Trace-based Dynamic Compilation for
Object-Oriented Programming Systems.

Mathew Zaleski*
22nd April 2003

Contents

1 Introduction 3

2 Basic Terms — Traces and Dynamic Optimization 4

3 Polymorphism 5
3.1 Finding the destination of a polymorphic callsite 6
3.2 Inlined Caching and Polymorphic Inlined Caching 6
3.3 Impact on Inter-procedural Optimization 7

4 Overview of the Java Virtual Machine 8
4.1 Latebinding e 8
4.2 Stack oriented Bytecode and portability 9
4.3 Speed of Interpretation and Dynamic Translation to Native Code 11
4.4 Other Challenges to Java Performance 12

5 Manual Dynamic Optimization 12
5.1 Application specific dynamic compilation 13
5.2 Dynamic compilation of manually denoted static regions 13

*This document in support of my Qualifying Oral examination for the Department of

Computer Science , University of Toronto.
$Revision: 2.2 $

This draft not for public consumption.

If you are not a collaborator or advisory committee member then please ask for an up-to-date
draft and/or permission to read further.

(That would be an appropriate moment to wish me luck.)

Copyright Mathew Zaleski, 2003.
contact author at matz@Qcs.toronto.edu

RCS file : depth.lyz,v 1 Revision : 2.2

LIST OF FIGURES

6 Trace-oriented Dynamic Optimization 14
6.1 HPDynamo., 15
6.1.1 Trace cache management and “reactive flushing” 16

6.1.2 Bailingout 0L, 16

6.1.3 Callsand Returns 16

6.1.4 Interaction between selection and call-return strategy . . 17

6.1.5 The Return Guard problem 20

6.1.6 Overall Dynamo Performance 21

6.1.7 Micro-architectural aspects to Dynamo Performance . . . 23

6.1.8 Summary 25

6.2 Recent Dynamo related work 25

7 Dynamic Object-oriented optimization 26
71 Self . . . o 26
7.1.1 Customization 27

7.1.2 Method Splitting 27

7.2 Jikes Research Virtual Machine 28
7.2.1 Context-Sensitive Inlining 28

7.2.2 Optimistic Intra-procedural Optimization 29

8 JIT as Dynamic Optimizer 31
9 Summary 32
References 33

List of Figures

1
2

3

11

Example of Java method containing a polymorphic callsite. . . . 5
Bytecode produced by Sun’s javac compiler from toString ex-
ampleof Figure 1 10
Example of semi-automatic dynamic optimization for C. Repro-
duced from [2]. 14
A simple dynamically loaded callee (a) requires an indirect branch
whereas trace code (b) guards with conditional branches. 17
Callee containing traceend 18
Return Guard Failure 19
Reproduction of Dynamo Figure 42 Dynamo Performance Result
[B,page 81] 21
Reproduction of dynamo Figure 43. Interpretation Overhead [3,
page 81] 22
Reproduction of Dynamo Memory Pool Size [3, page 82] 22

Reproduction of Dynamo Figure Performance levels when exe-
cutable has been compiled at varying levels of optimization [3,
page 84] . . L. 23
Context Sensitive Inlining Example reproduced from [21] Figure 1 30

RCS file : depth.lyz,v 2 Revision : 2.2

1 INTRODUCTION

12 Call graphs derived from Java code of Figure 11. Reproduced
from [21] Figure 2. o oL 31

1 Introduction

Purpose of this Document This document represents the written compo-
nent of my preparation for the oral depth examination checkpoint of the PhD
in Computer Science program at the University of Toronto. As such it should
provide a reasonably deep and wide survey of my chosen field. In addition I
have prepared a research proposal, available at http://www.cs.toronto.edu/
“matz/depth.pdf, in which I propose to build a trace-based dynamic compiler
for Java bytecode. My hope is that these two documents will together update
my advisory committee (and other readers) as to the status of my research.

Selection of Topics A modern dynamic compiler for an object-oriented lan-
guage represents a large amount of technology. In this paper I have tried to
concentrate on those topics that are less commonly known. Thus, I freely use
general terminology from the fields of computer architecture, compilation and
optimization with little or no introduction. The largest section describes the
trace-related work because it is central to my thesis and not particularly well-
known. I give only a cursory overview of the Java virtual machine and no
introduction to object-oriented programming in general or Java in particular
because I believe these are well-known (and easy to research) fields. The field of
dynamic optimization is rapidly expanding, so this paper will introduce several
specific techniques in some detail with the intention of giving the reader a good
feel of the aggressive approach currently being followed by many researchers.

Structure of this document The structure of this review is as follows:

e Informally define polymorphism, describing how it poses a challenge to
a naive compiler and how sophisticated caching techniques like those in-
vented for Self [8, 23, 45] can help;

e Very briefly describe the working of the Java Virtual Machine. Sun’s own
description [10] is very good, so only an overview need be given here;

o Briefly describe manually directed dynamic optimization techniques like
those offered by DyC [2, 18, 19]. The emphasis is why they are not, as
yet, directly applicable to Java bytecode execution;

e Describe the trace-oriented dynamic optimization approach used by HP
Dynamo and its successors as the departure point for my own proposal;

e Briefly describe a few key dynamic object-oriented optimization techniques
invented for Self and Java, and;

o Relate the above-mentioned topics to the challenges faced by a method-
based Just in Time compilers within a Java Virtual Machine.

