5.2. INTERPRETING THE DATA

MPT relative to Direct

LR/CTR stall cycles Relative to Direct

[] sus [sus+si [] sus+Bi+AR TINY

=
o

o
©

o
o

o
NN
]

o o
o N
]

(XA

—

AN
TavavavavavaY4]
—
AARAANA |

]

]

A
= T

RN |

1

NN

—1
RAXXXA

]

N

|-||-| [2imla] |-|r|r|r;| |-||_||3|
+ c

o}) g 3 o)) 8

() (9] =
+= o = o - ~ > ~ =~

g £ & g xx v $§ & g ® ® 2

o] o z 5) +— — 2
(o (@]

Ocaml benchmark

(a) Pentium 4 Mispredicted Taken Branches

[] sus [sus+si [] sus+Bi+AR TINY

kb
soli

taku BE=
SN

o
o
boyer
N
fib %
genlex
AN
nucleic
AN AN
quicksort
sieve
N N
takc B
RS SN]

OCaml benchmark
(b) PPC 7410 LR/CTR stall cycles

Figure 5.1: OCaml Pipeline Hazards Relative to Direct Thregdi

geoMean

69

70

MPT relative to Direct

LR/CTR stall cycles Relative to Direct

CHAPTERS. EVALUATION OF CONTEXT THREADING

[] saeLevm [] sus 5] sus+si [] sus+Bi+AR TINY

1.0

0.8

0.6

0.4 §

0.2 Tl .
0.0 Llla A8 E HHE Meee J HH

=1
—

Q2
©

compress

jack

javac
jess

mpeg
mtrt
ray

scimark

soot

Java benchmark
(a) Pentium 4 Mispredicted Taken Branches

geoMean

|:| SABLEVM |:| SUB |:| SUB+BI |:| SUB+BI+AR TINY

1.0

0.8

AN |
1]
a |
1]
N

Hﬂﬂﬂﬂ

RSSSSNN]

o o o
o N I
— 1
]
—
|
N
| [
SSAS <1
| |
jess ===
RN q
| Sa e S
| [
SN
——
m]

compress
db
jack
javac
mpeg
mtrt

raytrace :
scimark
soot

Java benchmark
(b) PPC7410 - LR/CTR stall cycles

Figure 5.2: Java Pipeline Hazards Relative to Direct Thregadi

geoMean ==

5.2. INTERPRETING THE DATA

TSC relative to Direct

Cycles Relative to Direct

[] sus (] suswar [[] sue+Bi+ar 7] TiNY

1.4

1.2 —
1.0 ~ - =
__r M | _ M _
0.8 e o — — —
7] —
- 7 I " V] 1
0.6 [H H—HE— Mt = b e T e
9 v v
; ¢ [1 3 % : 9 %
0.4 [I A ETE— A A A i e A 1 A
V1 /
0.2 H A B A A R e e e v i A
V1 /4 9 [1 9 ” / [% 1
0.0
+ c
Y () 5 ©
5 ¢ 2 € o 2 8 % 5 g 3 ¢
2 ¥ & § x © $ 2 g ® € 2
o — n +— +—
o c =] Q
oy (o))

Ocaml benchmark

(a) Pentium 4

I:I SuUB |:| SUB+BI |:| SUB+BI+AR TINY

73

sl Bl M M I M7
/ = |IAm 1 / _ -
— s 1 — — _
0.8 H = AEm — /— — ‘'m — ‘_ =
“ 7 A N Pl 7] 9
9 ; / # A 11
? Y 4 v Y
0.6 H — U — 4— ‘E — V— — t— — "
M ¢ I 9 ;‘ 4
W 7 A vl ¢ A N
2 / 0 9
1 A /]
0.4 | A A pa-{ A e A R e
3 “ Vi ? A
2 1 ; ;
¢
W # A g / vl 7 A ;
0.2 [H A KA A A 0 A i R e
W v A “ ; A “
4 v 5 1 ’
] Y
; ’ v ’ V] ;: A ’
OO w‘ 4 4
= o] x o] (&) o (] = (@) > C
L E = () ~ o o > o) ~ = I
= — N (O] 2 © © Q
o [&) ~ = + +
o (] S 3] %] =
[@)] = (]
[
=])
o o))

OCaml benchmark
(b) PPC7410

Figure 5.3: OCaml Elapsed Time Relative to Direct Threading

74

TSC Relative to Direct

Cycles Relative to Direct

CHAPTERS. EVALUATION OF CONTEXT THREADING

[] saeLewvm [] sus 5] sus+si [] sus+Bi+AR TINY

1.0 —
Al _ Arp MMy M _
. o U .
0.8 I e iltimt i
_____ __3 ~ ¢ M __r
% # ~ — ~
0.6 u mElclvmitc ettt e u
_'7 /. 4
_ g Yl g 4 v 4
0.4 e) o e e T e e e
4 Y Y
11 / Y
v
02 | | | 1 I 1 | | | 1| —
1 Y
V1 A v A
11 / v
Y 1 A v
0.0
7 g S & ? > 5 = = <] T
o ° 8, > Q o S = o 2 3]
o .S e £ P
£ o o
(@] 2] %))
o
Java benchmark
(a) Pentium 4
I/
[] smeLevm [] sus 5] sus+ei [[] sus+BI+AR TINY
1.0 — - — -
M s ____ = __7 ___'J r— -
— M Y 7 7l ¢ __:; -
I B ’-_ "_ — — /_ — 7—
0.8 H= / g I 9 I / '
1 1 1 / =5l
v g / [7 /
06 0 o A G G G
) 1 g / ’ 4] 4 /
¢ g # 1
1 g 4 ; F /4
/
0.4 [ERE 1) P B R e) e R B e
11 N v % (] Y / 5
V1 :: ¢ 4 H V1
4 ’] Y /
0.2 [E—E 1A} R G e e R e e e e—
g /] 4
? “ v v [% A
g / ’ v
OO % v |4 I—
[7)] o) 4 (&) 7] (@) < (] 4 = C
17} O © 0 b} = O P 1= ©
¢ ° &8 £ 8 &8 E @8 @ g 8
o 8, £ = S =
>) o
S @ A 3
O S
O (@)]

