time binding complicate the implementation of se-

lective inlining significantly because at load time little is known about the arguments of many

virtual instructions. When a Java method is first loaded some arguments are left unresolved.

For instance, the argument of aninvokevirtual instruction will initially point to a string

naming the callee. The argument will be re-written, to pointto a descriptor of the now resolved

callee, the first time the virtual instruction executes. At the same time, the virtual opcode is

rewritten so that subsequently a “quick” form of the virtualinstruction body will be dispatched.

In Java, if resolution fails, the instruction throws an exception and is not rewritten. The pro-

cess of rewriting the arguments, and especially the need to point to a new virtual instruction

body, complicates superinstruction formation. Gagnon describes a technique that deals with

this additional complexity which he implemented in SableVM[29].

Selective inlining requires that the superinstruction starts at a virtual basic block, and ends
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at or before the end of the block. Ertl’sdynamic superinstructions[26] also usememcpy, but

are applied to effect a simple native compilation by inlining bodies for nearly every virtual in-

struction. Ertl shows how to avoid the basic block constraints, so dispatch to interpreter code is

only required for virtual branches and unrelocatable bodies. Vitale and Abdelrahman describe

a technique called catenation, which patches Sparc native code so that all implementations can

be moved, specializes operands, and converts virtual branches to native, thereby eliminating

the virtual program counter [72].

3.7.3 Replication

Replication— creating multiple copies of the opcode body—decreases thenumber of contexts

in which it is executed, and hence increases the chances of successfully predicting the succes-

sor [26]. Replication implemented by inlining opcode bodiesreduces the number of dispatches,

and therefore, the average dispatch overhead [56]. In the extreme, one could create a copy for

each instruction, eliminating misprediction entirely. This technique results in significant code

growth, which may [72] or may not [26] cause cache misses.

In summary, misprediction of the indirect branches used by adirect threaded interpreter

to dispatch virtual instructions limits its performance onmodern CPUs because of the context

problem. We have described several recent dispatch optimization techniques. Some of the

techniques improve performance of each dispatch by reducing the number of contexts in which

a body is executed. Others reduce the number of dispatches, possibly to zero.

3.8 Eloquent Linkage to Next Chapter

In this chapter we have described how a few common interpretation techniques work. In the

next chapter we will describe a new technique for interpretation that deals with the context

problem as we defined it in Section 3.5 above. Our technique, context threading, performs well

compared to the interpretation techniques we have described in this chapter. In Chapter 6, we
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show how an enhanced version of a direct call threaded interpreter can be extended to be a

trace based dynamic compiler.
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Chapter 4

Design and Implementation of Efficient

Interpretation

This chapter will describe how to implement an efficient interpreter which calls its virtual

instruction bodies. In Chapter 1 we suggested that an interpreter based on callable virtual

instruction bodies may be easier to extend with a JIT. Before tackling that question, we would

like to make sure that such an interpreter can perform well even before a JIT is added.

An obvious, but slow, way to use callable virtual instruction bodies is to build a direct call

threaded (DCT) interpreter. See Section 3.2 for a detailed description of the technique. In a

DCT interpreter each body is dispatched by a singleindirect call instruction. The destination

of the indirect call is data driven (i.e. by the sequence of virtual instructions that make up the

virtual program) and thus impossible for the hardware to predict. As a result a DCT inter-

preter suffers a branch misprediction for almost every dispatch and runs no faster than a switch

threaded interpreter.

To call each body without misprediction we must usedirect call instructions instead. A

direct call instruction has one explicit destination and poses no prediction challenge. Hence,

at load time, we generate one direct call instruction for each virtual instruction in the program.

Each straight-line section of virtual instructions is translated to a sequence of direct call in-
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structions, each direct call dispatching the corresponding virtual instruction body. The loaded

program is then run by jumping to the beginning of the generated sequence of calls. As the

generated code executes it emulates the virtual program by calling each virtual instruction body

in turn. This approach is very similar to the old Forth technique called subroutine threading

which we have already described in Section 3.6.

Generating and dispatching native code obviously makes ourimplementation of subroutine

threading less portable than many dispatch techniques. However, since subroutine threading

requires the generation of only one type of machine instruction, a direct call, its hardware

dependency is isolated to a few lines of code.

Subroutine threading dispatches straight-line sequencesof virtual instructions very effi-

ciently because no branch mispredictions occur. The directcalls used to dispatch each body

take an immediate argument that explicitly indicates theirdestination. The destination of the

return ending each body is perfectly predicted by the returnbranch predictor stack imple-

mented by modern processors. In the next chapter, where we present our evaluation of the

performance of subroutine threading, we will show that eventhe simplest subroutine threading

technique runs the SPECjvm98 suite about 20% faster than direct threading on PPC970 and

Pentium 4 processors.

Subroutine threading handles straight-line virtual code efficiently, but does nothing to im-

prove the dispatch of virtual branch instructions. By generating more sophisticated code for

virtual branch instructions we eliminate branch mispredictions caused by the dispatch of virtual

branch instructions as well. We call the extended techniquecontext threading. Context thread-

ing improves the performance of the SPECjvm98 suite by about another 5% over subroutine

threading.

In Chapter 6 we will describe another way of handling virtual branches that requires less

complex code generation but requires hot run time interprocedural paths, or traces, to be iden-

tified.

Subroutine threading minimally affects code size. Although direct-threaded interpreters are
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known to have poor branch prediction properties they are also known to have a small instruction

cache footprint [59]. Since both branch mispredictions andinstruction cache misses are major

pipeline hazards, we would like to retain the good cache behavior of direct-threaded interpreters

while improving the branch behavior. This is in contrast to techniques like selective inlining

described in Section 3.7. These techniques improve branch prediction by replicating entire

bodies, in effect trading instruction cache size for betterbranch prediction.livio tool shows todo:livio
data

SUB not stalling much more due to icache.

4.1 Understanding Branches

Before describing our design, we start with two observations. First, a virtual program will

typically contain several types of control flow: conditional and unconditional branches, indirect

branches, and calls and returns. We must also consider the dispatch of straight-line virtual

instructions. For direct-threaded interpreters, straight-line execution is just as expensive as

handling virtual branches, sinceall virtual instructions are dispatched with an indirect branch.

Second, the dynamic execution path of the virtual program will contain patterns (loops, for

example) that are similar in nature to the patterns found when executing native code. These

control flow patterns originate in the algorithm that the virtual program implements.

As described in Section 3.4 modern microprocessors have considerable resources devoted

to identifying these patterns in native code, and exploiting them to predict branches. Direct

threading uses only indirect branches for dispatch and, dueto the context problem, the patterns

that exist in the virtual program are largely hidden from themicroprocessor.

The spirit of our approach is to expose these virtual controlflow patterns to the hardware,

such that the physical execution path matches the virtual execution path. To achieve this goal,

we exploit the different types of hardware prediction resources to handle the different types of

virtual control flow transfers. In Section 4.2 we show how to replace straight-line dispatch with

subroutine threading. In Section 4.3 we show how to inline conditional and indirect jumps and

RCSfile : efficient − interpretation.lyx, v Revision : 1.30 51 July 19, 2007 11:57



4.2. HANDLING LINEAR DISPATCH

vPC1:  &ctt[0]

    a

3:  &ctt[1]

    b

5:  &ctt[2]

    1

7:  &ctt[3]

8:  &ctt[4]

9:  &ctt[5]

    c

call iload

call iload

call iconst

call iadd

call iadd

call istore

DTT

CTT
interp(){
  void iload(){
    //push var..
    vPC++;
    }

  void iconst(){
    //push constant
    vPC++; 
    }

  void iadd(){ 
    //add 2 slots}
 
 void istore(){
    //pop, store var
}

Virtual Instruction Bodies

loaded data generated code

Figure 4.1: Subroutine Threaded Interpreter showing how the CTT contains one generated
direct call instruction for each virtual instruction and how the first entry in the DTT corre-
sponding to each virtual instruction points to generated code to dispatch it. Callable bodies are
shown here as nested functions for illustration only.

in Section 4.4 we discuss handling virtual calls and returnswith native calls and returns. We

strive to maintain the property that the virtual program counter is precisely correlated with the

physical program counter and in fact, with when all our techniques are combined there is a

one-to-one mapping between them at most control flow points.

Should another comparison to the yeti TR-LINK technique go here?todo: need
TR-LINK
ref?

4.2 Handling Linear Dispatch

The dispatch of straight-line virtual instructions is the largest single source of branches when

executing an interpreter. Any technique that hopes to improve branch prediction accuracy must

address straight-line dispatch. An obvious solution is inlining, as it eliminates the dispatch

entirely for straight-line sequences of virtual instructions. The increase in code size caused

by aggressive inlining, however, has the potential to overwhelm the benefits with the cost of

increased instruction cache misses [72].
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interp(){

  iload:
    //push var..
    
      asm volatile("ret");
 goto *vPC++;

  
  iconst:
    //push constant

    asm volatile("ret"); 
    goto *vPC++;

}

Virtual Instruction Bodies

Figure 4.2: Direct threaded bodies retrofitted as callable routines by inserting inline assembler
return instructions. This example is for Pentium 4 and henceends each body with aret in-
struction. Theasm volatile statement is an extension to the C language , inline assembler,
provided by gcc and many other compilers.

Rather than eliminate dispatch, we propose an alternative organization for the interpreter

in which native call and return instructions are used. Conceptually, this approach is elegant

because subroutines are a natural unit of abstraction to express the implementations of virtual

instructions.