RCS file : depth.lyz,v 3 Revision : 2.2

2 BASIC TERMS - TRACES AND DYNAMIC OPTIMIZATION

2 Basic Terms — Traces and Dynamic Optimiza-
tion

Trace A trace is a sequence of instructions that corresponds to a path taken
through a program. The sequence may include conditional branch instruc-
tions and some mechanism for recording whether each branch was taken or
not. When a trace is dispatched the remaining conditional branch instructions
can be thought of as assertions that cause the trace to exit whenever a branch
would take a different path than when the trace was recorded. Thus, traces are
single-entry, multiple-exit paths through a program’s control flow graph.

Traces are used by different research communities for different reasons.

The following list of research areas is in the order of least to most importance
to my research.

e The Multiflow compiler [32, 15] performs instruction scheduling on traces
of instructions.

e The Pentium 4 processor refers to its level 1 instruction cache as an “Ex-
ecution Trace Cache”’[22]. The concept of storing traces in a hardware
instruction cache to maximize use of instruction fetch bandwidth is dis-
cussed by Rotenberg and Bennett in [41]. It turns out that optimization
techniques such as the “Software Trace Cache” reorder code to achieve a
similar result [40]. The impact of a trace cache on instruction prefetch
bandwidth may help explain some performance results reported by dy-
namic optimizer research groups, notably [7].

e In the Dynamo [4, 3, 14, 5, 6] project, work that has had major impact on
my approach, traces are used to identify, record and dynamically optimize
heavily used paths within an program. This will be described in great
detail.

Dynamic Optimization Dynamic optimization is a broad field of research
wherein investigators look at ways programs can be improved as they run. There
is a broad spectrum of approaches, from application-specific, special-purpose
languages compiled at run-time, through manually written templates that are
“filled in” dynamically at run-time. The most ambitious systems automatically
select regions of code to optimize. Only automatic techniques can be applied
within a Java Virtual Machine to speed up existing Java programs so these will
be described in the most detail.

Trace oriented Dynamic Optimization One of the challenges with dy-
namic optimization is identifying which regions to optimize. One option, pio-
neered by Dynamo, is to heuristically select traces and dynamically optimize
them.

RCS file : depth.lyz,v 4 Revision : 2.2

3 POLYMORPHISM

void sample(Object[] otab){
for(int i=0; i<otab.length; i++){
otab[i] .toString(); //polymorphic callsite
}
}

Figure 1: Example of Java method containing a polymorphic callsite

3 Polymorphism

The callsites of an object-oriented language are polymorphic as a consequence
of methods being invoked on objects. Most object-oriented languages categorize
objects into a hierarchy of classes. Each object is an instance of a class which
means that the methods and data fields defined by that class are available for
the object. Each class, except the root class, has a super-class or base-class from
which it inherits many of its fields and methods. This organization is meant to
reflect the pragmatic reality that real-world programs manipulate concepts that
are specializations of more generic concepts.

The class of an object on which a method is invoked determines which im-
plementation of the method is dispatched. The idea is that each type of object
may override a method and so at runtime the system must dispatch the defini-
tion of the method corresponding to the type of object. In many cases it is not
possible to deduce the exact type of the object at compile time. The invocation
is called polymorphic because it might be invoked on multiple types of objects.

It is not our purpose here to discuss the software engineering benefits of
polymorphism. Many enlightened introductions to object-oriented program-
ming have been written. They range from the green fields approach taken by
Goldberg and Robson in their famous Smalltalk-80 series [17] to the incremental
approach taken by C++ designers like Stroustrup [43].

A simple example will make the above description concrete. When it is time
to debug a program almost all programmers rely on facilities to view a textual
description of a their data'. In an object-oriented environment this suggests
that each object should define a method that returns a string description of
itself. This need was recognized by the designers of Java? and consequently
they defined a method in the root class Object:

public String toString()

to serve this purpose. The toString method can be invoked on every Java
object. Consider an array of objects in Java. Suppose we code a loop that
iterates over the array and invokes the toString method on each element as
in Figure 1. There are literally hundreds of definitions of toString in a Java

1Programmers might view the text in an interactive debugger or a log file. In either case
the text was probably produced similarly.
2The printString method plays the same role in Smalltalk.

RCS file : depth.lyz,v 5 Revision : 2.2

3 POLYMORPHISM

system and in most cases the compiler cannot discern which one will be the
destination of the callsite. Since it is not possible to determine the destination
of the callsite at compile time it must be done when the program executes.
Determining the destination at run-time incurs cost. The cost comes about
in two main ways. First, locating the method to dispatch at run-time requires
computation. Second, the inability to predict the destination of a callsite reduces
the efficacy of inter-procedural optimizations and thus results in relatively slow
systems. We discuss each of these issues in turn.

3.1 Finding the destination of a polymorphic callsite

Locating the definition of a method appropriate for a given object is a search
problem. To search for a method definition corresponding to a given object the
system must search the classes in the hierarchy. The search starts at the class of
the object, proceeds to its super class, to its super class, and so on, until the root
of the class hierarchy is reached. If each method invocation requires the search
to be repeated, the process will be a significant tax on overall performance.
Nevertheless, this is exactly what occurs in a naive implementation of Smalltalk,
Self or Java.

If the language permits early binding, the search may be converted to a table
lookup at compile-time. For instance, in C++, all the possible destinations of
a callsite are known when the program is loaded. As a result a C++ virtual
callsite can be implemented as an indirect branch via a virtual table specific to
the class of the object invoked on. This reduces the cost to little more than
a function pointer call in C. In fact, early implementations of C++, which
translated C++ source to C source, would translate each C++ virtual callsite
to a call through an array of pointers to functions in C. The construction and
performance of virtual function tables has been heavily studied, for instance by
Driesen [13].

