
5.2. INTERPRETING THE DATA 69

bo
ye

r

fft fib

ge
nl

ex

kb

nu
cl

ei
c

qu
ic

ks
or

t

si
ev

e

so
li

ta
kc

ta
ku

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0
M

P
T

 r
el

at
iv

e
to

 D
ir

ec
t

Ocaml benchmark

SUB SUB+BI SUB+BI+AR TINY

(a) Pentium 4 Mispredicted Taken Branches

bo
ye

r fft fib

ge
nl

ex kb

nu
cl

ei
c

qu
ic

ks
or

t

si
ev

e

so
li

ta
kc

ta
ku

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

L
R

/C
T

R
 s

ta
ll

cy
cl

es
 R

el
at

iv
e

to
 D

ir
ec

t

OCaml benchmark

SUB SUB+BI SUB+BI+AR TINY

(b) PPC 7410 LR/CTR stall cycles

Figure 5.1: OCaml Pipeline Hazards Relative to Direct Threading

70 CHAPTER 5. EVALUATION OF CONTEXT THREADING

co
m

pr
es

s

db ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t

ra
y

sc
im

ar
k

so
ot

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

M
P

T
 r

el
at

iv
e

to
 D

ir
ec

t

Java benchmark

SABLEVM SUB SUB+BI SUB+BI+AR TINY

(a) Pentium 4 Mispredicted Taken Branches

co
m

pr
es

s

db

ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t

ra
yt

ra
ce

sc
im

ar
k

so
ot

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

L
R

/C
T

R
 s

ta
ll

cy
cl

es
 R

el
at

iv
e

to
 D

ir
ec

t

Java benchmark

SABLEVM SUB SUB+BI SUB+BI+AR TINY

(b) PPC7410 - LR/CTR stall cycles

Figure 5.2: Java Pipeline Hazards Relative to Direct Threading

5.2. INTERPRETING THE DATA 73

bo
ye

r

fft fib

ge
nl

ex

kb

nu
cl

ei
c

qu
ic

ks
or

t

si
ev

e

so
li

ta
kc

ta
ku

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
T

S
C

 r
el

at
iv

e
to

 D
ir

ec
t

Ocaml benchmark

SUB SUB+BI SUB+BI+AR TINY

(a) Pentium 4

bo
ye

r fft fib

ge
nl

ex kb

nu
cl

ei
c

qu
ic

ks
or

t

si
ev

e

so
li

ta
kc

ta
ku

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
s

R
el

at
iv

e
to

 D
ir

ec
t

OCaml benchmark

SUB SUB+BI SUB+BI+AR TINY

(b) PPC7410

Figure 5.3: OCaml Elapsed Time Relative to Direct Threading

74 CHAPTER 5. EVALUATION OF CONTEXT THREADING

co
m

pr
es

s

db

ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t

ra
y

sc
im

ar
k

so
ot

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

T
S

C
 R

el
at

iv
e

to
 D

ir
ec

t

Java benchmark

SABLEVM SUB SUB+BI SUB+BI+AR TINY

(a) Pentium 4

co
m

pr
es

s

db

ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t

ra
yt

ra
ce

sc
im

ar
k

so
ot

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

C
yc

le
s

R
el

at
iv

e
to

 D
ir

ec
t

Java benchmark

SABLEVM SUB SUB+BI SUB+BI+AR TINY

(b) PPC 7410

Figure 5.4: SableVM Elapsed Time Relative to Direct Threading

5.2. INTERPRETING THE DATA 75

s

bo
ye

r

fft fib

ge
nl

ex

kb

nu
cl

ei
c

qu
ic

ks
or

t

si
ev

e

so
li

ta
kc

ta
ku

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0
E

la
p

se
d

 T
im

e
R

el
at

iv
e

to
 D

ir
ec

t

Ocaml benchmark

SUB SUB+BI SUB+BI+AR TINY

(a) OCaml PPC970 elapsed (real) seconds

co
m

pr
es

s

db ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t

ra
y

sc
im

ar
k

so
ot

ge
oM

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

E
la

p
se

d
 T

im
e

R
el

at
iv

e
to

 D
ir

ec
t

Java benchmark

SABLEVM SUB SUB+BI SUB+BI+AR TINY

(b) SableVM PPC970 elapsed (real) seconds

Figure 5.5: PPC970 Elapsed Time Relative to Direct Threading

76 CHAPTER 5. EVALUATION OF CONTEXT THREADING

OCaml VM is about 19% lower for context threading than direct threading on P4, 9% lower on

PPC7410, and 39% lower on the PPC970. For SableVM, SUB+BI+AR, compared with direct

threading, runs about 17% faster on the PPC7410 and 26% fasteron both the P4 and PPC970.