Figure 4.1 illustrates our implementation of subroutine threading, using the same example

program as Figure 3.3. In this case, we show the state of the virtual machineafter the first

virtual instruction has been executed. We add a new structure to the interpreter architecture,

called theContext Threading Table(CTT), which contains a sequence of native call instruc-

tions. Each native call dispatches the body for its virtual instruction. We use the term context

threading, because the hardware address of each call instruction in the CTT provides execution

context to the hardware, most importantly, to the branch predictors.

Although Figure 4.1 shows each body as a nested function, in fact we implement this by

ending each non-branching opcode body with a native return instruction as shown in Figure 4.2.

The direct threading table (DTT) is still necessary to storeimmediate operands, and to correctly

resolve virtual control transfer instructions. In direct threading, entries in the DTT point to
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virtual instruction bodies, whereas in subroutine threading they refer to call sites in the CTT.

The handling of immediate arguments to virtual instructions is perhaps the biggest differ-

ence between our implementation of subroutine threading and the approach used by Forth.

Forth words pop all their arguments from the run time stack and thus there is no concept of

an immediate operand to a Forth word. Thus, there is no need for a structure like the DTT in

Forth. The virtual instruction set defined by a Java virtual machine includes many instructions

which take immediate operand so we need both the DTT and the CTT.

It may seem counterintuitive to improve dispatch performance by calling each body. It is

not obvious whether a call and return is more or less expensive to execute than an indirect

jump, and in fact that is not the issue. Although the cost of subroutine threading is two con-

trol transfers, versus one for direct threading, the extra cost is outweighed by the benefit of

eliminating a large source of unpredictable branches.

4.3 Handling Virtual Branches

Subroutine threading handles the branches that implement the dispatch of straight-line virtual

instructions; however, the actual control flow of the virtual program is still hidden from the

hardware. That is, bodies that perform virtual branches still have no context. There are two

problems, one relating to shared indirect branch prediction resources, and one relating to a lack

of history context for conditional branch prediction resources.

Figure 4.3 introduces a new Java example, this time including a virtual branch. Consider

the implementation ofifeq, marked (a) in the figure. Even for this simple virtual branch,

prediction is problematic, becauseall instances ofifeq instructions in the virtual program

share a single indirect branch instruction (and hence have asingle prediction context). A

simple solution is to generate replicas of the indirect branch instruction in the CTT immediately

following the call to the branching opcode body. Branching opcode bodies now end with

native return, which return to the CTT before executing the replicated indirect branch. As a
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(a)

{
  boolean notZero(int p1){
  if ( p1!=0 ){
   return true;
  }else{
   return false;
  }
}

boolean notZero(int);
  Code:
   0: iload_1
   1: ifeq 6
   4: iconst_1
   5: ireturn
   6: iconst_0
   7: ireturn

Java source

Java Bytecode

call iload_1

call ifeq 

call iconst_1

call ireturn

call iconst_0

call ireturn

CTT

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  ifeq:
    if ( *sp )
      vPC = *vPC;
     else
      vPC++;
    goto *vPC++;

iconst_1: //push 1
iconst_0  //push 0

  ireturn:
   //vPC = return
   goto *vPC;

}

virtual instruction bodiesgenerated code

vPC

0:  &ctt[0]

1:  &ctt[1]

    6

3:  &ctt[2]

4:  &ctt[3]

5:  &ctt[4]

6:  &ctt[5]

   

DTT

loaded data

Figure 4.3: Subroutine Threading does not not address branch instructions. Unlike straight
line virtual instructions virtual branch bodies end with anindirect branch destination (just like
direct threading).
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(a)

(b)

CTT

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  ifeq:
    if ( *sp )
      vPC = *vPC;
     else
      vPC++;
    asm ("ret")

iconst_1: //push 1
iconst_0  //push 0

  ireturn:
   //vPC = return
   asm("ret");

}

generated code

vPC

    &ctt[0]

    &ctt[1]

    6

    &ctt[2]

    &ctt[3]

    &ctt[4]

    &ctt[5]

   

DTT

loaded data virtual instruction bodies

call iload_1

call ifeq

jmp (%vPC)

call iconst_1

call ireturn

jmp (%vPC)

call iconst_0

call ireturn

jmp (%vPC)

Figure 4.4: Context threading with branch replication illustrating the “replicated” indirect
branch (a) in the CTT. The fact that the indirect branch corresponds to only one virtual in-
struction gives it better prediction context. The heavy arrow from (a) to (b) is followed when
the virtual branch is taken.

consequence, each virtual branch instruction now has its own hardware context. We refer to

this technique asbranch replication. Figure 4.4 illustrates how branch replication works.

Branch replication is attractive because it is simple and produces the desired context with a

minimum of replicated instructions. However, it has a number of drawbacks. First, for branch-

ing opcodes, we execute three hardware control transfers (acall to the body, a return, and the

replicated indirect branch), which is an unnecessary overhead. Second, we still use the overly

general indirect branch instruction, even in cases likegoto where we would prefer a simpler

direct native branch. Third, by only replicating the dispatch part of the virtual instruction, we

do not take full advantage of the conditional branch predictor resources provided by the hard-

ware. Due to these limitations, we only use branch replication for indirect virtual branches and
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exceptions1.

For all other branches we generate code for the bodies of virtual branch instructions into the

CTT. We refer to this asbranch inlining. In the process of inlining, we convert indirect branches

into direct branches, where possible. On the Pentium this reduces pressure on the branch taken

buffer, or BTB, since conditional branches use the conditional branch predictors instead. The

virtual conditional branches now appear as real conditional branches to the hardware. The

primary cost of branch inlining is increased code size, but this is modest because, at least for

languages like Java and Ocaml, virtual branch instructionsare simple and have small bodies.

For instance, on the Pentium IV, most branch instructions can be inlined with no more than 10

words, a couple of i-cache lines, of additional space. Figure 4.5 shows an example of inlining

theifeq branch instruction. The machine code, shaded in the figure, implements the same if-

then-else logic as the original direct threaded virtual instruction body. In the figure we assume

key interpreter variables like the virtual PC and expression stack pointer exist in dedicated

registers. This is the technique we use in Ocaml on both the Pentium 4 and the PowerPC, and

SableVM on the PowerPC, but not for SableVM on the Pentium, where they are stored in stack

slots instead. We show Intel instructions in the figure but similar code must be generated on the

PowerPC. The inlined conditional branch instruction (jne, marked (a) in the figure) is fully

exposed to the Pentium’s conditional branch prediction hardware.

An obvious challenge with branch inlining is that the generated code is not portable and

assumes detailed knowledge of the virtual bodies it must interoperate with. For instance, in

Figure 4.5 the generated code must know that the Pentium’sesi register has been dedicated

to thevPC.

1Ocaml defines explicit exception virtual instructions
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(a)

(b)

CTT

generated code

vPC

    &ctt[0]

    &ctt[1]

    6

    &ctt[2]

    &ctt[3]

    &ctt[4]

    &ctt[5]

   

DTT

loaded data

interp(){
 
  iload_1:
    //push local 1
    vPC++;
    asm ("ret")

  iconst_1: 

  iconst_0  

  ireturn:
   //vPC = return
   asm("ret");

}

virtual instruction bodies

call iconst_1

call ireturn

goto *vPC

call iconst_0

call ireturn

goto *vPC

call iload_1
subl $4, %edi

movl (%edi), %eax

cmpl $0, %eax

jne nt

movl (%esi), %esi

jmp cttdest

nt: addl $4, %esi

Figure 4.5: Context Threaded VM Interpreter: Branch Inliningon Pentium. The generated
code (shaded) assumes thevPC is in registeresi and the Java expression stack pointer is in
registeredi. The dashed arrow (a) illustrates the inlined conditional branch instruction, now
fully exposed to the branch prediction hardware, and the heavy arrow (b) illustrates a direct
branch implementing the not taken path.

4.4 Handling Virtual Call and Return

The only significant source of control transfers that remainin the virtual program are virtual

method invocation and return. For successful branch prediction, the real problem is not the

virtual call, which has only a few possible destinations, but rather the virtual return, which

potentially has many destinations, one for each callsite ofthe method. As noted previously,

the hardware already has an elegant solution to this problemfor native code in the form of the

return address stack. We need only to deploy this resource topredict virtual returns.

We describe our solution with reference to Figure 4.6. The virtual call body should transfer

control to the start of the callee. We begin at a virtual call instruction (see label “(a)” in the

figure). The method invocation body, Java’sinvokestatic in the figure, creates a new

frame for the callee, etc, and then sets thevPC to the entry point of the callee and executes
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call invokestatic

call (*vPC)

jmp return

//never here

CTT

interp(){
 
  invokestatic:
    //build frame
    vPC = *vPC;
    asm ("ret")

  return:
   //pop frame
   vPC = return
   asm( "ret");

}

virtual instruction bodiesgenerated code

vPC

   &ctt[0]

    &ctt[callee]

   

DTT

loaded data

(a)

(b)

caller

callee

Figure 4.6: Context Threading Apply-Return Inlining on Pentium. The generated codecalls
the invokestatic virtual instruction body butjumps(instruction at (b) is ajmp) to the
return body.

a nativereturn, an x86ret in the figure, back to the CTT. Similar to branch replication, we

insert a new nativecall indirect instruction following “(a)” in the CTT to transfer control to

the start of the callee (solid arrow from “(a)” to “(b)” in thefigure). The call indirect causes

the next location in the CTT to be pushed onto the hardware’s return address stack. The first

instruction of the callee is then dispatched. At the end of the callee, we modify the virtual

return instruction as follows. In the CTT, we emit a native direct branch , an x86jmp in

the figure, to dispatch the body of the virtual return (beforelabel “(b)”.) The direct branch

avoids perturbing the return address stack. We modify the body of the virtual return to end

with a nativereturn instruction, which now transfers control all the way back tothe instruction

following the original virtual call (dotted arrow from “(b)” to “(a)”.) We refer to this technique

asapply/return inlining2.