Java benchmark
(b) PPC 7410

Figure 5.4: SableVM Elapsed Time Relative to Direct Thregdin

5.2. INTERPRETING THE DATA

Elapsed Time Relative to Direct

Elapsed Time Relative to Direct

I:I SUB I:I SUB+BI |:| SUB+BI+AR TINY

1.0

0.8

0.6

0.4

75

Ocaml benchmark
(a) OCaml PPC970 elapsed (real) seconds

CH Pl
. M- 1
— M M A
_ 1 mlla mAam ~ 4 4 M-
I gl — . —
~ 4 g _ 0 R E I] 9
/ ’ / g Al | AR
— 1l A A — i A — — — 1 — 1
(1 [[g g
4 4 4 b 5 4
/ / / ¢ ¢
— 1 el 1 o = 1 — o4 — i —
’ ’ g g s
’ / 4 b 45 4
11 1 1% [|4 [4
+ c
@) s S o o S o
] 0 =
= o —= el - v = ~ =
> E & T = s $ 2 g ®@ & =2
Q — 7)) s)
(@) c =] Q
o o))

[] smeevm [] sus 7] sus+ei [[] sus+BI+AR TINY

1.0

0.8

0.6

0.4

Java benchmark
(b) SableVM PPC970 elapsed (real) seconds

Figure 5.5: PPC970 Elapsed Time Relative to Direct Threading

Me [T) M- 71 i -
- 7] =T ‘IR — —
Pl Ml — Pl I
. i 5 - -
| —~
~ M N 7
— Vi —
|| 4 ’ / 7 Y
__ 1 1 /_ '/_ 1 __ A | /_ -
— 1 7 Y - N a 4
; % N ‘ A
g 1 I 5 /
V| V1
| | - /_ 1 | | ‘_ A | . [
¢ 2 [1 A /
Vi
/ g r 4 g 4
1 [1 A
v 9 v 5 / 4 ’
- - /- — - - - 4 - - -
’ g ¢ g ’
2 9 N
V| V1
/ ‘ A
2 [1 A
0
3 o o) < G
= o = © n () = > © 6 Q
o Q S 0 o = © = o =
© o] Q e b =
= = 1] = = S n 8
5 =
o o o

76 CHAPTERS. EVALUATION OF CONTEXT THREADING

OCaml VM is about 19% lower for context threading than direceading on P4, 9% lower on
PPC7410, and 39% lower on the PPC970. For SableVM, SUB+BI+AR, acedwith direct
threading, runs about 17% faster on the PPC7410 and 26% ¢astmth the P4 and PPC970.
Although we cannot measure the cost of LR/CTR stalls on the P@GB& greater reductions
in execution time are consistent with its more deeply-pif@el design (23 stages vs. 7 for the
PPC7410).

Across interpreters and architectures, the effect of ocinrtigues is clear. Subroutine
threading has the single largest impact on elapsed time.cBriaatining has the next largest
impact eliminating an additional 3—7% of the elapsed tinmegéneral, the reductions in exe-
cution time track the reductions in branch hazards seergur€s 5.1 and 5.2. The longer path
length of our dispatch technique are most evident in the OG@eméhmarkd i b andt akc
on the P4 where the improvements in branch prediction {vel& direct threading) are minor.
These tiny benchmarks compile into unique instances of aviual instructions. This means
that there is little or no sharing of BTB slots between insésend hence fewer mispredictions.

The effect of apply/return inlining on execution time is i@l overall, changing the geo-
metric mean by only-1% with no discernible pattern. Given the limited performabenefit
and added complexity, a general deployment of apply/reiming does not seem worth-
while. ldeally, one would like to detect heavy recursionoamutically, and only perform ap-
ply/return inlining when needed. We conclude that, for gahasage, subroutine threading
plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is @mggitary to inlining tech-

niques.

5.3 Inlining

Inlining techniques address the context problem by reffigebytecode bodies and removing

dispatch code. This reduces both instructions executegiaetine hazards. In this section we

5.4. LIMITATIONS OF CONTEXT THREADING 79

105
' . o Tcl
r 2 Ocaml 1
104 ? ?
- 3 ° 1
o °
@ I o o]
2 10°F ¢ .
?} 'i‘ 'o.. ‘”;.o ".:
b ° °
2 100N T et
L) E ° ‘s &
[&) £ °)
>
o ‘E N . A A A A R]
101 ? A ?
10°

Tcl or Ocaml Benchmark

Figure 5.6: Reproduction of [77, Figure 1] showing cycles pam virtual instructions dis-
patched for various Tcl and OCaml benchmarks .

performance of subroutine threaded OCaml on an UltraSPARCAH shown in the figure,
subroutine threading speeds up OCaml on the UltraSPARC byt dl38@. In contrast, the
geometric mean of 500 Tcl benchmarks speeds up only by od®%s 577].