Although we cannot measure the cost of LR/CTR stalls on the PPC970, the greater reductions

in execution time are consistent with its more deeply-pipelined design (23 stages vs. 7 for the

PPC7410).

Across interpreters and architectures, the effect of our techniques is clear. Subroutine

threading has the single largest impact on elapsed time. Branch inlining has the next largest

impact eliminating an additional 3–7% of the elapsed time. In general, the reductions in exe-

cution time track the reductions in branch hazards seen in Figures 5.1 and 5.2. The longer path

length of our dispatch technique are most evident in the OCamlbenchmarksfib andtakc

on the P4 where the improvements in branch prediction (relative to direct threading) are minor.

These tiny benchmarks compile into unique instances of a fewvirtual instructions. This means

that there is little or no sharing of BTB slots between instances and hence fewer mispredictions.

The effect of apply/return inlining on execution time is minimal overall, changing the geo-

metric mean by only±1% with no discernible pattern. Given the limited performance benefit

and added complexity, a general deployment of apply/returninlining does not seem worth-

while. Ideally, one would like to detect heavy recursion automatically, and only perform ap-

ply/return inlining when needed. We conclude that, for general usage, subroutine threading

plus branch inlining provides the best trade-off.

We now demonstrate that context-threaded dispatch is complementary to inlining tech-

niques.

5.3 Inlining

Inlining techniques address the context problem by replicating bytecode bodies and removing

dispatch code. This reduces both instructions executed andpipeline hazards. In this section we

5.4. LIMITATIONS OF CONTEXT THREADING 79

100

101

102

103

104

105

Tcl or Ocaml Benchmark

C
y
c
le

s
 p

e
r

D
is

p
a
tc

h

Tcl
Ocaml

Figure 5.6: Reproduction of [77, Figure 1] showing cycles runper virtual instructions dis-
patched for various Tcl and OCaml benchmarks .

performance of subroutine threaded OCaml on an UltraSPARC III4. As shown in the figure,

subroutine threading speeds up OCaml on the UltraSPARC by about 13%. In contrast, the

geometric mean of 500 Tcl benchmarks speeds up only by only 5.4% [77].

Another issue raised by the Tcl implementation was that about 12% of the 500 program

benchmark suite slowed down. Very few of these dispatched more than 10,000 virtual in-

structions. Most were tiny programs that executed as littleas a few dozen dispatches. This

suggests that for programs that execute only a small number of virtual instructions, the load

time overhead of generating code in the CTT may be too high.

5.4.2 Context Threading and Profiling

Our original scheme for extending our context threaded interpreter with a JIT was to detect

hot paths of the virtual program by generating calls to profiling instrumentation amongst the

dispatch code in the CTT. We persevered for some time with thisapproach, and successfully

4We leveraged Vitale’s Tcl infrastructure, which only runs on Sparc, to implement subroutine threading. Thus,
to compare to Tcl we ported our subroutine threaded OCaml to Sparc also.

80 CHAPTER 5. EVALUATION OF CONTEXT THREADING

0.87

bo
ye

r

0.95

fft

0.87

fib

0.84

ge
nl

ex

0.84

kb

0.97

nu
cl

ei
c

0.83

qu
ic

ks
or

t

0.96

si
ev

e

0.78

so
li

0.82

ta
kc

0.82

ta
ku

0.87

ge
om

ea
n

UltraSPARC III

0.0

0.2

0.4

0.6

0.8

1.0

E
la

p
se

d
 T

im
e

R
el

at
iv

e
to

 D
ir

ec
t

Ocaml Benchmark

Figure 5.7: Elapsed time of subroutine threading relative to direct threading for OCaml on
UltraSPARC III.

implemented a system that identified traces [80]. The resulting implementation, though effi-

cient, was fragile and required the generation of more machine specific code for profiling than

we considered desirable. In the next chapter we describe a much more convenient approach

based on dispatch loops.

5.4.3 Development using SableVM

SableVM is a very well engineered interpreter. For instance, SableVM’s infrastructure for

identifying un-relocatable virtual instruction bodies made implementing our TINY inlining

experiment simple. However, its heavy use ofm4 andcppmacros, used to implement multiple

dispatch mechanisms and achieve a high degree of portability, makes debugging awkward. In

addition, our efforts to add profiling instrumentation to context threading made many changes

that we subsequently realized were ill-advised. Hence, we decided to start from clean sources.