With this final step, we have a complete technique that alignsall virtual program control

flow with the corresponding native flow. There are however, some practical challenges to

2“apply” is the name of the (generalized) function call opcode in OCaml where we first implemented the
technique.
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implementing our design for apply/return inlining. First,one must take care to match the

hardware stack against the virtual program stack. For instance, in OCaml, exceptions unwind

the virtual machine stack; the hardware stack must be unwound in a corresponding manner.

Second, some run-time environments are extremely sensitive to hardware stack manipulations,

since they use or modify the machine stack pointer for their own purposes (such as handling

signals). In such cases, it is possible to create a separate stack structure and swap between the

two at virtual call and return points. This approach would introduce significant overhead, and

is only justified if apply/return inlining provides a substantial performance benefit.

4.5 Discussion

The code generation described in this chapter is done when each virtual method is loaded. The

idea is to generate relatively simple code that exposes the dispatch branch instructions to the

hardware branch predictors of the processor.

In the next chapter we present data showing that our approachis effective in the sense that

branch mispredictions are reduced and performance is improved. Subroutine threading is by

far the most effective, especially when its relatively simplicity and small amount of machine

dependent code are taken into account. Branch inlining is themost complicated and least

portable.

Our implementation of context threading has at least two potential problems. First, effort

is expended at load time for regions of code that may never execute. This could penalize

performance when very large amounts of cold code are present. Second, is it awkward to

interpose profiling instrumentation around the virtual instruction bodies dispatched from the

CTT. Much code rewriting is required and problems are hard to debug [77].

In Chapter Chapter 6 we describe a different approach to code generation that addresses

these two problems. There, we describe a different approachfor efficient interpretation which

generates very simple code for hot interprocedural paths, or traces. This allows us to exploit

RCSfile : efficient − interpretation.lyx, v Revision : 1.30 60 July 19, 2007 11:57



CHAPTER 4. DESIGN AND IMPLEMENTATION OF EFFICIENT INTERPRETATION

the efficacy and simplicity of subroutine threading for straight-line code at the same time as

eliminate the mispredictions caused by virtual branch instructions in a straightforward manner.
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Chapter 5

Evaluation of Context Threading

In this section, we evaluate our interpretation technique by comparing its performance to direct

threading and direct-threaded selective inlining. Our complete technique, context threading, is

actually a combination of subroutine threading, branch inlining and apply/return inlining. We

evaluate the contribution of each of these techniques to theoverall impact using two virtual

machines and three microprocessor architectures.

We begin by describing our experimental setup in Section 5.1. We then investigate how ef-

fectively our techniques address pipeline branch hazards in Section 5.4.1, and the overall effect

on execution time in Section 5.4.2. Finally, Section 5.5 demonstrates that context threading is

complementary to inlining resulting in performance comparable to SableVM’s implementation

of selective inlining.

5.1 Virtual Machines, Benchmarks and Platforms

We evaluated our techniques by modifying interpreters for Java and Ocaml to run on Pentium

IV, PowerPC 7410 and PPC970.
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Table 5.1: Description of OCaml benchmarks. Raw elapsed time and branch hazard data for
direct threaded runs.

Pentium IV PowerPC 7410 PPC970 Lines
Branch Branch Elapsed of

Time Mispredicts Time Stalls Time Source
Benchmark Description (TSC*108) (MPT*106) (Cycles*108) (Cycles*106) (sec) Code
boyer Boyer theorem prover 3.34 7.21 1.8 43.9 0.18 903

fft Fast Fourier transform 31.9 52.0 18.1 506 1.43 187

fib Fibonacci by recursion 2.12 3.03 2.0 64.7 0.19 23

genlex A lexer generator 1.90 3.62 1.6 27.1 0.11 2682

kb A knowledge base program 17.9 42.9 9.5 283 0.96 611

nucleic nucleic acid’s structure 14.3 19.9 95.2 2660 6.24 3231

quicksort Quicksort 9.94 20.1 7.2 264 0.70 91

sieve Sieve of Eratosthenes 3.04 1.90 2.7 39.0 0.16 55

soli A classic peg game 7.00 16.2 4.0 158 0.47 110

takc Takeuchi function (curried) 4.25 7.66 3.3 114 0.33 22

taku Takeuchi function (tuplified) 7.24 15.7 5.1 183 0.52 21

Table 5.2: Description of SpecJVM Java benchmarks. Raw elapsed time and branch hazard
data for direct threaded runs.

Pentium IV PowerPC 7410 PPC970
Branch Branch Elapsed

Time Mispredicts Time Stalls Time
Benchmark Description (TSC*1011) (MPT*109) (Cycles*1010) (Cycles*108) (sec)
compress Modified Lempel-Ziv compression 4.48 7.13 17.0 493 127.7

db performs multiple database functions 1.96 2.05 7.5 240 65.1

jack A Java parser generator 0.71 0.65 2.7 67 18.9

javac the Java compiler from the JDK 1.0.2 1.59 1.43 6.1 160 44.7

jess Java Expert Shell System 1.04 1.12 4.2 110 29.8

mpegaudio decompresses MPEG Layer-3 audio files 3.72 5.70 14.0 460 106.0

mtrt two thread variant of raytrace 1.06 1.04 5.3 120 26.8

raytrace a raytracer rendering 1.00 1.03 5.2 120 31.2

scimark performs FFT SOR and LU, ’large’ 4.40 6.32 18.0 690 118.1

soot java bytecode to bytecode optimizer 1.09 1.05 2.7 71 35.5

5.1.1 OCaml

We chose OCaml as representative of a class of efficient, stack-based interpreters that use

direct-threaded dispatch. The bytecode bodies of the interpreter, in C, have been hand-tuned

extensively, to the point of using gcc inline assembler extensions to hand-allocate important

variables to dedicated registers. The implementation of the OCaml interpreter is clean and

easy to modify.
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5.1.2 SableVM

SableVM is a Java Virtual Machine built for quick interpretation, implementing lazy method

loading and a novel bi-directional virtual function lookuptable. Hardware signals are used to

handle exceptions. Most importantly for our purposes, SableVM implements multiple dispatch

mechanisms, including switch, direct threading, and selective inlining (which SableVM calls

inline threading[29]). The support for multiple dispatch mechanisms facilitated our work to

add context threading.

5.1.3 OCaml Benchmarks

The benchmarks in Table 5.1 make up the standard OCaml benchmark suite1. Boyer, kb,

quicksort andsieve do mostly integer processing, whilenucleic andfft are mostly

floating point benchmarks.Soli is an exhaustive search algorithm that solves a solitaire peg

game. Fib, taku, andtakc are tiny, highly-recursive programs which calculate integer

values.

Fib, taku, andtakc are unusual because they contain very few distinct virtual instruc-

tions, and may use only one instance of each. This has two important consequences. First,

the indirect branch in direct-threaded dispatch is relatively predictable. Second, even minor

changes can have dramatic effects (both positive and negative) because so few instructions

contribute to the behavior.

5.1.4 SableVM Benchmarks

SableVM experiments were run on the complete SPECjvm98 [62] suite (compress, db,

mpegaudio, raytrace, mtrt, jack, jess andjavac), one large object oriented appli-

cation (soot [71]) and one scientific application (scimark [57]). Table 5.2 summarizes the

key characteristics of these benchmarks.

1ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/benchmarks/objcaml.tar.gz
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5.2 Pentium IV Measurements

The Pentium IV (P4) processor speculatively dispatches instructions based on branch predic-

tions. As discussed in Section 3.5, the indirect branches used for direct-threaded dispatch are

often mispredicted due to the lack of context. Ideally, we could measure the cycles the proces-

sor stalls due to mispredictions of these branches, but the P4 does not provide a performance

counter for this purpose. Instead, we count the number ofmispredicted taken branches(MPT)

to show how effectively our techniques improve branch prediction. We measure time on the

P4 with the cycle-accuratetime stamp counter(TSC) register. We count both MPT and TSC

events using our own Linux kernel module, which collects complete data for the multithreaded

Java benchmarks2.

5.3 PowerPC Measurements

We need to characterize the cost of branches differently on the PowerPC than on the P4, as

the PPC does not speculate on indirect branches. Instead, split branches are used (as shown

in Figure 3.4(b)) and the PPC stalls until the branch destination is known. Hence, we would

like to count the number of cycles stalled due to link and count register dependencies. Unfor-

tunately, PPC970 chips do not provide a performance counter for this purpose; however, the

older PPC7410 CPU has a counter (counter 15, “stall on LR/CTR dependency”) that provides

exactly the information we need [50]. On the PPC7410, we also use the hardware counters to

obtain overall execution times in terms of clock cycles. We expect that the branch stall penalty

should be larger on more deeply-pipelined CPUs like the PPC970, however, we cannot directly

verify this. Instead, we report only elapsed execution timefor the PPC970.