The search can very often be short-circuited by a cache. It turns out that
real programs tend to have low effective polymorphism. This means that the
average callsite has very few actual destinations. If fact, most callsites are
effectively monomorphic, meaning they always call the same method. If this
destination is cached then the search can be circumvented in most cases. Note
that low effective polymorphism does not imply that a smart compiler should
have been able to deduce the destination of the call. Rather, it is a property of
real programs making use of polymorphism much less than they could have.

3.2 Inlined Caching and Polymorphic Inlined Caching

For late-binding languages it is seldom possible to generate efficient code for a
callsite at compile time. In response, various researchers have investigated how
it might be done at run-time. In general, it pays to cache the destination of a
callsite when the callsite is commonly executed and its effective polymorphism is
low. The in-line cache, as invented by Deutsch and Schiffman [12] for Smalltalk
about 20 years ago, replaces the polymorphic callsite with the native instruction

RCS file : depth.lyz,v 6 Revision : 2.2

3 POLYMORPHISM

to call the cached method. The prologue of all methods is extended with fix-
up code in case the cached destination is not correct. Deutsch and Shiffman
reported hitting the in-line cache about 95% of the time for a set of Smalltalk
programs.

Holzle[23] elaborated the in-line cache to be a polymorphic in-line cache
(PIC) by generating code that successively compares the class of the invoked
object to a few possible destination types. The implementation is more difficult
than an in-line cache because the dynamically generated native code sequence
must sequentially compare and conditionally branch against several possible
destinations. The performance of a PIC is good. A PIC extends the performance
benefits of an in-line cache to effectively polymorphic callsites. For example,
on a SPARCstation-2 Holzle’s lookup would cost only 8 + 2n cycles, where n is
the actual polymorphism of the callsite. A PIC lookup costs little more than an
in-line cache for effectively monomorphic callsites and much less for effectively
polymorphic ones.

3.3 Impact on Inter-procedural Optimization

Inter-procedural optimization can be stymied by polymorphic callsites. At com-
pile time, an optimizer cannot determine the destination of a call, so obviously
the target cannot be inlined. In fact, standard inter-procedural optimization as
carried out by an optimizing C or FORTRAN compiler [34] is simply not possible.

In the absence of inter-procedural information, an optimizer must make con-
servative assumptions about which values remain alive across a polymorphic
callsite. This forces the compiler to reload values from memory, oftentimes un-
necessarily, on the chance that code in the (unknown) callee has stored a new
value. Knowledge of the destination of the callsite would permit a more precise
inter-procedural analysis of the values killed by the call.

Given the tendency of modern object-oriented software to be factored into
many small methods which are called throughout a program, even in its in-
nermost loops, these optimization barriers prevent good performance. A typi-
cal example might be that common subexpression elimination cannot combine
identical memory accesses separated by a polymorphic callsite because it cannot
prove that all possible callees do not kill the memory location. To achieve per-
formance comparable to procedural compiled languages, inter-procedural opti-
mization techniques must somehow be applied to regions laced with polymorphic
callsites.

In response, researchers have turned their attention to how optimizations
across callsites can be delayed until run-time, when the destination of callsites
becomes known. At run-time, a dynamic compiler can gamble that a callsite will
continue to be effectively monomorphic and perform limited inter-procedural
optimizations such as inlining. An excellent description of such techniques for
the Self compiler appears in Urs Holzle’s dissertation. Holzle records the type
of object each method is invoked on as the program runs. To give an example of
how this data can then be used, Holzle writes, “Having obtained the program’s
type profile, this information is then fed back into the compiler so it can optimize

RCS file : depth.lyz,v 7 Revision : 2.2

4 OVERVIEW OF THE JAVA VIRTUAL MACHINE

dynamically-dispatched calls (if desired) by predicting likely receiver types and
inline the call for these types”3[23, pp 36].

We have described how polymorphic callsites pose a challenge to system
performance. A more detailed discussion of how dynamic compilation techniques
can be used to implement in-line caching as well as inter-procedural optimization
appears in Section 8.

4 Overview of the Java Virtual Machine

A Java program is deployed as a set of classes. Methods are expressed in terms
of a stack-oriented bytecode defined by the Java Virtual Machine Specification
[31]. A Java Virtual Machine (JvM) is the core of the Java runtime system. It is
alarge computer program that loads and runs Java classes, manages threads and
memory, and maintains security. The first publicly available implementation of
the Java Virtual Machine was a bytecode interpreter shipped as part of Sun’s
Java Development Kit (“the JDK”). The JDK first appeared following the public
debut of the World Wide Web. Very soon after its release, Java generated
enormous interest by demonstrating portable Applets embedded in web pages
running in early web browsers. Perhaps due to the excited mood of the period,
many analysts overlooked the well-known fact that the performance of bytecode
interpreters is generally unacceptably slow for many classes of application. Many
application programmers, myself included, jumped on the bandwagon and wrote
and deployed large Java applications. Several large technology companies, for
instance IBM, anointed Java classes as the strategic deployment technology for
enterprise applications. Ever since, JvM developers and researchers have been
working hard to increase the performance of Java applications.

This section will introduce basic JvM concepts. Our discussion of techniques
used to enhance Java performance will resume in Section ?? after we have re-
viewed earlier existing dynamic optimization research. We will revisit the Java
example of Figure 1 in order to discuss the bytecode produced javac, the com-
piler packaged with Sun’s JDK. Figure 2 shows output of the javap disassembler.
I have manually commented the javap output (in italics in the figure) to make
it easier for those who are unfamiliar with bytecode to understand.