For the next stage of our experiment, our trace-based JIT, wedecided to abandon SableVM in

7.2. EFFECT OF REGION SHAPE ON DISPATCH 111

1.
25

e+
10

1.
27

e+
09

4.
08

e+
08

7.
67

e+
04

compress

3.
66

e+
09

6.
83

e+
08

1.
77

e+
08

3.
88

e+
05

db

1.
4e

+
09

3.
5e

+
08

4.
93

e+
07

5.
48

e+
06

jack

2.
09

e+
09

4.
64

e+
08

8.
42

e+
07

1.
17

e+
07

javac

1.
84

e+
09

4.
6e

+
08

1.
01

e+
08

9.
23

e+
06

jess
1.

15
e+

10
6.

47
e+

08
1.

98
e+

08
8.

64
e+

06

mpeg

1.
52

e+
09

4.
7e

+
08

2.
38

e+
07

1.
77

e+
06

mtrt

2.
13

e+
09

6.
46

e+
08

2.
44

e+
07

5.
91

e+
05

ray

1.
35

e+
10

5.
74

e+
08

5.
39

e+
08

5.
37

e+
04

scitest

3.
61

e+
09

5.
77

e+
08

1.
04

e+
08

1.
1e

+
06

geomean
1e0

1e2

1e4

1e6

1e8

1e10

d
is

p
at

ch
 c

o
u

n
t

DCT LB i-TR-nolink i-TR

Figure 7.1: Number of dispatches executed vs region shape. The y-axis has a logarithmic scale.
Numbers above bars, in scientific notation, give the number of regions dispatched. The X axis
lists the SPECjvm98 benchmarks in alphabetical order.

7.2 Effect of region shape on dispatch

In this section we report data obtained by modifying Yeti’s instrumentation to keep track of how

many virtual instructions are executed from each region body and how often region bodies are

dispatched. These data will help us understand to what extent execution remains in the code

cache for differently shaped regions of the program.

For a JIT to be effective, execution must spend most of its time in compiled code. We can

easily count how many virtual instructions are executed from interpreted traces and so we can

calculate what proportion of all virtual instructions executed come from traces. Forjack,

traces account for 99.3% of virtual instructions executed.For all the remaining benchmarks,

traces account for 99.9% or more.

A remaining concern is how often execution enters and leavesthe code cache. In our

112 CHAPTER 7. EVALUATION OF YETI

3.
2

64
86

0

mtrt

3.
3

87
36

00

ray

4
18

20
0

jess

4
28

26
0

jack

4.
5

25
18

0

javac

5.
4

21
94

00
db

9.
9

31
16

00
00

compress

18
58

13
00

mpeg

24 25
25

00
00

scitest

5.
7

33
20

00

geomean
1e0

1e1

1e2

1e3

1e4

1e5

1e6

V
ir

tu
al

 in
st

ru
ct

io
n

s
ex

ec
u

te
d

 p
er

 d
is

p
at

ch

SPECjvm98 benchmarks (sorted by LB length)

LB i-TR-nolink i-TR

Figure 7.2: Number of virtual instructions executed per dispatch for each region shape. The
y-axis has a logarithmic scale. Numbers above bars are the number of virtual instructions
executed per dispatch (rounded to two significant figures). SPECjvm98 benchmarks appear
along X axis sorted by the average number of instructions executed by a LB.

system, execution enters the code cache whenever a region body is called from a dispatch

loop. It is an easy matter to instrument the dispatch loops tocount how many iterations occur,

and hence how many dispatches are made. These numbers are reported by Figure 7.1. The

figure shows how direct call threading (DCT) compares to linear blocks (LB), interpreted traces

with no linking (i-TR-nolink) and linked interpreted traces(i-TR). Note that the y-axis has a

logarithmic scale.

DCT dispatches each virtual instruction body individually,so the DCT bars on Figure 7.1

report how many virtual instructions were executed by each benchmark. For each benchmark,

the ratio of DCT to LB shows the dynamic average linear block length (e.g., forcompress

the average linear block executed1.25 × 10
10/1.27 × 10

9
= 9.9 virtual instructions). In

general, the height of each bar on Figure 7.1 divided by the height of the DCT bar gives the

7.2. EFFECT OF REGION SHAPE ON DISPATCH 113

average number of virtual instructions executed per dispatch of that region shape. Figure 7.2

also presents the same data in terms of virtual instructionsexecuted per dispatch, but sorts the

benchmarks along the x axis by the average LB length. Hence, for compress, the LB bar shows

9.9 virtual instructions executed on the average.