2MPT events are counted with performance counter 8 by settingthe P4 CCCR to 0x0003b000 and the ESCR
to value 0xc001004 [43]
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Table 5.3: (a) Guide to Technique description.
Technique Key Description

Subroutine Threading SUB Section 4.2
Branch Inlining BRANCH Section 4.3
Context Threading CONTEXT Section 4.4
Tiny Inlining TINY Section 5.5
Selective Inlining (sablevm) SELECT Section 3.7

(b) Guide to performance data figures.

Interpreter Hazards
P4/PPC7410
Performance

PPC970 time

Ocaml
Figure 5.1 on
the following

page

Figure 5.3 on
page 72

Figure 5.5 on
page 74 (a)

Java (SableVM)
Figure 5.2 on

page 69
Figure 5.4 on

page 73
Figure 5.5 on
page 74 (b)

5.4 Interpreting the data

In presenting our results, we normalize all experiments to the direct threading case, since it is

considered a state-of-the art dispatch technique. (The source distributions of both Ocaml and

SableVM configure for direct threading, presumably becauseit performs the best.) We give the

absolute execution times and branch hazard statistics for each benchmark and platform using

direct threading in Tables 5.1 and 5.2. Bar graphs in the following sections show the contribu-

tions of each component of our technique: subroutine threading only (labeled SUB); subrou-

tine threading plus branch inlining and branch replicationfor exceptions and indirect branches

(labeled BRANCH); and our complete context threading implementation which includes ap-

ply/return inlining (labeled CONTEXT. We include bars for selective inlining in SableVM

(labeledSELECT) and our own simple inlining technique (labeledTINY) to facilitate com-

parisons, although inlining results are not discussed until Section 5.5. We do not show a bar

for direct threading because it would, by definition, have height 1.0. See Table 5.3
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Figure 5.1: Ocaml Pipeline Hazards Relative to Direct Threading
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Figure 5.2:Java Pipeline Hazards Relative to Direct Threading
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5.4.1 Effect on Pipeline Branch Hazards

Context threading was designed to align virtual program state with physical machine state to

improve branch prediction and reduce pipeline branch hazards. We begin our evaluation by

examining how well we have met this goal.

Figure 5.1 reports the extent to which context threading reduces pipeline branch hazards

for the OCaml benchmarks, while Figure 5.2 reports these results for the Java benchmarks

on SableVM. On the top of each Figure, the graph labeled (a) presents the results on the P4,

where we count mispredicted taken branches (MPT). On bottom, graphs labeled (b) present the

effect on LR/CTR stall cycles on the PPC7410. The last cluster ofeach bar graph reports the

geometric mean across all benchmarks.

Context threading eliminates most of the mispredicted takenbranches (MPT) on the Pen-

tium IV and LR/CTR stall cycles on the PPC7410, with similar overall effects for both inter-

preters. Examining Figures 5.1 and 5.2 reveals that subroutine threading has the single greatest

impact, reducing MPT by an average of 75% for OCaml and 85% for SableVM on the P4, and

reducing LR/CTR stalls by 60% and 75% on average for the PPC7410.This result matches

our expectations because subroutine threading addresses the largest single source of unpre-

dictable branches—the dispatch used for all straight-linebytecodes. Branch inlining has the

next largest effect, again as expected, since conditional branches are the most significant re-

maining pipeline hazard after applying subroutine threading. On the P4, branch inlining cuts

the remaining MPTs by about 60%. On the PPC7410 branch inlining has a smaller, though

still important effect, eliminating about 25% of the remaining LR/CTR stall cycles. A notable

exception to the MPT trend occurs for the OCaml micro-benchmarksFib, takc andtaku.

These tiny recursive micro benchmarks contain few duplicate virtual instructions branch in-

lining and so the BTB predicts adequately. Hence, inlining the conditional branches cannot

help.
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Interestingly, the same three OCaml micro benchmarksFib, takc andtaku that chal-

lenge branch inlining on the P4 also reap the greatest benefitfrom apply/return inlining, as

shown in Figure 5.1(a). Due to the recursive nature of these benchmarks, their performance is

dominated by the behavior of virtual calls and returns. Thus, we expect predicting the returns

to have significant impact. However, the effect does not holdfor all recursive benchmarks.

Forsieve, on the P4, the result of apply/return inlining is an increase in MPT, while for the

non-recursive OCaml benchmarks, the overall effect on both platforms is a small improvement.

For SableVM on the P4, however, our implementation of apply/return inlining is restricted

by the fact that gcc generated code touches the processor’sesp register. Rather than imple-

ment a complicated stack switching technique as discussed in Section 4.4, we allow the virtual

and machine stacks to become misaligned when SableVM manipulates theesp directly. This

increases the overhead of our apply/return inlining implementation and reduces the effective-

ness of the return address stack predictor, as can be seen in the bar labeled CONTEXT in

Figure 5.2(a). On the PPC7410, the effect of apply/return inlining on LR/CTR stalls is very

small for SableVM.

Having shown that our techniques can significantly reduce pipeline branch hazards, we now

examine the impact of these reductions on overall executiontime.

5.4.2 Performance

Context threading improves branch prediction, resulting inbetter use of the pipelines on both

the P4 and the PPC. However, using a nativecall/return pair for each dispatch increases in-

struction overhead. In this section, we examine the net result of these two effects on overall

execution time. As before, all data is reported relative to direct threading.
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Figure 5.3:OCaml Elapsed Time Relative to Direct Threading
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Figures 5.3 and 5.4 show results for the OCaml and SableVM benchmarks respectively.

They are organized in the same way as the previous section, with P4 results on the top, labeled

(a), and PPC7410 results on bottom, labeled (b). Figure 5.5 reports the performance of OCaml

and SableVM on the PPC970 CPU. The geometric means (rightmost cluster) in Figures 5.3,

5.4 and 5.5 show that context threading significantly outperforms direct threading on both

virtual machines and on all three architectures. The geometric mean execution time of the

Ocaml VM is about 19% lower for context threading than directthreading on P4, 9% lower

on PPC7410, and 39% lower on the PPC970. For SableVM, context threading, compared with

direct threading, runs about 17% faster on the PPC7410 and 26%faster on both the P4 and

PPC970. Although we cannot measure the cost of LR/CTR stalls on the PPC970, the greater

reductions in execution time are consistent with its more deeply-pipelined design (23 stages

vs. 7 for the PPC7410).

Across interpreters and architectures, the effect of our techniques is clear. Subroutine

threading has the single largest impact on elapsed time. Branch inlining has the next largest

impact eliminating an additional 3–7% of the elapsed time. In general, the reductions in exe-

cution time track the reductions in branch hazards seen in Figures 5.1 and 5.2. The longer path

length of our dispatch technique are most evident in the OCamlbenchmarksfib andtakc

on the P4 where the improvements in branch prediction (relative to direct threading) are minor.

These tiny benchmarks compile into so few instances of a few virtual instructions that there is

little or no sharing of BTB slots between instances and hence fewer mispredictions.

The effect of apply/return inlining on execution time is minimal overall, changing the geo-

metric mean by only±1% with no discernible pattern. Given the limited performance benefit

and added complexity, a general deployment of apply/returninlining does not seem worth-

while. Ideally, one would like to detect heavy recursion automatically, and only perform ap-

ply/return inlining when needed. We conclude that, for general usage, subroutine threading

plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is complementary to inlining tech-
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niques.

5.5 Inlining

Inlining techniques address the context problem by replicating bytecode bodies and removing

dispatch code. This reduces both instructions executed andpipeline hazards. In this section we

show that, although both selective inlining and our contextthreading technique reduce pipeline

hazards, context threading is slower due to the overhead of its extra dispatch instructions. We

investigate this issue by comparing our owntiny inlining technique with selective inlining.

In Figures 5.2, 5.4 and 5.5(b) the black bar labeled SELECT shows our measurements of

Gagnon’s selective inlining implementation for SableVM [29]. From these Figures, we see

that selective inlining reduces both MPT and LR/CTR stalls significantly as compared to direct

threading, but it is not as effective in this regard as subroutine threading alone. The larger

reductions in pipeline hazards for context threading, however, do not necessarily translate into

better performance over selective inlining. Figure 5.4(a)illustrates that SableVM’s selective

inlining beats context threading on the P4 by roughly 5%, whereas on the PPC7410 and the

PPC970, both techniques have roughly the same execution time, as shown in Figure 5.4(b)

and Figure 5.5(a), respectively. These results show that reducing pipeline hazards caused by

dispatch is not sufficient to match the performance of selective inlining. By eliminating some

dispatch code, selective inlining can do the same real work with fewer instructions than context

threading.

Context threading is a dispatch technique, and can be easily combined with inlining strate-

gies. To investigate the impact of dispatch instruction overhead and to demonstrate that context

threading is complementary to inlining, we implementedTiny Inlining, a simple heuristic that

inlines all bodies with a length less than four times the length of our dispatch code. This

eliminates the dispatch overhead for the smallest bodies and, as calls in the CTT are replaced

with comparably-sized bodies, tiny inlining ensures that the total code growth is minimal. In
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Table 5.4: Detailed comparison of selective inlining vs thecombination of context+tiny
(SableVM). Numbers are elapsed time relative to direct threading for SableVM.△(S − C)
is the the difference between selective inlining and context threading.△(S − T ) is the dif-
ference between selective inlining and the combination of context threading and tiny inlining.