Another issue raised by the Tcl implementation was that abh2% of the 500 program
benchmark suite slowed down. Very few of these dispatcherk rtian 10,000 virtual in-
structions. Most were tiny programs that executed as ke few dozen dispatches. This
suggests that for programs that execute only a small nunfbérteal instructions, the load

time overhead of generating code in the CTT may be too high.

5.4.2 Context Threading and Profiling

Our original scheme for extending our context threadedpnéter with a JIT was to detect
hot paths of the virtual program by generating calls to prafiinstrumentation amongst the

dispatch code in the CTT. We persevered for some time withajhysoach, and successfully

4We leveraged Vitale’s Tcl infrastructure, which only rums®parc, to implement subroutine threading. Thus,
to compare to Tcl we ported our subroutine threaded OCampémcalso.

80 CHAPTERS. EVALUATION OF CONTEXT THREADING

UltraSPARC IlI

[N
=}
|
o
©
~
o
©
)

0.87 0.87 0.87

o
[ee]
o
Y
©
E
N
|2
N

o o
» (o2}

Elapsed Time Relative to Direct

o
)

0.0

Ke)
x

boyer
genlex
nucleic
uicksort
sieve

soli

takc

taku
geomean

Ocaml Benghmark

Figure 5.7: Elapsed time of subroutine threading relatvelitect threading for OCaml on
UltraSPARC 1.

implemented a system that identified traces [80]. The nesuitnplementation, though effi-
cient, was fragile and required the generation of more nmecspecific code for profiling than
we considered desirable. In the next chapter we describech moare convenient approach

based on dispatch loops.

5.4.3 Development using SableVM

SableVM is a very well engineered interpreter. For instar®a&bleVM’s infrastructure for
identifying un-relocatable virtual instruction bodies ageaimplementing our TINY inlining
experiment simple. However, its heavy usedfandcpp macros, used to implement multiple
dispatch mechanisms and achieve a high degree of poryahilitkes debugging awkward. In
addition, our efforts to add profiling instrumentation tontext threading made many changes
that we subsequently realized were ill-advised. Hence,awegded to start from clean sources.

For the next stage of our experiment, our trace-based JI'flewrled to abandon SableVM in

111

7.2. EFFECT OF REGION SHAPE ON DISPATCH

90+ T | BB BB BB BBEEIEEED

80+370'T
80+, /'S | T T T T T T T T T T T T T
60+3T9°¢€ [

V0+9.E'S b

80+96€'S
80+3p'S [T T T T T T TN CTT T T T
OT+9SE'T [

G0+IT6'G || RIS

L0+9vY e
80+39%'9 1

60+9€TC |

90+9.L.[T RRRRRRRRRRRRRRRRIRRRRIARRRHRIRR

L0+98E°¢C
80#®L1w) [T TTTTT T T T T T T T T T ITTTTTTTTTT]
60+3¢GT [

90+919/8 ERRRRRRR R R R R RRRARRRNA

80+986'T

80+9/ y'9 [T T T T T T T T LT T T TIT
OT+9GT'T [

90+9¢¢ 16

80+9TO0'T
80+89y | I T T T T T T T T T T T TTTT
60+9¥8'T [

L0+3/T'T

L0+9¢1'8
80+8p9ly [T T T TITT T T IT T TTTTTTTTITCTTTTTTTT
60+9607C [

90+98Y'S |k

L0+93€6'Y
80+99¢ T T T T T T T T T T LTI
60+37'T I

S0+988'€

80+3//7T
80+9€819 [T T TTTTT T T T T CTTITTTTTTTTTT
60+999°¢ [

80+980'v
60+9.¢'T [T T T T T T T TN T T T TITT
0T+3GC'T |

1lel0 =
le8
le6
le4
le2
1e0

1unoo yoledsip

scitest geomean

db jack javac jess mpeg mtrt ray

compress

Figure 7.1: Number of dispatches executed vs region shdpey-Bxis has a logarithmic scale.
Numbers above bars, in scientific notation, give the numbeggions dispatched. The X axis

lists the SPECjvm98 benchmarks in alphabetical order.

7.2 Effect of region shape on dispatch

In this section we report data obtained by modifying Yetistrumentation to keep track of how

many virtual instructions are executed from each regiorylal how often region bodies are

dispatched. These data will help us understand to what egiecution remains in the code

cache for differently shaped regions of the program.

For a JIT to be effective, execution must spend most of ite iimcompiled code. We can

easily count how many virtual instructions are executecthfioterpreted traces and so we can

calculate what proportion of all virtual instructions exgad come from traces. F¢rack,

traces account for 99.3% of virtual instructions executeadr all the remaining benchmarks,

traces account for 99.9% or more.

In our

A remaining concern is how often execution enters and letivesode cache.

112

Virtual instructions executed per dispatch

1e6

1e5

le4

1le3

le2

lel

1e0

CHAPTER 7. EVALUATION OF YETI

=

i-TR-nolink B i-TR

3600

74
X4

O

860
—

>
at

o

ba

X

K2
b

O

>
ha

5

X

o,

>
ha

%%

o4

b

22

b

2

b

%

b

O
P0a0. 0.

CRRHRRRKRKRHKKKXK
T
b

e

XRXRXRXRRXRRXR K]
KX

..

TR
%6%%%%%%%% %% %% %% %

.
>

Q>

KD
K2
b

&%

e
QP

25
at

SRR

3
OO
25

%

X3

D
Y,

>

>
X
a

5%

’0
R

b

ot

b

>
S

—
- ’0‘

P>

ray

250000

OG0
XXXA

ava

IR
2

Q

a9,

5

R

.,
at

9400
et

X3
X2

X3

2
.
bl

XX

(XX K2

1300

S
2000

ot %e %0 e e e e %%

202020202026 %% %!