4.1 Late binding

A basic design issue for any language is when external references are resolved.
Java is forced to bind references very late in order to support downloadable code.
The general idea is that a Java program may start running before all the classes
that make it up are locally available. This means that there is no moment
in the life of a Java program equivalent to the link-edit step of a traditional
application; rather, classes are searched for and downloaded as they are needed.

Although the consequences of very late binding are far-reaching, of particular
interest is the impact of late binding on the implementation of polymorphic

3The object a method is invoked on is called a “receiver” in Self and Smalltalk.

RCS file : depth.lyz,v 8 Revision : 2.2

4 OVERVIEW OF THE JAVA VIRTUAL MACHINE

callsites. Late binding complicates using a table-driven approach in Java.

In a language such as C++, virtual function tables are used to dispatch
methods. Each method of a class is associated, at compile time, with an offset
which is used at run-time to index into a table of pointers to functions. Poly-
morphic dispatch is thus converted into an indirect branch at run-time. Since
C++ programs must undergo an explicit link edit step before then can be run,
the tables can be initialized then.

It is not clear-cut that virtual function tables are the right approach for Java.
Sun’s JVM specification [31] requires that the invokevirtual bytecode, which
does the actual work of a virtual method invocation, must refer to the callee
by name. For example, the invokevirtual bytecode appearing in Figure 2
refers to the toString method as toString()Ljava/lang/String?. Thus, the
conversion of each callsite to use a virtual table, if it is to be done at all, must be
done when the class is loaded, or even later, such as the first time the callsite is
executed. However, it has already been shown that an in-line cache is hit much
of the time, suggesting that the overhead of virtual table construction might
not be worthwhile except for callsites known to have relatively high effective
polymorphism for which an in-line cache or PIC is ineffective.

4.2 Stack oriented Bytecode and portability

Packaging Java classes as bytecode to be run by a virtual machine serves several
purposes. First, stack oriented bytecode is very compact because the operands
of instructions are implicit. Since Java classes might have to be fetched across
the Internet this can save download time. Second, a stack oriented virtual
machine is a traditional and very effective way of abstracting away the details
of underlying hardware and thus enhancing portability. Java bytecode bears
a striking resemblance to Pascal P-code, defined more than 20 years ago for
the Pascal P4 interpreter [38]. Portability is, of course, desirable due to Java’s
“write once run anywhere” credo.

Java bytecode includes object-oriented instructions like method invocation
and field getting and setting as well as standard fare such as arithmetic oper-
ations. Fortunately, the Java Virtual Machine Specification [31] manual gives
a readable description. The flavor of bytecode can be quickly appreciated by
quickly reading through the bytecode illustrated by Figure 2.

The bytecode in the figure depends on a stack organization that distinguishes
between local variables and operand stack. Local variable slots, or lva slots, are
used to store local variables and parameters. The simple function shown needs
only three local variable slots (referred to as lva[0] through lva[2] in the figure).
Lva[0] is used to store a hidden parameter, the object handle® to the invoked
upon object and is never used in the example. Lva[l] stores the first and only
real parameter, the otab array. Lva[2] stores i, an int local variable. The

4 Actually the invokevirtual takes a parameter which is the index into the classes’ constant
table at which the string name of the method is stored. The javap disassembler, which
produced the text reproduced in the figure, prints the value of the constant table entry.

51va[0] stores the local variable known as this to Java (and C++) programmers.

RCS file : depth.lyz,v 9 Revision : 2.2

4 OVERVIEW OF THE JAVA VIRTUAL MACHINE

//lval[N] refers to n’th

//Local Variable Array slot
//arquments: ’’this’’ in lva[0]
// otab array in lva[1]

Method void sample(java.lang.0Object[])

0 iconst.0 //push int constant 0 on stack
1 istore 2 //int store top of stack (zero) to lwval[2]
2 goto 15 //jump into for loop
//head of loop
5 aload_1 //push object lva[1] (otab)
6 iload 2 //push int lval2] (i)
7 aaload //load element from array

8 invokevirtual #2 <Method java.lang.String toString()>

11 pop //discard return result

12 iinc 2 1 //bump int lva[2] by 1

15 iload 2 //push int lval[2] (i) on stack
16 aload_1 //push object in lva[l] on stack

17 arraylength //calculate length of array on stack
18 if _icmplt 5 //if int compare (i < otab.length) goto 5
21 return

Figure 2: Bytecode produced by Sun’s javac compiler from toString example
of Figure 1

RCS file : depth.lyz,v 10 Revision : 2.2

4 OVERVIEW OF THE JAVA VIRTUAL MACHINE

operand stack is used to maintain the expression stack used for all calculations
and parameter passing. In general “load” form bytecodes push values in lva slots
onto the operand stack. Bytecodes with “store” in their mnemonic typically
pop the value on top of the operand stack and store it in a named lva slot. For
example, the first two bytecodes in the program (iconst_0 and istore_2) push
a literal zero onto the operand stack and then pop it off and store it in lva[2].

4.3 Speed of Interpretation and Dynamic Translation to
Native Code

Although stack oriented bytecode is compact and machine-neutral, it is slow
to interpret. Traditionally, interpreters were used primarily for application de-
velopment and were complemented by true compilers which were used when
applications were deployed. For instance, the Berkeley Pascal System|[27] in-
cluded pi, an interpreter, as well as pc, a compiler that generates executables
that perform much better.