Context Selective Tiny ∆ ∆

Arch (C) (S) (T) (S-C) (S-T)
P4 0.762 0.721 0.731 -0.041 -0.010

PPC7410 0.863 0.914 0.839 0.051 0.075
PPC970 0.753 0.739 0.691 -0.014 0.048

fact, the smallest inlined OCaml bodies on P4 weresmaller than the length of a relative call

instruction (five bytes). Table 5.4 summarizes the effect oftiny inlining. On the P4, we come

within 1% of SableVM’s sophisticated selective inlining implementation. On PowerPC, we

outperform SableVM by 7.8% for the PPC7410 and 4.8% for the PPC970.

The main performance issue with direct-threaded interpretation is pipeline branch hazards

caused by the context problem. Context threading solves thisproblem by correctly deploying

branch prediction resources, and as a result, outperforms direct threading by a wide margin.

Once the pipelines are full, the cost of executing dispatch instructions is significant. A suitable

technique for addressing this overhead is inlining, and we have shown that context threading

is compatible with inlining using our “tiny” heuristic. With this simple approach, context

threading achieves performance roughly equivalent to, andoccasionally better than, selective

inlining.

5.6 Limitations of Context Threading

The techniques described in this chapter address dispatch and hence have greater impact as the

frequency of dispatch increases relative to the real work carried out. A key design decision for

any virtual machine is the specific mix of virtual instructions. A computation may be carried

out by many lightweight virtual instructions or fewer heavyweight ones. Figure 5.6 shows how

a Tcl interpreter typically executes an order of magnitude more cycles per dispatched virtual
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Figure 5.6: Reproduction of [73, Figure 1] showing cycles runper virtual instructions dis-
patched for various Tcl and Ocaml benchmarks .

instruction than Ocaml. Another perspective is that Ocaml executes more dispatch because

its work is carved up into smaller virtual instructions. In the figure we see that many Ocaml

benchmarks average only tens of cycles per dispatched instruction. Thus, the time Ocaml

spends executing a typical body is of the same order of magnitude as the branch misprediction

penalty of a modern CPU. On the other hand most Tcl benchmarks execute hundreds of cycles

per dispatch, many times the misprediction penalty. Thus, we expect subroutine threading

to speed up Tcl much less than Ocaml. In fact, the geometric mean of 500 Tcl benchmarks

speeds up only 5.4 % on a UltraSPARC III. As shown in Figure 5.7 subroutine threading alone

improved our Ocaml benchmark much more.

Another issue raised by the Tcl implementation was that about 12% of the 500 program

benchmark suite slowed down. Very few of these dispatched more than 10,000 virtual in-

structions. Most were tiny programs that executed as littleas a few dozen dispatches. This

suggests that for programs that execute only a small number of virtual instructions the load

time overhead of generating code in the CTT is an issue.
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Figure 5.7: Elapsed time of subroutine threading relative to direct threading for Ocaml on
UltraSPARC III.

5.7 Eloquent Linkage to Next Chapter

Our experimentation with subroutine threading has established that calling virtual instruction

bodies is an efficient way of implementing straight-line regions of a virtual program. Branch

inlining is an effective way of eliminating the branch mispredictions caused by virtual branches.

Inlining bodies into the CTT is simple option that can increase the performance of context

threading to the state of the art of interpretation techniques.

These results also contain some warnings. First, our attempt to finesse the implementation

of virtual branch instructions using branch replication (Section 4.3) and apply/return inlining

(Section 4.4) were not successful. It was only when we resorted to the much less portable (and

much more labor intensive to implement) branch inlining that we improved the performance of

virtual branches significantly. Second, the slowdown observed amongst a few TCL benchmarks

(that dispatched very few virtual instructions) raise the concern that even the load time overhead

of subroutine threading may be too high.

These results inform our design of a gradually extensible interpreter, presented in Chapter

RCSfile : efficient − interpretation.lyx, v Revision : 1.30 79 July 19, 2007 11:57



5.7. ELOQUENT LINKAGE TO NEXT CHAPTER

6, in a few ways. First, linear regions of the program should be interpreted using subroutine

threading. Second, the conditional branch instructions used to implement virtual branches

should be inlined so that they are exposed to the hardware’s conditional branch predictors.

Third, loading should be lazy so that the, potentially large, regions of the program that never

run do not incur any load time overhead.
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Chapter 6

Design and Implementation of YETI

Early on we realized that organizing virtual bodies as lightweight routines would make it pos-

sible to call them from generated code and that this has potential to simplify bringing up a JIT.

At the same time, we realized that we could expand our use of the DTT to dispatch execution

units of any size, including basic blocks and traces, and that this would allow us to gradually

extend our system to more ambitious execution units. We knewthat it was necessary to in-

terpose instrumentation between the virtual instructionsbut we could not see a simple way of

doing it. We went ahead regardless and built an instrumentation infrastructure centered around

code generation. The general idea was to initially generatetrampolines, which we called inter-

posers, that would call instrumentation before and after the dispatch of each virtual instruction.

The infrastructure was very efficient (probably more efficient than the system we will describe

in this chapter) but quite difficult to debug. We extended oursystem until it could identify

basic blocks and traces [77]. Its main drawback was that a lotof work was required to build

a profiling system that ran no faster than direct threading. This, we felt, was not “gradual”

enough. Fortunately, a better idea came to mind.

Instead of loading the program as described for context threading, Yeti runs a program by

initially dispatching single virtual instruction bodies from an instrumented dispatch loop rem-

iniscent of direct call threading. Instrumentation added to the dispatch loop detects execution
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units, initially basic blocks, then traces, then linked traces. As execution units are generated

their address is installed into the DTT. Consequently the system speeds up as more time is

spent in execution units and less time on dispatch.

6.1 Instrumentation

In Yeti, as in subroutine threading, thevPC points into the DTT where each virtual instruction

is represented as one or more contiguous slots. The loaded representation of the program has

been elaborated significantly – now the first DTT slot of each instruction points to an instance

of a dispatcherstructure. The dispatcher structure contains four key fields. The execution unit

to be dispatched (initially a virtual instruction body, hence the name) is stored in thebodyfield.

Thepreworkerandpostworkerfields store the addresses of the instrumentation routines to be

called before and after the dispatch of the execution unit. Finally, the dispatcher has apayload

field, which is a chunk of profiling or other data that the instrumentation needs to associate with

an execution unit. Payload structures are used to describe virtual instructions, basic blocks, or

traces.

Despite being slow, a dispatch loop is very attractive because it makes it easy to instrument

the execution of a virtual program. Figure 6.1 shows how instrumentation can be interposed

before and after the dispatch of each virtual instruction. The figure illustrates a generic form

of dispatch loop (the shaded rectangle in the lower right) where the actual instrumentation

routines to be called are implemented as function pointers accessible via thevPC . In addition

we pass a payload to each instrumentation call. The disadvantage of this approach is that the

dispatch of the instrumentation is burdened by the overheadof a call through a function pointer.

This is not a problem because Yeti actually deploys several specialized dispatch loops and the

generic version illustrated in Figure 6.1 only executes a small proportion of the time.

Our strategy for identifying regions of a virtual program requires every thread to execute

in one of several execution “modes”. For instance, when generating a trace, a thread will be in
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trace generation mode. Each thread has associated with it athread context structure(tcs) which

includes various mode bits as well as thehistory list, which is used to accumulate regions of

the virtual program.

6.2 Loading

When a method is first loaded we don’t know which parts of it willbe executed. As each

instruction is loaded it is initialized to a shared dispatcher structure. There is one shared dis-

patcher for each kind of virtual instruction. One instance is shared for alliload instructions,

another instance for alliadd instructions, and so on. Thus, minimal work is done at load time

for instructions that never run. On the other hand, a shared dispatcher cannot be used to profile

instructions that do execute. Hence, the shared dispatcheris replaced by a new, non-shared,

instance of ablock discovery dispatcherwhen the postworker of the shared dispatcher runs for

the first time. The job of the block discovery dispatcher is toidentify new basic blocks.

6.3 Basic Block Detection

When the preworker of a block discovery dispatcher executes for the first time, and the thread is

not currently recording a region, the program is about to enter abasic block that has never run

before. When this occurs we switch the thread intoblock recording modeby setting a bit in the

thread context structure. Figure 6.1 illustrates the discovery of the basic block of our running

example. The postworker called following the execution of each instruction has appended the

instruction’s payload to the thread’s history list. When a branch instruction is encountered by

a thread in block recording mode, the end of the current basicblock has been reached, so the

history list is used to generate an execution unit for the basic block. Figure 6.2 illustrates the

situation just after the collection of the basic block has finished. The dispatcher at the entry

point of the basic block has been replaced by a newbasic block dispatcherwith a new payload
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  asm volatile("ret");
 
  iconst:
  iadd:
  istore:

  t_thread_context tcs;

  vPC = &dtt[0];
  while(1){ //dispatch loop
   d = vPC->dipatcher;
   pay = d->payload;
   (*d->pre)(vPC,pay,&tcs);
   (*d->body)(); 
   (*d->post)(vPC,pay,&tcs);
  } 
}goto

body
payload
pre
post

body
payload
pre
post

body
payload
pre
post

body
payload
pre
post

body
payload
pre
post

body
payload
pre
post

body
payload
pre
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Figure 6.1: Shows a region of the DTT during block recording mode. The body of each block
discovery dispatcher points to the corresponding virtual instruction body (Only the body for the
first iload is shown). The dispatcher’s payload field points to instances of instruction payload.
The thread context struct is shown as tcs.

created from the history list. The body field of the basic block dispatcher points to a subroutine

threading style execution unit that has been generated for the basic block. The job of the basic

block dispatcher will be to search for traces.