TR
2%

KRR
Q

b

QL

2
at

X3
.
X2

Q2
]

R
%%
R

Q

0'0;0;:‘0;0‘

X2

260
K2
o,
X

..
et

2

%!
Q

%
bl

Q2

et
.,
b

3

hat

d

QO

d 180

e
>

TR
X2
&R

-
B2

o,

e
Q
X3
Q

2
.
ha

SOOR
250

%

,
hat

CRR

.
%
&R

e
QO

2
2

v
..
&R
L9.9.9.9.9.9.9.9_
e

e

X
Q2
hal

2
K2
2

e
Q
X2
%
20

2
K2
X

Q

0o

=
R

..
XD
B2

x>
Q

2
ha

2

Q
(%% %

.
&R

2
2
b

XXX
.,

X

Q

e
Q
2

9.

%
&
..
1Peletete!
X

XX

Q>
—

K
Q

e
2
>

2%

X IKRHKIKIKRKIKKN

2
K2

T3
XX

e
Q2
2

%
S
3

R
o0

.
‘0
2
.

QO

1%0% %% %% %% % %% %% %

SR

2
2
X

.

%
0% %%
3

Q

e
K2
>

o,
2
5
e

%0%0%0% %% %% % %% %% %% %

.
&S

mm—;
5%

X
L4

O

2

"o
P
[RRR

O

pS

db
SPECjvm98 benchmarks (sorted by LB length)

jess jack javac compress mpeg scitest geomean

Figure 7.2: Number of virtual instructions executed pepdish for each region shape. The
y-axis has a logarithmic scale. Numbers above bars are thiewuof virtual instructions
executed per dispatch (rounded to two significant figure®EQvmO8 benchmarks appear
along X axis sorted by the average number of instructionsigre by a LB.

system, execution enters the code cache whenever a regiynibealled from a dispatch

loop. Itis an easy matter to instrument the dispatch loog®tmt how many iterations occur,

and hence how many dispatches are made. These numbers @nteddpy Figure 7.1. The

figure shows how direct call threading (DCT) compares to libdacks (LB), interpreted traces

with no linking (i-TR-nolink) and linked interpreted tracésTR). Note that the y-axis has a

logarithmic scale.

DCT dispatches each virtual instruction body individuadlg,the DCT bars on Figure 7.1

report how many virtual instructions were executed by eaaichmark. For each benchmark,

the ratio of DCT to LB shows the dynamic average linear blocigte (e.g., forconpr ess

the average linear block executé®5 x 10'°/1.27 x 10° = 9.9 virtual instructions). In

general, the height of each bar on Figure 7.1 divided by thghhef the DCT bar gives the

7.2. EFFECT OF REGION SHAPE ON DISPATCH 113

average number of virtual instructions executed per despat that region shape. Figure 7.2
also presents the same data in terms of virtual instruceaasuted per dispatch, but sorts the
benchmarks along the x axis by the average LB length. Heacepfmpress, the LB bar shows

9.9 virtual instructions executed on the average.

Scientific benchmarks appear on the right of Figure 7.2 mx#uey tend to have longer
linear blocks. For instance, the average block@ t est has about 24 virtual instructions
whereag avac, j ess andj ack average about 4 instructions. Comparing the geometric
mean across benchmarks, we see that LB reduces the numbspaiicthes relative to DCT by
a factor of 6.3. On long basic block benchmarks, we expetttktigaperformance of LB will
approach that of direct threading for two reasons. Firstefetrips around the dispatch loop
are required. Second, we showed in Chapter 5 that subrotitieading is better than direct

threading for linear regions of code.

Traces do predict paths taken through the program. Thenniggtt cluster on Figure 7.2
show that, even without trace linking (i-TR-nolink), the eage trace executes about 5.7 times
more virtual instructions per dispatch than a LB. The improgat can be dramatic. For in-
stancg avac executes, on average, about 22 virtual instructions pee tdsspatch. This is
much longer than its dynamic average linear block lengthoftdal instructions. This means
that forj avac, on the average, the fourth or fifth trace exit is taken. Ofttipg it another

way, forj avac a trace typically correctly predicts the destination of Hwirtual branches.

This behavior confirms the assumptions behind our appraad¢tandling virtual branch
instructions in general and the design of interpreted teags in particular. We expect that
most of the trace exits, four fifths in the casg @fvac, will not exit. Hence, we generate code
for interpreted trace exits that should be easily preditigdhe processor’s branch history
predictors. In the next section we will show that this immsperformance, and in Section 7.5

we show that it also reduces branch mispredictions.

Adding trace linking completes the interpreted trace (i-T@@hnique. Trace linking makes

the greatest single contribution, reducing the numbemoés execution leaves the trace cache

114 CHAPTER 7. EVALUATION OF YETI

dynamic properties of traces
450

[m] %complete
400 38t = %loaded

per cent

99

SPECivm98 benchmarks (sorted in order of LB len)

Figure 7.3: Percentage trace completion rate as a proparfithe virtual instructions in a
trace and code cache size for as a percentage of the virgialétions in all loaded methods.
For the SPECjvm98 benchmarks and scitest.

by between one and 3adtders of magnitude Trace linking has so much impact because it
links traces together around loops. A detailed discussidrow inner loops depend on trace

linking appears in Section 6.4.3.

Although this data shows that execution is overwhelmingiyrf the trace cache, it gives
no indication of how effectively code cache memory is beisgdiby the traces. A thorough
treatment of this, like the one done by Bruening and Duesldri#4], is beyond the scope of
this thesis. Nevertheless, we can relate a few anecdoted bagdata that our profiling system

already collects.