Scientific benchmarks appear on the right of Figure 7.2 because they tend to have longer

linear blocks. For instance, the average block inscitest has about 24 virtual instructions

whereasjavac, jess andjack average about 4 instructions. Comparing the geometric

mean across benchmarks, we see that LB reduces the number of dispatches relative to DCT by

a factor of 6.3. On long basic block benchmarks, we expect that the performance of LB will

approach that of direct threading for two reasons. First, fewer trips around the dispatch loop

are required. Second, we showed in Chapter 5 that subroutine threading is better than direct

threading for linear regions of code.

Traces do predict paths taken through the program. The rightmost cluster on Figure 7.2

show that, even without trace linking (i-TR-nolink), the average trace executes about 5.7 times

more virtual instructions per dispatch than a LB. The improvement can be dramatic. For in-

stancejavac executes, on average, about 22 virtual instructions per trace dispatch. This is

much longer than its dynamic average linear block length of 4virtual instructions. This means

that forjavac, on the average, the fourth or fifth trace exit is taken. Or, putting it another

way, forjavac a trace typically correctly predicts the destination of 5 or6 virtual branches.

This behavior confirms the assumptions behind our approach to handling virtual branch

instructions in general and the design of interpreted traceexits in particular. We expect that

most of the trace exits, four fifths in the case ofjavac, will not exit. Hence, we generate code

for interpreted trace exits that should be easily predictedby the processor’s branch history

predictors. In the next section we will show that this improves performance, and in Section 7.5

we show that it also reduces branch mispredictions.

Adding trace linking completes the interpreted trace (i-TR)technique. Trace linking makes

the greatest single contribution, reducing the number of times execution leaves the trace cache

114 CHAPTER 7. EVALUATION OF YETId y n a m i c p r o p e r t i e s o f t r a c e s

6 0 5 9 5 3 7 2 5 6 6 9 6 8 8 5 9 9 6 91 3 2 1 3 1 1 3 1 2 2 6
3 8 1

3 5 3 5 4 2 2 4 1 2 605 01 0 01 5 02 0 02 5 03 0 03 5 04 0 04 5 0

m t r t r a y j e s s j a c k j a v a c d b c o m p r e s s m p e g s c i t e s t m e a nS P E C j v m 9 8 b e n c h m a r k s (s o r t e d i n o r d e r o f L B l e n)
percent

% c o m p l e t e% l o a d e d

Figure 7.3: Percentage trace completion rate as a proportion of the virtual instructions in a
trace and code cache size for as a percentage of the virtual instructions in all loaded methods.
For the SPECjvm98 benchmarks and scitest.

by between one and 3.7orders of magnitude. Trace linking has so much impact because it

links traces together around loops. A detailed discussion of how inner loops depend on trace

linking appears in Section 6.4.3.

Although this data shows that execution is overwhelmingly from the trace cache, it gives

no indication of how effectively code cache memory is being used by the traces. A thorough

treatment of this, like the one done by Bruening and Duesterwald [11], is beyond the scope of

this thesis. Nevertheless, we can relate a few anecdotes based on data that our profiling system

already collects.

Figure 7.3 describes two aspects of traces. First, in the figure, the %complete bars report the

extent to which traces typically complete, measured as a percentage of the virtual instructions

in a trace. For instance, forraytrace, the average trace exit occurs after executing 59% of

the virtual instructions in the trace. Second, the %loaded bars report the size of the traces in the

code cache as a percentage of the virtual instructions in allthe loaded methods. For raytrace

we see that the traces contain, in total, 131% of the code in the underlying loaded methods.

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 115

We observe that for an entire run of thescitest benchmark, all generated traces contain

only 24% of the virtual instructions contained in all loadedmethods. This is a good result

for traces, suggesting that a trace-based JIT needs to compile fewer virtual instructions than

a method-based JIT. Also, we see that forscitest, the average trace executes almost to

completion, exiting after executing 99% of the virtual instructions in the trace. This is what

one would expect for a program that is dominated by inner loops with no conditional branches

– the typical trace will execute until the reverse branch at its end.

On the other hand, forjavac we find the reverse, namely that the traces bloat the code

cache – almost fourtimesas many virtual instructions appear in traces than are contained in

the loaded methods. In Section 7.5 we shall discuss the impact of this on the instruction cache.

Nevertheless, traces injavac are completing only modestly less than the other benchmarks.

This suggests thatjavac has many more hot paths than the other benchmarks. What we are

not in a position to measure at this point is the temporal distribution of the execution of the hot

paths.

7.3 Effect of region shape on performance

In this section we report the elapsed time required to execute each benchmark. One of our

main goals is to create an architecture for a high level machine that can be gradually extended

from a simple interpreter to a high performance JIT augmented system. Here, we evaluate the

performance of various stages of Yeti’s enhancement from a direct call-threaded interpreter to

a trace based mixed-mode system.