6.4 Trace Selection

The postworker of a basic block dispatcher is called after the last virtual instruction of the block

has been dispatched. Since basic blocks end with branches, after executing the last instruction

thevPC points to one of the successors of the basic block. If thevPC of the destination is

lessthan thevPC of the virtual branch instruction, this is a reverse branch –a likely candidate

for the latch of a loop. According to the heuristics developed by Dynamo (see Section 2.5),

hot reverse branches are good places to start the search for hot code. Accordingly, when our

system detects a reverse branch that has executed 100 times it enterstrace recording mode. In
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Figure 6.2: Shows a region of the DTT just after block recording mode has finished.

trace recording mode, much like in basic block recording mode, the postworker adds each basic

block to a history list. The situation is very similar to thatillustrated in Figure 6.1, except the

history list describes basic blocks. Our system, like Dynamo, ends a trace (i) when it reaches

a reverse branch, (ii) when it finds a cycle, or (iii) when it contains too many (currently 100)

basic blocks. When trace generation ends, a newtrace dispatcheris created and installed. This

is quite similar to Figure 6.2 except that a trace dispatcheris installed and the generated code

is complicated by the need to support trace exits. The payload of a trace dispatcher includes a

table oftrace exit descriptors, one for each basic block in the trace. Although code could be

generated for the trace at this point, we postpone code generation until the trace has run a few

times, currently five, in trace training mode. Trace training mode uses a specialized dispatch

loop that calls instrumentation before and after dispatching each virtual instruction in the trace.

In principle, almost any detail of the virtual machine’s state could be recorded. Currently, we

record the class of every Java object upon which a virtual method is invoked. When training is

complete, code is generated for the trace as illustrated by Figure 6.3. Before we discuss code

generation, we need to describe the runtime of the trace system and especially the operation of

trace exits.
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6.5 Trace Exit Runtime

The runtime of traces is complicated by the need to support trace exits, which occur when

execution diverges from the path collected during trace generation, in other words, when the

destination of a virtual branch instruction in the trace is different than during trace generation.

Generated guard code in the trace detects the divergence andbranches to atrace exit handler.

Generated code in the trace exit handler records which traceexit has occurred in the thread’s

context structure and then returns to the dispatch loop, which immediately calls the postworker

corresponding to the trace. The postworker determines which trace exit occurred by examining

the thread context structure. Conceptually, the postworkerhas only a few things it can do:

1. If the trace exit is still cold, increment the counter in the corresponding trace exit de-

scriptor.

2. Notice that the counter has crossed the hot threshold and arrange to generate a new trace.

3. Notice that a trace already exists at the destination and link the trace exit handler to the

new trace.

Regular conditional branches, like Java’sif_icmp, are quite simple. The branch has only two

destinations, one on the trace and the other off. When the trace exit becomes hot a new trace

is generated starting with the off-trace destination. Then, the next time the trace exit occurs,

the postworker links the trace exit handler to the new trace by rewriting the tail of the trace

exit handler to jump directly to the destination trace instead of returning to the dispatch loop.

Subsequently execution stays in the trace cache for both paths of the program.

Multiple destination branches, like method invocation andreturn, are more complex. When

a trace exit originating from a multi-way branch occurs we are faced with two additional

challenges. First, profiling multiple destinations is moreexpensive than just maintaining one

counter. Second, when one or more of the possible destinations are also traces, the trace exit

handler needs some mechanism to jump to the right one.
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interp(){
  void iload(){
    //push var..
    vpc++;
    }

  void iconst(){
    //push constant
    vpc++; 
    }

  void iadd(){ 
    //add 2 slots}
  void istore(){
    //pop, store var
}

Virtual Instruction Bodies

C code

DTT

trace dispatcher

trace 

payload

bb0

bb1

trace
exit0

texit
handler0

trace
exit1

texit
handler1

texit
handler

trace 

exit table

generated code 
for straight line
portion of bb0

in-line trace 
trace exit handler

at end of trace

out-of-line
trace
exit

handlers
for

trace
exits

Figure 6.3: Schematic of a trace

The first challenge we essentially punt on. We use a simple counter and trace generate

all destinations of a hot trace exit that arise. The danger of this strategy is that we could

trace generate superfluous cold destinations and waste trace generation time and trace cache

memory.

The second challenge concerns the efficient selection of a destination trace to which to

link, and the mechanics used to branch there. To choose a destination, we follow the heuristic

developed by Dynamo for regular branches – that is, we link todestinations in the order they

are encountered. At link time, we rewrite the code in the trace exit handler with code that

checks the value of thevPC. If it equals thevPC of a linked trace, we branch directly to that

trace, otherwise we return to the dispatch loop. Because we know the specific values thevPC

could have, we can hard-wire the comparand in the generated code. In fact, we can generate

a sequence of compares checking for two or more destinations. Eventually, a sufficiently long

cascade would perform no better than a trip around the dispatch loop. Currently we limit

ourselves to two linked destinations per trace exit. This mechanism is similar to a PIC, used to

dispatch polymorphic methods, as discussed in Section??.
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6.6 Generating code for traces

Generating a trace is made up of two main tasks, generating a trace exit handler for each

trace exit and generating the main body of the trace. Trace generation starts with the list of

basic blocks that were selected. We will use these to access the virtual instructions making up

the trace. After a few training runs we have also have fine-grained profiling information on

the precise values that occur during the execution of the trace. These values will be used to

devirtualize selected virtual method invocations.

6.6.1 Trace Exits and Trace Exit Handlers

The virtual branch instruction ending each block is compiled into a trace exit. We follow two

different strategies for trace exits. The first case, regular conditional branch virtual instruc-

tions, are compiled by our JIT into code that performs a compare followed by a conditional

branch. PowerPC code for this case appears in Figure 6.4. Thesense of the conditional branch

is adjusted so that the branch is always not-taken for the on-trace path. More complex virtual

branch instructions, and especially those with multiple destinations, are handled differently.

Instead of generating inlined code for the branch we generate a call to the virtual branch body

instead. This will have the side effect of setting thevPC to the destination of the branch. Since

only one destination can be on-trace, and since we know the exactvPC value corresponding

to it, we then generate a compare immediate of thevPC to the hardwired constant value of

the on-trace destination. Following the compare we generate a conditional branch to the corre-

sponding trace exit handler. The result is that execution leaves the trace if thevPC set by the

dispatched body was different from thevPC observed during trace generation. Polymorphic

method dispatch is handled this way if it cannot be optimizedas described in Section 6.6.3.

Trace exit handlers have three further roles not mentioned so far. First, since traces may

contain compiled code, it may be necessary to flush values held in registers back to the Java

expression stack before returning to regular interpretation. Code is generated to do this in each
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...
OPC_ILOAD_3
x
OPC_ILOAD_2
y
OPC_IF_ICMPGE +121

...
lwz r3,12(r27)

lwz r4,8(r27)

cmpw r3,r4    
bge teh0

teh0:addi r26,r26,112
     li r0,0 
     stw r0,916(r30)
     lis r0,1090
     ori r0,r0,11488
     stw r0,912(r30)
     b 0x10cf0

trace exit JIT compiled from if_icmpge

trace exit
handler JIT 
compiled for
trace exit 

JIT compiled from iloads

if this trace exit becomes hot, trace linking overwrites 
this instruction with branch to destination trace

unlinked trace branches back to dispatch loop

teh stores trace exit number (0) and 
hardwired address of trace payload 
into thread context struct

vPC adjusted upon leaving JIT compiled region

DTT

Figure 6.4: PowerPC code for a trace exit and trace exit handler. The generated code assumes
that thevPC has been assignedr26, base of the local variablesr27 and the Java method frame
pointerr30.

trace exit handler. Second, some interpreter state may haveto be updated. For instance, in

Figure 6.4, the trace exit handler adjusts thevPC. Third, trace linking is achieved by overwrit-

ing code in a trace exit handler. (This is the only situation in which we rewrite code.) To link

traces, the tail of the trace exit handler is rewritten to branch to the destination trace rather than

return to the dispatch loop.

6.6.2 Code Generation

The body of a trace is made up of straight-line sections of code, corresponding to the body of

each basic block, interspersed with trace exits generated from the virtual branches ending each

basic block. The JIT therefore has three types of information to start with. First, there is a list

of virtual instructions making up each basic block in the trace. Enough information is cached

in the trace payload to determine the virtual opcode and virtual address of each instruction in

the trace. Second, there is a trace exit corresponding to thebranch ending each basic block.

The trace exit stores information like thevPC of the off-trace destination of the trace. Third,
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there may be profiling information that was cached when the trace ran in training mode.

At this phase of our research we have not invested any effort in generating optimized code

for the straight-line portions of a trace. Instead, we implemented a simple one pass JIT com-

piler. The goals of our JIT are modest. First, it should perform a similar function as branch

inlining (Section 4.3) to ensure that code generated for trace exits exposes the conditional

branch logic of the virtual program to the underlying hardware conditional branch predictors.

Second, it should reduce the redundant memory traffic back and forth to the interpreter’s ex-

pression stack by holding temporary results in registers when possible. Third, it should support

a few simple speculative optimizations.