Figure 7.3 describes two aspects of traces. First, in thedjgloe %complete bars report the
extent to which traces typically complete, measured as @epéage of the virtual instructions
in a trace. For instance, forayt r ace, the average trace exit occurs after executing 59% of
the virtual instructions in the trace. Second, the %loaded keport the size of the traces in the
code cache as a percentage of the virtual instructions ihelloaded methods. For raytrace

we see that the traces contain, in total, 131% of the codesinniderlying loaded methods.

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 115

We observe that for an entire run of thei t est benchmark, all generated traces contain
only 24% of the virtual instructions contained in all loade@thods. This is a good result
for traces, suggesting that a trace-based JIT needs to ofapier virtual instructions than
a method-based JIT. Also, we see that $ai t est , the average trace executes almost to
completion, exiting after executing 99% of the virtual mstions in the trace. This is what
one would expect for a program that is dominated by innerdamith no conditional branches
— the typical trace will execute until the reverse branchsa¢nd.

On the other hand, fgravac we find the reverse, namely that the traces bloat the code
cache — almost fouimesas many virtual instructions appear in traces than are owdan
the loaded methods. In Section 7.5 we shall discuss the ingp#us on the instruction cache.
Nevertheless, traces jravac are completing only modestly less than the other benchmarks
This suggests thgtavac has many more hot paths than the other benchmarks. What we are
not in a position to measure at this point is the temporatitigion of the execution of the hot

paths.

7.3 Effect of region shape on performance

In this section we report the elapsed time required to eeeeath benchmark. One of our
main goals is to create an architecture for a high level nmecthiat can be gradually extended
from a simple interpreter to a high performance JIT augntesystem. Here, we evaluate the
performance of various stages of Yeti’'s enhancement froimegtccall-threaded interpreter to
a trace based mixed-mode system.

Figure 7.4 shows how performance varies as differently stiapgions of the virtual pro-
gram are executed. The figure shows elapsed time relativeetartimodified JamVM distri-
bution, which uses direct-threaded dispatch. The raw padace of unmodified JamVM and
TR-JIT is given in Table 7.1. The first four bars in each clusggresent the same stage of

Yeti's enhancement as those in Figure 7.1. The fifth bar, TRglves the performance of Yeti

116 CHAPTER 7. EVALUATION OF YETI

[] et =i M i-TR-nolink B i-TR B R

o
o S
— ~ I3
ey
n 20 @ _
= 1 8
—

£ — 3
CE, g o Q -
(@) i 2 - -
L _ —
o S 9
= 10 = i
cU —
T 3
bt 2 8

> o
(0] e IN)
S AS RS .
= o
g -
=

:’4

javac db compress mpeg scitest geomean

Figure 7.4: Performance of each stage of Yeti enhancememt DCT interpreter to trace-
based JIT relative to unmodified JamVM-1.3.3 (direct-tdes) running the SPECjvm98
benchmarks (sorted by LB length).

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 117

[] suB =]t

16 |- N
@) ~
— — ™
) ™
2 14 = N
z = - 5
E 12 = o
"E = 2
o — & S
SO10F g 85 & 2 8 & °
(0] @ o [S o o S o
> o - ®
= — BI=EE]] H R N °
< 08| — S S —
() — — I
= —
Q@ 06| —]
£ —|
— —
o 04 —
() —-—
i =
o 02} —]
w —|

0.0 —

mtrt ray jess jack javac db compress mpeg scitest geomean

Figure 7.5: Performance of Linear Blocks (LB) compared to sutine-threaded JamVM-
1.3.3 (SUB) relative to unmodified JamVM-1.3.3 (direct-dated) for the SPECjvm98 bench-
marks.

with our JIT enabled.

Direct Call Threading Our simplest technique, direct call threading (DCT) is slowan
JamVM, as distributed, by about 50%.

Although this seems serious, we note that many productiterpreters are not direct
threaded but rather use the slower and simpler switch thrgadchnique. When JamVM
is configured to run switch threading we we find that its penfance is within 1% of DCT.

This suggests that the performance of DCT is well within thefulsange.

Linear Blocks As can be seen on Figure 7.4, Linear blocks (LB) run roughly &$ter than
DCT, matching the performance of direct threading for bermtgwith long basic blocks like
conpr ess andnpeg. On the average, LB runs only 15% more slowly than directatireg.

The region bodies identified at run time by LB are very simitathe code generated by

CHAPTER 7. EVALUATION OF YETI

118

[] saBLevm B iTR

ERXRRRRRRXRXRXRRXRRRRRRRTTRRRRRRRRS
JRSR555525552505Q5252525252525250525255558 855585

RIS
XRRRIRRRHHHHRRRS
1902 %% % %6 %4 %4264 % % % % % %%

O 020.0.0.9.90.9.9.0.0.0.0.0.9.9.9.9_.0.0.0.0.9.90.9.9.9.0.0.0.0.90.9.0
o000, 0.000000
[RRRRRRRRRRRRRRRRERRRRRRRRRRRRRRRRRR

9T'T |

29 920.920.0.0.0.9.9.9.9.0_.0.0.0.0.9.9.9.9.9.0.0.0.9.9.9.9.9.0.0_
O 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.9.0.0.0.0.0.0.0.0.0.000000
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRK

oJi1sIp-wel 01 aAle|al awi pasde|3

scitest geomean

compress mpeg

ray jess jack javac db

mtrt

Figure 7.6: Performance of JamVM interpreted traces (i-TiR) selective inlined SableVM
1.1.8 relative to unmodified JamVM-1.3.3 (direct-thregdedthe SPECjvm98 benchmarks.

subroutine threading (SUB) at load time so one might expecpérformance of the two tech-
niques to be the same. However, as shown by Figure 7.5 LB itheaverage, about 43%

slower.