Java classes may be downloaded and run by different types of machines, so
they must be deployed in a machine-neutral form. This eliminates the possibil-
ity of a complementary compiler. As a consequence, Java language developers
turned their attention to dynamic compilation techniques to convert the byte-
code into native code after it has been loaded by the JvM. The field has come
to be called Just In Time compilation, or JIT compilation for short. This ap-
proach to speeding up interpretation long predates Java, perhaps first appearing
for APL for the HP3000 [26] in about 1979. Deutsch and Schiffman [12] built
an early JIT for Smalltalk that obtained a speedup of about two relative to
interpretation.

Early systems were highly memory constrained by modern standards. It
was of great concern, therefore, when translated native code was found to be
about four® times larger than the originating bytecode. Lacking virtual memory,
Deutsch and Schiffman took the view that dynamic translation of bytecode was
a space time trade-off. If space was tight then native code (space) could be
released at the expense of re-translation (time). Nevertheless, their approach
was to execute only native code. Each method had to be fetched from a native
code cache or else re-translated before execution. Today a similar attitude
prevails except that it has also been recognized that some code is so infrequently
executed that it need not be translated in the first place. Instead some heuristic
should be used to identify hot, or frequently executed, regions to translate hoping
to keep the size of the native code cache below some threshold. The bytecode
of methods that are not hot can simply be interpreted.

A JIT can improve the performance of a JvM substantially. Relatively early
Sun JIT compilers, as reported by the 1997 Sun development team in [11], im-
proved the performance of the Java raytrace application by a factor of 2.2 and

6This is less than one might fear given that on a RISC machine one typical arithmetic
bytecode will be naively translated into two loads (pops) from the operand stack, one register-
to-register arithmetic instruction to do the real work and a store (push) back to the new top
of the operand stack.

RCS file : depth.lyz,v 11 Revision : 2.2

5 MANUAL DYNAMIC OPTIMIZATION

compress by 6.8. (These benchmarks are singled out because they eventually
were adopted by the SPEC consortium to be part of the SPECjvm98 [10] bench-
mark suite. Today they are commonly reported by researchers.) More recent
JIT compilers, for instance [33, 1, 44] have increased the performance further.

4.4 Other Challenges to Java Performance

There are many other issues that affect Java performance which this paper does
not discuss. The most important amongst them are memory management and
thread synchronization.

Garbage collection refers to a set of techniques used to manage memory
in Java (as in Smalltalk and Self). In general the idea is that unused memory
(garbage) is detected automatically by the system. (As a result the programmer
is relieved of any responsibility for freeing memory that he or she has allocated.)
Garbage collection techniques are somewhat independent of JIT techniques. The
primary interaction requires that threads can be stopped in a well-defined state
prior to garbage collection. So-called safe points must be defined at which a
thread periodically drives its state to memory. Code generated by a JIT compiler
must ensure that safe points occur frequently enough that garbage collection is
not unduly delayed. Typically this means that each transit of a loop must
contain at least one safe point.

Java supports explicit, built-in support for threads. Thread synchronization
refers mostly to the functionality that allows one one thread at a time to access
certain regions of code. Thread synchronization must be implemented at vari-
ous points and the techniques for implementing it must be supported by code
generated by the JIT compiler.

5 Manual Dynamic Optimization

Early experiments with dynamic optimization indicated that large performance
pay backs are possible. Typical early systems were application-specific, in the
sense that they compiled a language or data structure that described an algo-
rithm specific to a particular purpose [28, 39]. Later, researchers built semi-
automatic dynamic systems that would re-optimize regions of C programs at
run-time [29, 2, 16, 19, 18].

Although the semi-automatic systems did not enable dramatic performance
improvements across the board, I believe that this is partially because of the
performance baseline they compared themselves to. The prevalent programming
languages of the time were supported by static compilation and so it was natural
to use the performance of highly optimized binaries as the baseline. Our situ-
ation in Java is somewhat different. I suspect that dynamic techniques which
do not pay off relative to statically optimized C code will pay off when applied
to code naively generated by a Java JIT. Consequently, a short description of a
few early systems seems worthwhile.

RCS file : depth.lyz,v 12 Revision : 2.2

5 MANUAL DYNAMIC OPTIMIZATION

5.1 Application specific dynamic compilation

In 1968 Ken Thompson built a dynamic compiler which accepted a textual
description of a regular expression and dynamically translated it into machine
code for a IBM 7094 computer [28]. The resulting code was dispatched to find
matches quickly.

In 1985 Pike et al. invented an often-cited technique to generate good code
for quickly copying regions of pixels onto a display [39]. They observed that
there was a bewildering number of special cases (caused by various alignments
of pixels in display memory) to consider when writing a good general purpose
bitblit routine. Instead they wrote a dynamic code generator that could produce
a good (near optimal) set of machine instructions for each specific blit. At worst
their system required about 400 instructions to generate code for a bitblit.

5.2 Dynamic compilation of manually denoted static re-
gions

In the mid-1990’s Lee and Leone [30, 29] built FABIUS, a dynamic optimization
system for the research language ML [16]. FABIUS depends on a particular
use of curried functions. Curried functions are those that take one or more
functions as parameters and return a new function that is a composition of
the parameters. FABIUS interprets the call of a function returned by a curried
function as a clue from the programmer that dynamic re-optimization should
be carried out. Their results, which they describe as preliminary, indicate that
small, special purpose applications such as sparse matrix multiply or a network
packet filter may benefit from their technique but the time and memory costs
of re-optimization are difficult to recoup in general purpose code.

More recently it has been suggested that C and FORTRAN programs can
benefit from dynamic optimization. Auslander [2], Grant [19, 18] and others
have built semi-automatic systems to investigate this. Initially these systems
required the user to identify regions of the program that should be dynamically
re-optimized as well as the variables that are run-time constant. Later systems
allowed the user to identify only the program variables that are run-time con-
stants and could automatically identify which regions should be re-optimized at
run-time.