Our JIT does not build any internal representation of a traceother that what is described

in Section 6.4. Instead, it performs a single pass through each trace allocating registers and

generating code. Register allocation is very simple. As we examine each virtual instruction

we maintain ashadow stackwhich associates registers, temporary values and expression stack

slots. Whenever a virtual instruction needs to pop an input wefirst check if there already is a

register for that value in the corresponding shadow stack slot. If there is we use the register

instead of generating any code to pop the stack. Similarly, when a virtual instruction would

push a new value onto the expression stack we assign a new register to the value and push

this on the shadow stack but forgo generating any code to pushthe value. Thus, every value

assigned to a register always has ahome locationon the expression stack. If we run out of

registers we simply spill the register whose home location is deepest on the shadow stack as all

the shallower values will be needed sooner [55].

Since traces contain no control merge points there is no additional complexity at trace exits

other than the generation of the trace exit handler. As described in Section 6.6.1 trace exit

handlers include generated code that flushes all the values in registers to the expression stack

in preparation for execution returning to the interpreter.This is done by walking the shadow

stack and storing each slot that is not already spilled into its home location. Consequently, the

values stay in registers if execution remains on-trace, butare flushed when a trace exit occurs.
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Linked trace exits result in potentially redundant stack traffic as values are flushed by the trace

exit handler only to be reloaded by the destination trace.

Similar to a trace exit handler, when an unfamiliar virtual instruction is encountered, code

is generated to flush any temporary values held in registers back to the Java expression stack.

Then, a sequence of calls is generated to dispatch the bodiesof the uncompilable virtual in-

structions. Compilation resumes, with an empty shadow stack, with any compilable virtual

instructions that follow. This means that generated code must be able to load and store values

to the same Java expression stack referred to by the C code implementing the virtual instruction

bodies. Our current PowerPC implementation side-steps this difficulty by dedicating hardware

registers for values that are shared between generated codeand bodies. Currently we dedicate

registers for thevPC, the top of the Java expression stack and the pointer to the base of the

local variables. Code is generated to adjust the value of the dedicated registers as part of the

flush sequence described above for trace exit handlers.

The actual machine code generation is performed using the ccg [54] run-time assembler.

6.6.3 Trace Optimization

We describe two optimizations here: how loops are handled and how the training data can be

used to optimize method invocation.

Inner Loops One property of the trace selection heuristic is that innermost loops of a pro-

gram are often selected into a single trace with the reverse branch at the end. (This is so because

trace generation starts at the target of reverse branches and ends whenever it reaches a reverse

branch. Note that there may be many branches, including calls and returns, along the way.)

Thus, when the trace is generated the loop will be obvious because the trace will end with a

virtual branch back to its beginning. This seems an obvious optimization opportunity that, so

far, we have not exploited other than to compile the last trace exit as a conditional branch back

to the head of the trace.
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Virtual Method Invocation When a trace executes, if the class of the invoked-upon object

is different than when the trace was generated, a trace exit must occur. At trace generation time

we know the on-trace destination of each call and from the training profile know the class of

each invoked-upon object. Thus, we can easily generate avirtual invoke guardthat branches to

the trace exit handler if the class of the object on top of the Java run time stack is not the same

as recorded during training. Then, we can generate code to perform a faster, stripped down

version of method invocation. The savings are primarily thework associated with looking up

the destination given the class of the receiver. The virtualguard is an example of a trace exit

that guards a speculative optimization [30].

Inlining The final optimization we will describe is a simple form of inlining. Traces are ag-

nostic towards method invocation and return, treating themlike any other multiple-destination

virtual branch instructions. However, when a return corresponds to an invoke in the same trace

the trace generator can sometimes remove almost all method invocation overhead. Consider

when the code between a method invocation and the matching return is relatively simple, for

instance, it does not touch the callee’s stack frame (other than the expression stack) and it can-

not throw. Then, no invoke is necessary and the only method invocation overhead that remains

is the virtual invoke guard. If the inlined method body contains any trace exits the situation is

slightly more complex. In this case, in order to prepare for areturn somewhere off-trace, the

trace exit handlers for the trace exits in the inlined code must modify the run time stack exactly

as the (optimized away) invoke would have done

6.7 Polymorphic bytecodes

So far we have implemented our ideas in a Java virtual machine. However, we expect that many

of the techniques will be useful in other virtual machines aswell. For instance, languages like

Tcl or JavaScript define polymorphic virtual arithmetic instructions. An example would be

ADD, which adds the two values on the top of the expression stack. Each time it is dispatched
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ADD must check the type of its inputs, which could be integer,float or even string values, and

perform the correct type of arithmetic. This is similar to polymorphic method invocation.

We believe the same profiling infrastructure that we use to optimize monomorphic callsites

in Java can be used to improve polymorphic arithmetic bytecodes. Whereas the destination of

a Java method invocation depends only upon the type of the invoked upon object, the operation

carried out by a polymorphic virtual instruction may dependon the type ofeachinput. Now,

suppose that an ADD in Tcl is effectively monomorphic. Then,we would generate two virtual

guards, one for each input. Each would check that the type of the input is the same as observed

during training and trace exit if it differs. Then, we would dispatch a type-specialized version

of the instruction (integer ADD, float ADD, string ADD, etc) and/or generate specialized code

for common cases.

6.8 Other implementation details

Our use of a dispatch loop similar to Figure 6.1 in conjunction with ending virtual bodies with

inlined assembler return instructions results in a controlflow graph that is not apparent to the

compiler. This is because the optimizer cannot know that control flows from the inlined return

instruction back to the dispatch loop. Similarly, the optimizer cannot know that control can

flow from the function pointer call in the dispatch loop to anybody. We insert computed goto

statements that are never actually executed to simulate themissing edges. If the bodies were

packaged as nested functions like in Figure 4.1 these problems would not occur.

6.9 Packaging and portability

A obvious packaging strategy for a portable language implementation based on our work would

be to differentiate platforms into “primary” targets, (i.ethose supported by our trace-oriented

JIT) and “secondary” targets supported only by direct threading.
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Another approach would be to package the bodies as for subroutine threading (i.e. as illus-

trated by Figure 4.2) and use direct call threading on all platforms. In Section 7.2 we show that

although direct call threading is much slower than direct threading it is about the same speed

as switch dispatch. Many useful systems run switch dispatch, so presumably its performance is

acceptable under at least some circumstances. This would cause the performance gap between

primary and secondary platforms to be larger than if secondary platforms used direct threaded

dispatch.

Bodies could be very cleanly packaged as nested functions. Ostensibly this should be

almost as portable as the computed goto extensions direct threading depends upon. However

nested functions do not yet appear to be in mainstream usage and so even gcc support may be

unreliable. For instance, a recent version of gcc, version 4.0.1 for Apple OSX 10.4, shipped

with nested function support disabled.

RCSfile : implementation − yeti.lyx, v Revision : 1.14 94 July 19, 2007 11:57



Chapter 7

Evaluation of Yeti

In this chapter we show how Yeti gradually improves in performance as we extend the size

of execution units. We prototyped Yeti in a Java VM (rather than a language which does

not have a JIT) to allow comparisons of well-known benchmarks against other high-quality

implementations.

In order to evaluate the effectiveness of our system we need to examine performance from

three perspectives. First, we show that almost all execution comes from the trace cache. Sec-

ond, to evaluate the overhead of trace selection, we measurethe performance of our system

with the JITturned off. We compare elapsed time against SableVM and a version of JamVM

modified to use subroutine threading. Third, to evaluate theoverall performance of our modest

trace-oriented JIT compiler we compare elapsed time for each benchmark to Sun’s optimizing

HotSpotTM Java virtual machine.

Table 7.1 briefly describes each SpecJVM98 benchmark [62]. We also report data for

scimark, a typical scientific program. Below we report performance relative to the perfor-

mance of either unmodified JamVM 1.3.3 or Sun’s Java Hotspot JIT, so the raw elapsed time

for each benchmark appears in Table 7.1 also.

All our data was collected on a dual CPU 2 GHz PPC970 processor with 512 MB of mem-

ory running Apple OSX 10.4. Performance is reported as the average of three measurements

95
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Table 7.1: SPECjvm98 benchmarks including elapsed time for unmodified JamVM 1.3.3 and
Sun Java Hotspot 1.05.0_6_64

Elapsed Time
Benchmark Description (seconds)

JamVM HotspotTM

compress Lempel-Ziv compression 98 8.0
db Database functions 56 23
jack Parser generator 22 5.4
javac Java compiler JDK 1.0.2 33 9.9
jess Expert shell System 29 4.4
mpeg decompresses MPEG-3 87 4.6
mtrt Two thread raytracer 30 2.1
raytrace raytracer 29 2.3
scimark FFT, SOR and LU, ’large’ 145 16

of elapsed time, as printed by thetime command.

Java Interpreters We present data obtained by running various modifications toJamVM

version 1.3.3 built with gcc 4.0.1. SableVM is a JVM built forquick interpretation. It imple-

ments a variation of selective inlining calledinline threading[29]. SableVM version 1.1.8 has

not yet been ported to gcc 4 so we compiled it with gcc 3.3 instead.

7.1 Effect of region shape on region dispatch count

For a JIT to be effective, execution must spend most of its time in compiled code. Forjack,

traces account for 99.3% of virtual instructions executed.For all the remaining benchmarks,

traces account for 99.9% or more. A remaining concern is how often execution enters and

leaves the trace cache. In our system, regions of generated code are called from dispatch loops

like those illustrated by Figures 3.2 and 6.1. In this section, we report how many iterations of

the dispatch loops occur during the execution of each benchmark. Figure 7.1 shows how direct

call threading (DCT) compares to basic blocks (BB), traces withno linking (TR) and linked

traces (TR-LINK). Note the y-axis has a logarithmic scale.