This is because virtual branches are much more expensiveBoin SUB, the virtual

branch body is called from the C¥Tthen, instead of returning, it executes an indirect branch
directly to the destination CTT slot. In contrast, in LB a mat branch instruction sets the vPC

and returns to the dispatch loop to call the destinatiororegiody. In addition

, each iteration

of the dispatch loop must loop up the destination body in fepaicher structure (through an

extra level of indirection compared to SUB).

Interpreted Traces Just as LB reduces dispatch and performs better than DCTnko i

disabled interpreted traces (i-TR-nolink) further redurspdtch and run 38% faster than LB.

1See Section 3.6

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 119

B SABLEVM HI-TR

1.0

0.9

-
a
S

—

—_—

Toss

08

0.7

0.6 |

0.5

0.4

03

0.2

Elapsed Time relative to direct threading

0.1

0.0

mtrt ray jess jack javac db compress mpeg scitest geomean

Figure 7.7: Performance of JamVM interpreted traces (i-ERtive to unmodified JamVM-
1.3.3 (direct-threaded) and selective inlined SableVMalrélative to direct threaded SableVM
version 1.1.8 for the SPECjvm98 benchmarks.

Interpreted traces implement virtual branch instructibetter than LB or SUB. As de-
scribed in Section 6.4.1, i-TR generates a trace exit fon @&tual branch. The trace exit is
implemented as a direct conditional branch that is not takleen execution stays on trace.
As we have seen in the previous section, execution typicattyains on trace for several trace
exits. Thus, on the average, i-TR replaces costly indiratts ¢from the dispatch loop) with
relatively cheap not-taken direct conditional branchasgtiermore, the conditional branches
are fully exposed to the branch history prediction fa@8tof the processor.

Trace linking, though it eliminates many more dispatchebjeves only a modest further
speed up because the specialized dispatch loop for tracmscis less costly than the generic
dispatch loop that runs LB.

We compare the performance of selective inlining, as impiatexd by SableVM, and in-
terpreted traces in two different ways. First, in Figure, @ compare the performance of
both techniques relative to the same baseline, in this cas® W with direct threading. Sec-

ond, in Figure 7.7, we show the speedup of each VM relativéstown implementation of

120 CHAPTER 7. EVALUATION OF YETI

direct threading, that is, we show the speedup of i-TR redath JamVM direct threading and

selective inlining relative to SableVM direct threading.

Overall, Figure 7.6 shows that i-TR and SableVM perform atibe same with i-TR
about 3% faster than selective inlining. SableVM wins ongpams with long basic blocks,
like npeg andsci t est , because selective inlining eliminates dispatch from Iseguences
of simple virtual instructions. However, i-TR wins on sherblock programs lik¢ avac and
] ess by improving branch prediction. Nevertheless, Figure hdws that selective inlining
results in a 2% larger speedup over direct threading foréSdWlthan i-TR. Both techniques
result in very similar overall effects even though i-TR isdfiged on improving virtual branch

performance and selective inlining on eliminating dispatdthin basic blocks.

Subroutine threading again emerges as a very effectivepmatiation technique, especially
given its simplicity. SUB runs only 6% more slowly than i-TRd&SableVM.

The fact that i-TR runs exactly the same runtime profilingrinsentation as TR-JIT makes
it qualitatively a very different system than SUB or SableV8UB and SableVM are both
tuned interpreters that generate a small amount of codeadttime to optimize dispatch.
Neither includes any profiling infrastructure. In contrimsthis, i-TR runs all the infrastructure
needed to identify hot traces at run time. As we shall see ati&e7.5, the improved virtual
branch performance of interpreted traces has made it pedsibuild a profiling system that

runs faster than most interpreters.

JIT Compiled traces The rightmost bar in each cluster of Figure 7.4 shows theop@idnce

of our best-performing version of Yeti (TR-JIT). Comparingogeetric means, we see that
TR-JIT is roughly 24% faster than interpreted traces. Despipporting only 50 integer and
object virtual instructions, our trace JIT improves thefpenance of integer programs such as
conpr ess significantly. With our most ambitious optimization, oftwial method invocation,
TR-JIT improved the performance ofayt r ace by about 35% over i-TRRaytr ace is

written in an object-oriented style with many small meth@d&ked to access object fields.

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 121

B rat] HoTSPOT

09 |-

0.81

0.8 |-

N
™~
o

0.7 |-

0.57

0.6 -

05 |-

04 -

03 |

0.07
0.08

0.1

Elapsed time relative to jam-distro

0.0
mtrt ray jess jack javac db compress mpeg scitest geomean

Figure 7.8: Elapsed time performance of Yeti with JIT consgato Sun Java 1.05.0_6_64
relative to JamVM-1.3.3 (direct threading) running SPEC3&tenchmarks.

122 CHAPTER 7. EVALUATION OF YETI

Hence, even though it is a floating-point benchmark, it iatlyemproved by devirtualizing
and inlining these accessor methods.

Figure 7.8 compares the performance of TR-JIT to Sun Mictesys Java HotSpot JIT.
Our current JIT runs the SPECjvm98 benchmarks 4.3 times skhag HotSpot. Results range
from 1.5 times slower fodb, to 12 times slower font r t . Not surprisingly, we do worse on

floating-point intensive benchmarks since we do not yet glantipe float bytecodes.