Figure 7.4 shows how performance varies as differently shaped regions of the virtual pro-

gram are executed. The figure shows elapsed time relative to the unmodified JamVM distri-

bution, which uses direct-threaded dispatch. The raw performance of unmodified JamVM and

TR-JIT is given in Table 7.1. The first four bars in each clusterrepresent the same stage of

Yeti’s enhancement as those in Figure 7.1. The fifth bar, TR-JIT, gives the performance of Yeti

116 CHAPTER 7. EVALUATION OF YETI

1.
11

1.
42

0.
82

0.
81

0.
81

mtrt

1.
49

1.
33

0.
84

0.
77

0.
57

ray

1.
38

1.
15

0.
87

0.
77

0.
63

jess

1.
41

1.
22

0.
88

0.
79

0.
63

jack

1.
39

1.
18

0.
96

0.
85

0.
72

javac

1.
45

1.
05

0.
90

0.
80

0.
62

db

1.
87

0.
95

0.
78

0.
66

0.
45

compress

2.
00

0.
99

0.
78

0.
72

0.
42

mpeg

1.
69

1.
18

0.
68

0.
60

0.
40

scitest
1.

51
1.

15
0.

83
0.

75
0.

57

geomean
0.0

0.5

1.0

1.5

2.0

E
la

p
se

d
 t

im
e

re
la

ti
ve

 t
o

 ja
m

-d
is

tr
o

DCT LB i-TR-nolink i-TR TR-JIT

Figure 7.4: Performance of each stage of Yeti enhancement from DCT interpreter to trace-
based JIT relative to unmodified JamVM-1.3.3 (direct-threaded) running the SPECjvm98
benchmarks (sorted by LB length).

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 117

0.
84

1.
42

mtrt

0.
88

1.
33

ray

0.
87

1.
15

jess

0.
88

1.
22

jack

0.
88

1.
18

javac
0.

87

1.
05

db

0.
73

0.
95

compress

0.
72

0.
99

mpeg

0.
59

1.
18

scitest

0.
80

1.
15

geomean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
E

la
p

se
d

 t
im

e
re

la
ti

ve
 t

o
 ja

m
-d

is
tr

o
SUB LB

Figure 7.5: Performance of Linear Blocks (LB) compared to subroutine-threaded JamVM-
1.3.3 (SUB) relative to unmodified JamVM-1.3.3 (direct-threaded) for the SPECjvm98 bench-
marks.

with our JIT enabled.

Direct Call Threading Our simplest technique, direct call threading (DCT) is slower than

JamVM, as distributed, by about 50%.

Although this seems serious, we note that many production interpreters are not direct

threaded but rather use the slower and simpler switch threading technique. When JamVM

is configured to run switch threading we we find that its performance is within 1% of DCT.

This suggests that the performance of DCT is well within the useful range.

Linear Blocks As can be seen on Figure 7.4, Linear blocks (LB) run roughly 30%faster than

DCT, matching the performance of direct threading for benchmarks with long basic blocks like

compress andmpeg. On the average, LB runs only 15% more slowly than direct threading.

The region bodies identified at run time by LB are very similarto the code generated by

118 CHAPTER 7. EVALUATION OF YETI

0.
79 0.
81

mtrt

0.
91

0.
77

ray

0.
85

0.
77

jess

0.
75 0.

79

jack

1.
16

0.
85

javac
0.

95

0.
80

db

0.
71

0.
66

compress

0.
64

0.
72

mpeg

0.
47

0.
60

scitest

0.
78

0.
75

geomean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
la

p
se

d
 t

im
e

re
la

ti
ve

 t
o

 ja
m

-d
is

tr
o

SABLEVM i-TR

Figure 7.6: Performance of JamVM interpreted traces (i-TR) and selective inlined SableVM
1.1.8 relative to unmodified JamVM-1.3.3 (direct-threaded) for the SPECjvm98 benchmarks.

subroutine threading (SUB) at load time so one might expect the performance of the two tech-

niques to be the same. However, as shown by Figure 7.5 LB is, onthe average, about 43%

slower.

This is because virtual branches are much more expensive forLB. In SUB, the virtual

branch body is called from the CTT1, then, instead of returning, it executes an indirect branch

directly to the destination CTT slot. In contrast, in LB a virtual branch instruction sets the vPC

and returns to the dispatch loop to call the destination region body. In addition, each iteration

of the dispatch loop must loop up the destination body in the dispatcher structure (through an

extra level of indirection compared to SUB).