DCT dispatches each virtual instruction independently, so the DCT bars on Figure 7.1
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Figure 7.1: Log number of dispatches executed vs region shape.
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report how many virtual instructions were executed. Comparing the geometric mean across all

benchmarks, we see that BB reduces the number of dispatches relative to DCT by about a factor

of 6.3. For each benchmark, the ratio of DCT to BB shows the dynamic average basic block

length. As expected, the scientific benchmarks have longer basic blocks. For instance, the

dynamic average basic block inscitest has about 20 virtual instructions whereasjavac,

jess andjack average about 4 instructions in length.

Even without trace linking, the average dispatch of a trace causes about 10 times more

virtual instructions to be executed than the dispatch of a BB. (This can be read off Figure 7.1

by dividing the height of the TR geomean bar into the BB geomeanbar.) This shows that traces

do predict the path taken through the program. The improvement can be dramatic. For instance,

while running TR,javac executes about 22 virtual instructions per trace dispatch,on average.

This is much longer than its dynamic average basic block length of 4 virtual instructions.

TR-LINK makes the greatest contribution, reducing the number of times execution leaves

the trace cache by between one and 3.7orders of magnitude. The reason TR-LINK is so

effective is that it links traces together around loop nests.

Although these data show that execution is overwhelmingly from the trace cache it gives

no indication of how effectively code cache memory is being used by the traces. A thorough

treatment of this, like the one done by Bruening and Duesterwald [9], remains future work.

Nevertheless, we can relate a few anecdotes based on data that our profiling system collects.

For instance, we observe that for an entire run of thecompress benchmark all generated

traces contain only 60% of the virtual instructions contained in all loaded methods. This is a

good result for traces, suggesting that a trace-based JIT needs to compile fewer virtual instruc-

tions than a method-based JIT. On the other hand, forjavac we find that the traces bloat –

almost eighttimesas many virtual instructions appear in traces than are contained in the loaded

methods. Improvements to our trace selection heuristic, perhaps adopting the suggestions of

Hiniker et al [37], are future work.
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7.2 Effect of region shape on performance

Figure 7.2 shows how performance varies as differently shaped regions of the virtual program

are identified, loaded and dispatched. The figure shows elapsed time relative to the elapsed time

of the unmodified JamVM distribution, which uses direct-threaded dispatch. Our compiler

is turned off, so in a sense this section reports the dispatchand profiling overhead of Yeti

by comparing to the performance of other high-performance interpretation techniques. The

four bars in each cluster represent, from left to right, subroutine threading (SUB), direct call

threading (DCT), basic blocks (BB), unlinked traces (TR), and linked traces (TR-LINK).

The simplest technique, direct call threading, or DCT, dispatches single virtual instruction

bodies from a dispatch loop as in Figure 3.2. As expected, DCT is slower than direct threading

by about 50%. Not shown in the figure is switch dispatch, for which the geometric mean

elapsed time across all the benchmarks is within 1% of DCT. DCT and SUB are baselines, in

the sense that the former burdens the execution of every virtual instruction with the overhead

of the dispatch loop, whereas for the latter, all overhead was incurred at load time. The results

show that SUB is a very efficient dispatch technique [8]. Our interest here is to assess the

overhead of BB and TR-LINK by comparing them with SUB. BB discovers and generates

code at runtime that is very similar to what SUB generates at load time, so the difference

between them is the overhead of our profiling system. Comparing the geometric means across

benchmarks we see that BB is about 43% slower than SUB. On the other hand, it is difficult to

move forward from SUB dispatch, primarily because it is hardto add and remove the profiling

needed for dynamic region selection.

Execution of TR-LINK is faster than BB primarily because tracelinking so effectively

reduces dispatch loop overhead, as described in Section 7.1. We have not yet investigated the

micro-architectural reasons for the speedup of TR-LINK compared to SUB. Presumably it is

caused by the same factors that make context threading faster than SUB [8], namely helping

the hardware to better predict the destination of virtual branch instructions. Regardless of the

precise cause, TR-LINK more than makes up for the profiling overhead required to identify and
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CHAPTER 7. EVALUATION OF YETI

generate traces. In fact, even before we started work on our JIT, our profiling system already ran

faster than SUB. Looking forward to Figure 7.3, we see that TR-LINK outperforms selective

inlining as implemented by SableVM 1.1.8 as well.

For all benchmarks, performance improves as execution units become longer, that is, BB

performs better than DCT, TR performs better than BB, etc. Our approach is indeed allowing

us to gradually improve performance by gradually investingin better region selection.

7.2.1 JIT Compiled traces

Figure 7.3 compares the performance of our best-performingversion of Yeti (JIT), to SableVM

(SABVM). Performance is reported relative to the Java HotSpotTM JIT. In addition, we show

the TR-LINK condition from Figure 7.2 again to relate our interpreter and JIT performance.

In most cases TR-LINK, our profiling system alone (i.e withoutthe JIT), does as well or better

than SableVM.Scitest andmpeg are exceptions, where SableVM’s implementation of

selective inlining works well on very long basic blocks.

Not surprisingly, the optimizing HotSpotTMJIT generates much faster code than our naive

compiler. This is particularly evident for mathematical and heavily looping codes like com-

press, mpeg, the raytracers and scitest. Nevertheless, despite supporting only 50 integer and

object virtual instructions, our trace JIT improves the performance of integer programs like

compress significantly. Our most ambitious optimization, of virtualmethod invocation, im-

proved the performance ofraytrace by about 32%.Raytrace is written in an object-

oriented style with many small methods invoked to access object fields. Hence, even though it

is a floating point benchmark, it is greatly improved by devirtualizing and inlining the acces-

sor methods. Comparing geometric means, we see that our trace-oriented JIT is roughly 24%

faster than just linked traces.
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Chapter 8

Conclusions and Future Work

We described an architecture for a virtual machine interpreter that facilitates its gradual ex-

tension to a trace-based mixed-mode JIT compiler. We start by taking a step back from high-

performance dispatch techniques to direct call threading.We package all execution units (from

single instruction bodies up to linked traces) as callable routines that are dispatched via a func-

tion pointer in an old-fashioned dispatch loop. The first benefit is that existing bodies can be

reused by generated code, so that compiler support for virtual instructions can be added one

by one. The second benefit is that it is easy to add instrumentation, allowing us to discover

hot regions of the program and to install new execution unitsas they reveal themselves. The

cost of this flexibility is increased dispatch overhead. We have shown that by generating larger

execution units, the frequency of dispatch is reduced significantly. Dispatching basic blocks

nearly breaks even, losing to direct threading by only 15%. Combining basic blocks into traces

and linking traces together, however, wins by 17% and 25% respectively. Investing the ad-

ditional effort to generate non-optimized code for roughly50 integer and object bytecodes

within traces gains an additional 18%, now running nearly twice as fast as direct threading.

This demonstrates that it is indeed possible to achieve gradual, but significant, performance

gains through gradual development of a JIT.

Substantial additional performance gains are possible by extending the JIT to handle more
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types of instructions such as the floating point bytecodes, and by applying classical optimiza-

tions such as common subexpression elimination. More interesting, however, is the opportu-

nity to apply dynamic and speculative optimizations based on the profiling data that we already

collect. The technique we describe for optimizing virtual dispatch in Section 6.6.3 could be

applied to guard various speculations. In particular, thistechnique could be used in languages

like Python or JavaScript to optimize virtual instructionsthat must accept arguments of varying

type. Finally, just as basic blocks are collected into traces, so traces can be collected into larger

units for optimization.

The techniques we applied in Yeti are not specific to Java. By lowering the up-front devel-

opment effort required, a system based on our architecture can gradually bring the benefits of

mixed-mode JIT compilation to other interpreted languages.
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Chapter 9

Remaining Work

We believe that our research is mostly complete and that we have shown that our efficient inter-

pretation technique is effective and supports a gradual extension to mixed-mode interpretation.

By modestly extending our system and collecting more data we can more fully report on the

strenghts and weaknesses of our approach. Hence, during thewinter of 2007 we propose to

extend the functionality and performance instrumentationof our JIT compiler. These exten-

sions and related data collection and writing-up should, ifaccepted by the committee, allow

the dissertation to be finished by late spring or early summerof 2007.

The remaining sections of this chapter describe work we intend to pursue.

9.1 Compile Basic Blocks

In the push to compile traces we skipped the obvious step of compiling basic blocks alone.

The basic block region data presented in Chapter 7 is for CT-style basic blocks with no branch

inlining. It would be interesting to compare the performance of basic blocks compiled with

our JIT to traces. Especially on loop nest dominated programs with long basic blocks, like

scimark, compiled basic blocks might perform well enough torecoup the time spent compiling

cold blocks.
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9.2. INSTRUMENT COMPILE TIME

9.2 Instrument Compile Time

Our infrastructure does not currently make any attempt to record time spent compiling. Since

compiling short traces will take much less time than the resolution of the Unix clock some

machine dependent tinkering may be required. Knowing the overhead of compilation would

help characterize the overhead of our technique.

9.3 Another Register Class

Adding support for float registers would make our performance results for float programs like

scimark more directly comparible to high performance JIT compilers like HotSpot. Extending

our simple JIT to handle another register class would show that our design is not somehow

limited to one register class. Compiler support would need tobe extended by about another

dozen floating point virtual instructions in order to test our design.

9.4 Measure Dynamic Proportion of JIT Compiled Instruc-

tions

As the JIT is extended to support for more virtual instructions it would be useful to measure

the proportion of all executed virtual instructions made upby JIT compiled instructions.
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