Figure 3 reproduces an annotated C function given by Auslander in [2] show-
ing how regions that can benefit from dynamic optimization are identified by
the programmer. The dynamic region will be pre-compiled into template code.
Then, at run time, the values of the run-time constant (the variable cache
in Figure 3) will be substituted into the template and the dynamic region re-
optimized. Auslander’s system worked only on relatively small kernels like ma-
trix multiply and quicksort. A good way to look at the results was in terms of
break even point. In this view, the kernels reported by Auslander had to execute
from about one thousand to a few tens of thousand of times before the improve-
ment in execution time obtained by the dynamic optimization outweighed the
time spent re-compiling and re-optimizing.

RCS file : depth.lyz,v 13 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

cacheResult cacheLookup(void *addr, Cache *cache) {
dynamicRegion(cache) { /*cache is run-time constant*/
unsigned blockSize = cache->blockSize;
unsigned numlLines = cache->numlLines;
unsigned tag =
(unsigned) addr / (blockSize * numLines);
unsigned line =
((unsigned) addr / blockSize) % numLines;
setStructure **setArray =
cache->lines[line]->sets;
int assoc = cache->associativity;
int set;
unrolled for (set = 0; set < assoc; set++) {
if (setArray[set]dynamic->tag == tag)

}

return CacheMiss;
} /* end of dynamicRegion */

}

return CacheHit;

Figure 3: Example of semi-automatic dynamic optimization for C. Reproduced
from [2].

Subsequent work by Grant et al. created the DyC system [19, 18]. DyC
simplified the process of identifying regions and applied more elaborate opti-
mizations at run time. This system can handle real programs, although even
the streamlined process of manually designating only run-time constants is re-
ported to be time consuming. Their methodology allowed them to evaluate the
impact of different optimizations independently, including complete loop un-
rolling, dynamic zero and copy propagation, dynamic reduction of strength and
dynamic dead assignment elimination to name a few. Their results showed that
only loop unrolling had sufficient impact to speed up real programs and in fact
without loop unrolling there would have been no overall speedup at all.

6 'Trace-oriented Dynamic Optimization

In the late 1990s, researchers at HP labs took a different approach to dynamic
re-optimization of existing programs. Rather than focusing on optimization
techniques for exploiting run-time constants, the HP Dynamo project concen-
trated on techniques to automatically select regions of the program to improve.
The technique they invented to identify interesting areas to optimize used in-
struction traces to record, optimize and later dispatch hot paths through a
program.

Their approach was in some ways opposite to the work described in Section

RCS file : depth.lyz,v 14 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

5. Rather than require programmer intervention, the HP team developed on-
line heuristics to automatically select the regions of the program to dynamically
optimize and performed only relatively modest optimizations.

Dynamo achieved good speedups on the HP workstations of the day [4, 3].
Although they do not report detailed micro-architectural performance data they
suggest that better branch prediction and virtual address translation lookaside
buffer (TLB) effects are the reason.

Recently Bruening describes a new version of the Dynamo approach, running
on the Intel x86 architecture, which has not managed to speed up benchmarks
or real world applications in as clear-cut a way [7]. Bruening does not mention
this might be because modern (Pentium 4) Intel x86 implementations contain a
hardware trace cache. I suggest that the speedups obtained by Dynamo on HP
PA-8000 computers were in part due to better use of i-cache prefetch bandwidth.
The Pentium’s hardware trace cache thus skims the cream of this benefit and
hence Dynamo has greater difficulty speeding up applications on this architec-
ture.

6.1 HP Dynamo

HP Dynamo’s approach is counter-intuitive [3, 4, 14]. Dynamo interprets run-
ning highly optimized binaries instead of running them directly on the hardware.
As interpretation continues, a Dynamo heuristic termed SPECL (for Specula-
tive trace selection) identifies regions of the program which are termed “traces”.
These home in on the loops in the program and do not consider the call graph.
A potential “trace entry” point is the destination of a rearward branch in the
originating code or a “trace exit” point of cached code. The interpretation of
each “trace entry” point is counted. When it is executed frequently enough, it is
reckoned to be “hot”. Dynamo then enters a mode called “trace generation” in
which native instructions are issued into a trace cache as the originating code is
interpreted’. The resulting code fragments in the trace cache include code only
for the exact path through the program that was traversed during trace gener-
ation. Trace generation ends when a “trace end” point is reached or the trace
becomes too long. A trace end point is either a cycle or a backward branch. This
strategy is intended to promote the linkage of traces together so that execution
eventually should remain in the traces. After trace generation has completed
interpretation resumes. However, when the interpreter reaches an instruction
corresponding to the entry point of a trace, interpretation is suspended and the
trace is dispatched.

As part of the process, the trace generator reverses the sense of conditional
branches so the path along the trace sees only not taken conditional branches.
This is very significant. It means that subsequently, when the trace is dis-
patched, all the frequently executed conditional branches are not taken, which
is the sense that many CPU branch prediction schemes[46] assume will be taken

7Actually a low level intermediate representation is issued, then optimized, then written
into a trace fragment.

RCS file : depth.lyz,v 15 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

for forward branches. This may lead to significantly lower branch misprediction
delays in the program. Off-trace branches are all taken conditional branches
and lead to “trace exit” code that arranges to send execution back to the in-
terpreter. In addition to better branch prediction, the traces should promote
better use of the instruction cache prefetch bandwidth. Since we expect that
fewer conditional branches are being taken by the traces, we should also expect
that the portions of instruction cache lines following the conditional branches
will be used more effectively.