Interpreted Traces Just as LB reduces dispatch and performs better than DCT, so link-

disabled interpreted traces (i-TR-nolink) further reduce dispatch and run 38% faster than LB.

1See Section 3.6

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 119

Figure 7.7: Performance of JamVM interpreted traces (i-TR) relative to unmodified JamVM-
1.3.3 (direct-threaded) and selective inlined SableVM 1.1.8 relative to direct threaded SableVM
version 1.1.8 for the SPECjvm98 benchmarks.

Interpreted traces implement virtual branch instructionsbetter than LB or SUB. As de-

scribed in Section 6.4.1, i-TR generates a trace exit for each virtual branch. The trace exit is

implemented as a direct conditional branch that is not takenwhen execution stays on trace.

As we have seen in the previous section, execution typicallyremains on trace for several trace

exits. Thus, on the average, i-TR replaces costly indirect calls (from the dispatch loop) with

relatively cheap not-taken direct conditional branches. Furthermore, the conditional branches

are fully exposed to the branch history prediction facilities of the processor.

Trace linking, though it eliminates many more dispatches, achieves only a modest further

speed up because the specialized dispatch loop for traces ismuch less costly than the generic

dispatch loop that runs LB.

We compare the performance of selective inlining, as implemented by SableVM, and in-

terpreted traces in two different ways. First, in Figure 7.6, we compare the performance of

both techniques relative to the same baseline, in this case JamVM with direct threading. Sec-

ond, in Figure 7.7, we show the speedup of each VM relative to its own implementation of

120 CHAPTER 7. EVALUATION OF YETI

direct threading, that is, we show the speedup of i-TR relative to JamVM direct threading and

selective inlining relative to SableVM direct threading.

Overall, Figure 7.6 shows that i-TR and SableVM perform almost the same with i-TR

about 3% faster than selective inlining. SableVM wins on programs with long basic blocks,

like mpeg andscitest, because selective inlining eliminates dispatch from longsequences

of simple virtual instructions. However, i-TR wins on shorter block programs likejavac and

jess by improving branch prediction. Nevertheless, Figure 7.7 shows that selective inlining

results in a 2% larger speedup over direct threading for SableVM than i-TR. Both techniques

result in very similar overall effects even though i-TR is focused on improving virtual branch

performance and selective inlining on eliminating dispatch within basic blocks.

Subroutine threading again emerges as a very effective interpretation technique, especially

given its simplicity. SUB runs only 6% more slowly than i-TR and SableVM.

The fact that i-TR runs exactly the same runtime profiling instrumentation as TR-JIT makes

it qualitatively a very different system than SUB or SableVM. SUB and SableVM are both

tuned interpreters that generate a small amount of code at load time to optimize dispatch.

Neither includes any profiling infrastructure. In contrastto this, i-TR runs all the infrastructure

needed to identify hot traces at run time. As we shall see in Section 7.5, the improved virtual

branch performance of interpreted traces has made it possible to build a profiling system that

runs faster than most interpreters.

JIT Compiled traces The rightmost bar in each cluster of Figure 7.4 shows the performance

of our best-performing version of Yeti (TR-JIT). Comparing geometric means, we see that

TR-JIT is roughly 24% faster than interpreted traces. Despite supporting only 50 integer and

object virtual instructions, our trace JIT improves the performance of integer programs such as

compress significantly. With our most ambitious optimization, of virtual method invocation,

TR-JIT improved the performance ofraytrace by about 35% over i-TR.Raytrace is

written in an object-oriented style with many small methodsinvoked to access object fields.

7.3. EFFECT OF REGION SHAPE ON PERFORMANCE 121

0.
81

0.
07

mtrt

0.
57

0.
08

ray

0.
63

0.
15

jess

0.
63

0.
24

jack

0.
72

0.
30

javac

0.
62

0.
41

db

0.
45

0.
08

compress

0.
42

0.
05

mpeg

0.
40

0.
11

scitest
0.

57

0.
13

geomean
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
la

p
se

d
 t

im
e

re
la

ti
ve

 t
o

 ja
m

-d
is

tr
o

TR-JIT HOTSPOT

Figure 7.8: Elapsed time performance of Yeti with JIT compared to Sun Java 1.05.0_6_64
relative to JamVM-1.3.3 (direct threading) running SPECjvm98 benchmarks.

122 CHAPTER 7. EVALUATION OF YETI

Hence, even though it is a floating-point benchmark, it is greatly improved by devirtualizing

and inlining these accessor methods.

Figure 7.8 compares the performance of TR-JIT to Sun Microsystems’ Java HotSpot JIT.