7.4 Early Pentium Results

As illustrated earlier, in Figure 3.4, the Intel's Pentiurahatecture takes a different approach
to indirect branches and calls than does the PowerPC. On therP€, we have shown that the
two-part indirect call used in Yeti's dispatch loops penfigrwell. However, the Pentium relies
on its BTB to predict the destination of its indirect call insttion. As we saw in Chapter 5,
when the prediction is wrong, many stall cycles may resultn¢@ovably, on the Pentium, the
unpredictability of the dispatch loop indirect call coushtl to very poor performance.
Gennady Pekhimenko, a fellow graduate student at the Wsityesf Toronto, ported i-TR

to the Pentium platform. Figure 7.9 gives the performanchki®frototype. The results are
roughly comparable to our PowerPC results, though i-TRefitoms direct threading a little
less on the Pentium. The average test case ran in 83% of teedken by direct threading

whereas it needed 75% on the PowerPC.

7.5 ldentification of Stall Cycles

We have shown that Yeti performs well compared to existigrpreter techniques. However,
much of our design is motivated by micro-architectural edesations. In this section, we use
a new set of tools to measure the stall cycles experienceedhny¥it runs.

The purpose of this analysis is twofold. First, we would likeconfirm that we understand

123

IDENTIFICATION OF STALL CYCLES

7.5.

i-TR

LB

PR RRRXRY

2020220202020 20 2026262222220 242424 20 26 %626 % % % %%

180

BRRRERRRRRRRRRRIIIRIRRRRRHRRIRIRRS

PEKAKARIIRIIIRIRIIRIIIRHR I I I I I I X

880

6.

P IIIIIIIIIIDIIIIRRRN
OeO O eO O IO OIO OO OI0 02000200020 00%0 002000300030 00
0% % %0 % % %66 % %626 % %626 % % %66 % %424 % %% % % %!

PRI,
R3320

%%%%%% %% %"

D0 9.9.0.0.0.0.9.9.9.9.9.0.0.0.0.9.9_9
G0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
RRRRRRRRRRRRRRRRRRKR

e 700 Te e e %0 e %6 T %o T Yo T %o T Yo T Yoo Yo Yo Yo
PRXX KX KX KX KR HKX KX KX KX KX KX K
BRIIGRRIHRHRIIIIIIHIRHKIRHKIRHKRK
OISO I IO II IO

X
2o

'0%0%0%%%%%%% %% %% %% %

$.0.0.0.0.9.0.9.9.0.0.0.9.9.9.9.0.0.0.0.9.9.9.9.0_0_
140a0.0,.0.0.0.0.0.0.0.0.0.90.0.0.0.0.0.0.0.0.0.0.00
PRRRRRRRRRRRRRRRRRRRRRRRRRR

ST e T e Yo TeTe T e AT e e Yo Yo Yoo TaTa e e o
QR R AR RRRRIIIRRRRRRS
GRERERRRRHXHXHRRARRRRRHRHRHRRR
RRRRRRRHHHHRRRRRRRXHHHRARD

|
@
—

©
—

oNsIp

wel 01 aAle|al aw pasde|3

scitest geomean

ray

mpeg mitrt

jess

javac

jack

db

compress

to unmodified

ive

ko’s Pentiunh natat

imen
JamVM-1.3.3 (direct-threaded) running the SPECjvm98 beracks.

Performance of Gennady Pekh

Figure 7.9

124 CHAPTER 7. EVALUATION OF YETI

why Yeti performs well. Second, we would like to discover anurce of stalls we did not

anticipate, and perhaps find some guidance on how we couldttirb

7.5.1 ldentifying Causes of Stall Cycles

Azimi et al [6] describe a system that uses a statisticalibgeito attribute stall cycles in a
PowerPC 970 processor. They definstall cycleas a cycle for which there is no instruction
that can be completed. Practically speaking, on a PowerPGBigloccurs when the proces-
sor's completion queue is empty because instructions ddeupe or stalled. Their approach,
implemented for a PPC970 processor running K42, a researtiatopg system [18], exploits
performance monitoring hardware in the PowerPC that reézegrwhen the processor’s in-
struction completion queue is empty. Then, the next timenatructiondoescomplete they
attribute, heuristically and imperfectly, all the intervweg stall cycles to the functional unit of
the completed instruction. Azimi et al show statisticaltt their heuristic estimates the true
causes of stall cycles well.

The Linux port runs only on a PowerPC 970FX proce&s®his is slightly different than
the PowerPC 970 processor we have been using up to this pbietonly acceptable machine
we have access to is an Apple Xserve system which was alstlglfgster than our machine,

running at 2.3 GHz rather than 2.0 GHz.

7.5.2 Stall Cycle results

Figure 7.10 shows the results of the Azimi et al’s tools takreéown stall cycles for various
runs of the SPECjvm98 benchmarks.

Five bars appear for each benchmark. From the left to the, fiigh stacked bars represent

2We suspect that the actual requirement is the interruptalbert that Apple packages in newer systems.