6.1.1 Trace cache management and “reactive flushing”

Caches, in general, hold recently used items, which means that that older, un-
used items are at some point removed or replaced. As a general strategy, when
its trace cache becomes full, Dynamo flushes the entire cache and starts afresh.
Dynamo calls this approach “reactive flushing”. The hope is that some of the
(older) fragments are not part of the current working set of the program and
so if all fragments are discarded the actual working set will fit into the cache.
According to the technical report [3], the overhead of normal cache management
becomes much higher if garbage collection or some other adaptive mechanism
is used.

6.1.2 Bailing out

When the trace selection rate remains high for more than a threshold number
of consecutive intervals, Dynamo gives up and “bails out”, which means that it
relinquishes control and simply dispatches the program binary. When this hap-
pens, the prototype does not attempt to resume trace generation, the program
is allowed to execute to completion.

6.1.3 Calls and Returns

The Hewlett-Packard PA-8000, in the spirit of its RISC architecture, does not
offer complex call and return instructions. A callsite to a shared routine first
branches to a small chunk of glue code written by the static linker. The glue code
loads the destination of the shared code from a data location that was mapped
by the static linker and initialized by the dynamic loader. An indirect branch
then transfers control to that location. When glue code is encountered during
trace generation it is substantially optimized in a similar spirit to conditional
branches but also with the flavor of inlining. Figure 4 (a) illustrates the original
extern call and Figure 4 (b) shows how it is trace generated. The indirect
branch is replaced by a conditional trace exit. The call guard in the figure is
in fact a conditional branch comparing the target of the indirect branch to the
original destination observed during trace generation[47]. That is, instead of
using the destination loaded by the loader glue code as input to an indirect
branch, Dynamo uses it to check that a dispatched trace contains a copy of
the instructions. As before, the conditional branch is arranged so that it is not

RCS file : depth.lyz,v 16 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

T g

@

tracd

call guard

Figure 4: A simple dynamically loaded callee (a) requires an indirect branch
whereas trace code (b) guards with conditional branches.

taken when control remains in the trace. The trace continues with instructions
from the callee. Hence the technique straightens the glue code and replaces an
expensive, taken, indirect branch with a cheaper, not-taken conditional branch,
as well as inlines the callee code. Returns are handled essentially the same way.

If the destination of the shared code were to be changed by some action of
the dynamic loader, the glue code replicated in the trace would load the new
destination, the guard code would detect that this does not correspond to the
code that was earlier inlined into the trace, and the trace would exit.

The callsite of a C++ virtual function or a regular C function pointer will
also start out as an indirect call and be trace generated in a similar way. If
a C++ virtual function callsite turns out to be effectively polymorphic, then
the destination encountered during trace generation will be inlined into the
initial trace. As overrides of the virtual method are encountered, the trace exit
guarding the inlined code will fail. Eventually one of them will become hot,
and a new trace will be generated from its entry point. Each time this occurs,
Dynamo inserts the address of the new trace into a hash table specific to the
callsite keyed by the address in the originating code. Then, when a trace exit
occurs resulting from an indirect branch, Dynamo can find the destination trace
by looking up the originating destination in the hash table.

In an ideal situation, the callee contains nothing that would cause a trace to
end (e.g. aloop). In this case, the trace would contain both the code from the
callsite and the return point and the return guard can be skipped.

6.1.4 Interaction between selection and call-return strategy

If the callee is more complicated, we may see an interesting interaction between
the trace selection heuristic and the call return strategy. Especially interesting
is the situation when a routine containing a “trace end” condition is called from
more than one place. This scenario is quite complex, so we will discuss it in two
stages. First we describe what happens when the trace generation of the callee
encounters a trace end condition. This is shown in Figure 5. Then we describe
the interaction between two such callsites. This is shown in Figure 6.

Suppose the callee is a commonly used routine that contains a loop. We

RCS file : depth.lyz,v 17 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

;. trace'C
/
/
/

!

1
]
I
I
Method "A"
3
trace’A’ f /

T
1

/

traceAR

Original program calls method’A '

at callsite "c" to produce trace'C

\
\
that ends at target of reverse branch \
Sometime before or after the loopin \
A becomes hot and trace’A"is \\
generated. Finally, the tracee tdte \ _
trace AL becomes hot and trace/R h

is generated (including the return to
callsite "c") and the loop is closed.

Figure 5: Callee containing trace end

RCS file : depth.lyz,v 18 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

Method "A" —
/3 trace'@” trace' -

~
A

v~ 7
AN
~

calle2

Traces showing potential for

return guard problem.Two callsites
("c1" and "c2") of a method containing
atrace end (method "A") create a
situation whereby the return path
from callsite "c2" always causes the . .
return guard of trace "C1b" to be
taken.

trace'A"

IU‘

trace'db" !

T - trace'Qb"

Figure 6: Return Guard Failure

RCS file : depth.lyz,v 19 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

will refer to the routine as “A”. (A reasonable example might be a routine
calculating the absolute value of a vector.) The target of the reverse branch
closing the loop is a trace end point. Suppose the callsite of the routine is “c”,
encountered during the trace generation of trace “C”. The callsite of the routine
is handled as an indirect branch as described above, with the result that part of
the code of routine “A” is replicated in trace “C”. In Figure 5 we labeled this
portion of the routine “code in A before loop”. When trace generation reaches
the target of the latch in “A”, trace “C” ends. Thus, trace generation ends
having seen the call to A but not the return.