Our current JIT runs the SPECjvm98 benchmarks 4.3 times slower than HotSpot. Results range

from 1.5 times slower fordb, to 12 times slower formtrt. Not surprisingly, we do worse on

floating-point intensive benchmarks since we do not yet compile the float bytecodes.

7.4 Early Pentium Results

As illustrated earlier, in Figure 3.4, the Intel’s Pentium architecture takes a different approach

to indirect branches and calls than does the PowerPC. On the PowerPC, we have shown that the

two-part indirect call used in Yeti’s dispatch loops performs well. However, the Pentium relies

on its BTB to predict the destination of its indirect call instruction. As we saw in Chapter 5,

when the prediction is wrong, many stall cycles may result. Conceivably, on the Pentium, the

unpredictability of the dispatch loop indirect call could lead to very poor performance.

Gennady Pekhimenko, a fellow graduate student at the University of Toronto, ported i-TR

to the Pentium platform. Figure 7.9 gives the performance ofhis prototype. The results are

roughly comparable to our PowerPC results, though i-TR outperforms direct threading a little

less on the Pentium. The average test case ran in 83% of the time taken by direct threading

whereas it needed 75% on the PowerPC.

7.5 Identification of Stall Cycles

We have shown that Yeti performs well compared to existing interpreter techniques. However,

much of our design is motivated by micro-architectural considerations. In this section, we use

a new set of tools to measure the stall cycles experienced by Yeti as it runs.

The purpose of this analysis is twofold. First, we would liketo confirm that we understand

7.5. IDENTIFICATION OF STALL CYCLES 123

1.
19

0.
79

compress

1.
43

0.
90

db

1.
47

0.
84

jack

1.
48

0.
95

javac

1.
35

0.
79

jess

0.
79

0.
64

mpeg

1.
59

0.
88

mtrt

1.
59

0.
87

ray

1.
05

0.
93

scitest
1.

29
9

0.
83

8

geomean
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
la

p
se

d
 t

im
e

re
la

ti
ve

 t
o

 ja
m

-d
is

tr
o

LB i-TR

Figure 7.9: Performance of Gennady Pekhimenko’s Pentium port relative to unmodified
JamVM-1.3.3 (direct-threaded) running the SPECjvm98 benchmarks.

124 CHAPTER 7. EVALUATION OF YETI

why Yeti performs well. Second, we would like to discover anysource of stalls we did not

anticipate, and perhaps find some guidance on how we could do better.

7.5.1 Identifying Causes of Stall Cycles

Azimi et al [6] describe a system that uses a statistical heuristic to attribute stall cycles in a

PowerPC 970 processor. They define astall cycleas a cycle for which there is no instruction

that can be completed. Practically speaking, on a PowerPC970, this occurs when the proces-

sor’s completion queue is empty because instructions are held up, or stalled. Their approach,

implemented for a PPC970 processor running K42, a research operating system [18], exploits

performance monitoring hardware in the PowerPC that recognizes when the processor’s in-

struction completion queue is empty. Then, the next time an instructiondoescomplete they

attribute, heuristically and imperfectly, all the intervening stall cycles to the functional unit of

the completed instruction. Azimi et al show statistically that their heuristic estimates the true

causes of stall cycles well.

The Linux port runs only on a PowerPC 970FX processor2. This is slightly different than

the PowerPC 970 processor we have been using up to this point.The only acceptable machine

we have access to is an Apple Xserve system which was also slightly faster than our machine,

running at 2.3 GHz rather than 2.0 GHz.

7.5.2 Stall Cycle results

Figure 7.10 shows the results of the Azimi et al’s tools to break down stall cycles for various

runs of the SPECjvm98 benchmarks.

Five bars appear for each benchmark. From the left to the right, the stacked bars represent

2We suspect that the actual requirement is the interrupt controller that Apple packages in newer systems.

7.5. IDENTIFICATION OF STALL CYCLES 125

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

compress

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

db

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

jack

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

javac

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

jess

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

mpeg

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

mtrt

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

ray

S
U

B
D

IS
T

R
O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

scitest

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cy
cl

es
 r

el
at

iv
e

to
 ja

m
-d

is
tr

o
Legend

i-cache
br_misp
other_stall
fxu
fpu
d-cache
basic_lsu
compl

Figure 7.10: Cycles relative to JamVM-1.3.3 (direct threading) running SPECjvm98 bench-
marks.