125

IDENTIFICATION OF STALL CYCLES

7.5.

oJ1SIp-wel 01 aAle|al S8|2AD

_ Hm______.___ T
i:_:_:: i
[[TITTTIITT0 I X ——
[— _ _______ - _ ——
K ENTITTTTTTIT0 I
_ E:_ I
a — “_“_ I
E = LI I
[T =l I
- T P—— - T ——
_ [$¥eveYe ¥l T I
EXE s EXXX —
[I
. T TeTereY
T I _
7 [BT
_ :
|
= K == I
o S o 2 = — 5 —
o Q 7)) 2 T — 0 I T L T
e c 2 S J B — —]
o 2 E o 8 5 £ [= I
> § l€ 5 3 9 & [
O P 5B XaL 8 o — _
] -+ £ 0 & & T a o K e |
[e]
_ C— _ = _ J—
[| ==
| | |
2 o o © < N o
— i o o o o o

Lic-d1
ol
Juljou-y L+t
odlisia
ans

Lic-d1
ol
Suljou-y L+
odlisia
ans

Lic-d1
iy}
Juljou-y L+l
odlisia
ans

Lic-d1
L
Juljou-y1-l
odlsia
ans

Lic-d1
=iy}
Juljou-y L+l
odlsia
ans

Lic-d1
L
Juljou-y1-1
odlsia
ans

Lic-d1
=iy}
Sutjou-y L+t
odlsia
ans

Lic-d1
ol
Juljou-y L+l
odlisia
ans

Lic-d1
L
Auljou-y 1-!
odlsia
ans

db jack javac jess mpeg mtrt ray scitest

compress

1.3.3 (direct thregglirunning SPECjvm98 bench-

Figure 7.10: Cycles relative to JamVM

marks.

126 CHAPTER 7. EVALUATION OF YETI

| category name Description |
i-cache Instruction cache misses
br_misp Branch mispredictions
compl Completed instructions. (Cycles in which an instruction dichplete)
other_stall Miscellaneous stalls
fxu Fixed point execution unit
fpu Floating point execution unit
d-cache Data cache
basic_Isu Basic load and store unit stalls

Table 7.3: GPUL categories

subroutine-threaded JamVM 1.1.3 (SUB) , JamVM 1.1.3 (ditletaded as distributed, hence
DISTRO) and three configurations of Yeti, i-TR-no-link, i-Té&d TR-JIT. The y axis, like
many of our performance graphs, reports performance vel&ti JamVM. The height of the
DISTRO bar is thus 1.0 by definition. Figure 7.11 reports @ data as Figure 7.10, but, in
order to facilitate pointing out specific trends, zooms irfaur specific benchmarks.

Each histogram column is split vertically into a stack offoahich illustrates how executed
cycles break down by category. Only cycles listed as “comgiresent cycles in which an in-
struction completed. All the other categories represeilissior cycles in which the processor
was unable to complete an instruction. The “other_staliégary represents stalls to which the
tool was not able to attribute a cause. Unfortunately, therotstall category includes a source
of stalls that is important to our discussion, namely thédsstaused by data dependency be-
tween the two instructions of the PowerPC architectures*part indirect branch mechanidm

See Figure 3.4 for an illustration of two-part branches.

The total cycles executed by each benchmark do not cornpéatectly with the elapsed
time measurements reported earlier in this chapter.
For instance, in Figure 7.4, i-TR runs scitest in 60% of theetbdf direct threading, whereas

in Figure 7.11(c) it takes 80%. There are a few importanedéhces between the runs, namely

3In earlier models of the PowerPC, for instance the 7410gtlgsles were called “LR/CTR stall cycles”, as
reported by Figure 5.1(b)

7.5. IDENTIFICATION OF STALL CYCLES 127

12 1.2
I txu

Legend Legend
E fpu

B i-cache B i-cache
0.8 1 1 . d-cache

br_misp br_misp
. basic_lsu

1.0
| | other_stall — ﬁ | | other_stall
compl

cycles relative to jam-distro
cycles relative to jam-distro

0.2

0.0 o ° - « - @ o x x =
(mpeg) — long int blocks (jess) — short blocks

12

Legend
g i-cache
br_misp
. other_stall
fxu
fpu

10 —

compl

cycles relative to jam-distro
cycles relative to jam-distro

0.4 — — 0.4 — — — -
0.2 0.2
0.0 0.0

(scitest) — long float blocks (javac) — trace cache bloat

Figure 7.11: Stall breakdown for SPECjvm98 benchmarksivelab JamVM-1.3.3 (direct
threading).

128 CHAPTER 7. EVALUATION OF YETI

the differences between the PowerPC 970FX and PowerPCa¥ @ifterent clock speed (2.3
GHz vs 2.0 GHz) and differences between Linux (with Azimi kg enodifications) and OSX
10.4. We use the data qualitatively to characterize pipdiazards and not to measure absolute

performance.

7.5.3 Trends

Several interesting trends emerge from our examinatiohe€ycle reports.

1. Interpreted traces reduce branch mispredictions camseuitual branch instructions.

2. Simple code we generated for interpreted trace exitss#gethe fixed-point execution

unit (fxu)

3. Our JIT (TR-JIT) does little to reduce Isu stalls, which sugprise since many loads and

stores to the expression stack are eliminated by the regibbeator.
4. As we reduce pipeline hazards caused by dispatch new &fredalls arise.

5. Trace bloat, like we observed for javac, can lead to siganifi stalls due to instruction

cache misses.

Each of these issues will be discussed in turn.

Branch misprediction

In Figure 7.11(mpeg) we see how our techniques affgg, which has a few very hot,
very long basic blocks. The blocks contain many duplicateial instructions. Hence, direct
threading encounters difficulty due to the context problamgiscussed in Section 3.5. (This
is plainly evident in the solid red br_misp stack on the DI®TIBar on all four sub figures.)
SUB reduces the mispredictions that occur runmmpegg significantly — presumably the

ones caused by linear regions. Yeti's i-TR technique effelst eliminates the branch mis-