126 CHAPTER 7. EVALUATION OF YETI

category name Description

i-cache Instruction cache misses
br_misp Branch mispredictions
compl Completed instructions. (Cycles in which an instruction did complete)

other_stall Miscellaneous stalls
fxu Fixed point execution unit
fpu Floating point execution unit

d-cache Data cache
basic_lsu Basic load and store unit stalls

Table 7.3: GPUL categories

subroutine-threaded JamVM 1.1.3 (SUB) , JamVM 1.1.3 (direct-threaded as distributed, hence

DISTRO) and three configurations of Yeti, i-TR-no-link, i-TRand TR-JIT. The y axis, like

many of our performance graphs, reports performance relative to JamVM. The height of the

DISTRO bar is thus 1.0 by definition. Figure 7.11 reports the same data as Figure 7.10, but, in

order to facilitate pointing out specific trends, zooms in onfour specific benchmarks.

Each histogram column is split vertically into a stack of bars which illustrates how executed

cycles break down by category. Only cycles listed as “compl”represent cycles in which an in-

struction completed. All the other categories represent stalls, or cycles in which the processor

was unable to complete an instruction. The “other_stall” category represents stalls to which the

tool was not able to attribute a cause. Unfortunately, the other_stall category includes a source

of stalls that is important to our discussion, namely the stalls caused by data dependency be-

tween the two instructions of the PowerPC architectures’ two-part indirect branch mechanism3.

See Figure 3.4 for an illustration of two-part branches.

The total cycles executed by each benchmark do not correlateperfectly with the elapsed

time measurements reported earlier in this chapter.

For instance, in Figure 7.4, i-TR runs scitest in 60% of the time of direct threading, whereas

in Figure 7.11(c) it takes 80%. There are a few important differences between the runs, namely

3In earlier models of the PowerPC, for instance the 7410, these cycles were called “LR/CTR stall cycles”, as
reported by Figure 5.1(b)

7.5. IDENTIFICATION OF STALL CYCLES 127

S
U

B

D
IS

T
R

O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cy
cl

es
 r

el
at

iv
e

to
 ja

m
-d

is
tr

o

Legend

i-cache
br_misp
other_stall
fxu
fpu
d-cache
basic_lsu
compl

(mpeg) – long int blocks

S
U

B

D
IS

T
R

O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cy
cl

es
 r

el
at

iv
e

to
 ja

m
-d

is
tr

o

Legend

i-cache
br_misp
other_stall
fxu
fpu
d-cache
basic_lsu
compl

(jess) – short blocks

S
U

B

D
IS

T
R

O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cy
cl

es
 r

el
at

iv
e

to
 ja

m
-d

is
tr

o

Legend

i-cache
br_misp
other_stall
fxu
fpu
d-cache
basic_lsu
compl

(scitest) – long float blocks

S
U

B

D
IS

T
R

O

i-T
R

-n
ol

in
k

i-T
R

T
R

-J
IT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

cy
cl

es
 r

el
at

iv
e

to
 ja

m
-d

is
tr

o

Legend

i-cache
br_misp
other_stall
fxu
fpu
d-cache
basic_lsu
compl

(javac) – trace cache bloat

Figure 7.11: Stall breakdown for SPECjvm98 benchmarks relative to JamVM-1.3.3 (direct
threading).

128 CHAPTER 7. EVALUATION OF YETI

the differences between the PowerPC 970FX and PowerPC 970, the different clock speed (2.3

GHz vs 2.0 GHz) and differences between Linux (with Azimi et al’s modifications) and OSX

10.4. We use the data qualitatively to characterize pipeline hazards and not to measure absolute

performance.

7.5.3 Trends

Several interesting trends emerge from our examination of the cycle reports.

1. Interpreted traces reduce branch mispredictions causedby virtual branch instructions.

2. Simple code we generated for interpreted trace exits stresses the fixed-point execution

unit (fxu)

3. Our JIT (TR-JIT) does little to reduce lsu stalls, which is asurprise since many loads and

stores to the expression stack are eliminated by the register allocator.

4. As we reduce pipeline hazards caused by dispatch new kindsof stalls arise.

5. Trace bloat, like we observed for javac, can lead to significant stalls due to instruction

cache misses.

Each of these issues will be discussed in turn.

Branch misprediction

In Figure 7.11(mpeg) we see how our techniques affectmpeg, which has a few very hot,

very long basic blocks. The blocks contain many duplicate virtual instructions. Hence, direct

threading encounters difficulty due to the context problem,as discussed in Section 3.5. (This

is plainly evident in the solid red br_misp stack on the DISTRO bar on all four sub figures.)

SUB reduces the mispredictions that occur runningmpeg significantly – presumably the

ones caused by linear regions. Yeti’s i-TR technique effectively eliminates the branch mis-