Suppose, in this case, the loop trace is already in the cache. We will refer to
this trace subsequently as trace “A.L”. When Trace “C” is put into the cache
it will link to trace “A.L”. A few traces may have to be generated and linked
together in this manner before the return of routine “A” is trace generated.
Suppose the return point occurs in trace “A.R”. For the purpose of the first
example let us suppose that during this phase of execution, all calls to “A”
are from the callsite “c” and hence the return takes us back to that callsite.
Although, when we trace generated the return in trace A.R we observed that
it returns to callsite “c” we must assume that trace “A.R” may be dispatched
from other places in the program as well. The guard code that is generated
handles the return like any other indirect branch, guarding that the destination
address is actually to the address of callsite “c”. The return is not a trace end
condition, so trace generation continues.

To recap, we seen in Figure 5 how Dynamo’s trace selection heuristic has
created traces “C”, “A.L” and “A.R” which perform as intended as long as they
are dispatched from places where routine “A” is called from callsite “c”. Thus,
Dynamo will trace generate code that will perform best if the return is to “c”
but will behave correctly when it is to some other callsite.

Next we will consider what happens when other hot callsites of “A” crop up.

6.1.5 The Return Guard problem

Here we turn our attention to what happens when other callsites to the rou-
tine“A” occur in traces. One possibility is that callsite “c” above is in a loop, so
for a phase of program execution, all calls to routine A come from there. Even-
tually, the program continues to another loop nest where routine A is called
also. This more complex scenario is shown in Figure 6. The problem is that
calls to “A” other than than the callsite “c” may also lead to the return guard
in trace “A.R”. The return guard there will trace exit, as the return address is
not the address of callsite “c”. As a consequence, these calls to “A” will return
via a lookup in the hash table backing the return guard. We will refer to this
difficulty with Dynamo’s strategy as the “return guard” problem.

One interpretation of this behavior is that the inlining performed by Dy-
namo’s SPECL trace selection heuristic is not aggressive enough. The trace end
condition, as defined, causes the return guard problem. More aggressive inlin-
ing would have attempted to replicate the body of routine A at all hot callsites
and hence the call to routine “A” and the corresponding return would occur

RCS file : depth.lyz,v 20 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

“C 0

Tt p s &%L.fLL

Speedup over Native Exeuction

Programs

Figure 42: Dynamo performance (light/vellow bars indicate that Dynamo bailed-out)

Figure 7: Reproduction of Dynamo Figure 42 Dynamo Performance Result [3,
page 81]

in the same trace. The Dynamo team would argue that small callees should
be inlined by the static optimizer before the program was linked and before
Dynamo was involved. Thus, the opportunities for the return guard problem to
arise (hopefully) could be minimized. 8.

6.1.6 Overall Dynamo Performance

Several long running SPEC benchmarks run more quickly under Dynamo than
they run natively. The average speed up is 7.37% [3, page 80]. Figure 7 breaks
down the performance for each benchmark. The code straightening and inlining
performed on the code (and various indirect memory hierarchy effects) by the
trace generator more than compensated for the interpretation overhead and
assorted trace cache housekeeping.

A large trace cache helped but was not required to achieve a speedup. Fig-
ure 9 shows how even quite small caches enabled reasonable performance. Ob-
viously, if Dynamo’s performance was close to that of the native binary (let
alone better) it means the working set of traces must have fit into the trace
cache (referred to as the “fragment cache” in the figure). Hence only 150K is
sufficient to hold the working set of traces for these benchmarks.

Extremely interesting from our point of view is the overhead of interpreta-
tion, trace generation and trace cache management. Figure 8 shows the overhead

8The designers of a jit compiler do not have this luxury and so the return guard problem
is important to deal with. In fact, in our preliminary work described in a separate document
we will see that when SPECL is used for polymorphic java programs 1% of the bytecodes
executed by Jess from its trace cache are failing return guards [49].

RCS file : depth.lyz,v 21 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

Overhead

e L = T]

M A S L S S G

Programs

Figure 43: Dynamo overhead (light/yellow bars indicate that Dynamo bailed-out)

Figure 8: Reproduction of dynamo Figure 43. Interpretation Overhead [3, page
81]

O Dynamo memory pool size
§ — @ Fragment Cache size
= 403
¥
Ea 402
£ o irz
8 347
Fung — 315
[=]
E 506
50 100 A5
200
150 100
1.37% 6.43% 4.67% 4.69% 5.98% 5.00% 0.81%

Averag speedup over +0O2 binaries

Figure 9: Reproduction of Dynamo Memory Pool Size [3, page 82]

RCS file : depth.lyz,v 22 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

| Matws =02
B Mafwe =08
O Matws =04 -
=00 O Natiws +04 +F Native +04 avg - 244s

o Dynamo +02 Dynamo +021 avp - 234s
B Dynamo +03
B Dynams +0d

400 O Dynamo <04 +F

Runime (=
g

an magkaim COTpIRIS] =] parl warisx boiss dafatie

Programs

Figure 46: Performance comparison of Dynamo against native execution

Figure 10: Reproduction of Dynamo Figure Performance levels when executable
has been compiled at varying levels of optimization [3, page 84]

as a fraction of runtime. It would appear that the SPECL heuristic does a very
good job of identifying the hot regions of these benchmarks and linking traces
together. As a consequence, Dynamo spends almost all of its time executing
code from the trace cache. The benchmarks reported spend only about 1% of
their time in Dynamo’s interpreter; the rest of time of the time is spent running
traces out of the code cache.

Dynamo found little benefit to any trace optimization other than by redun-
dant branch removal and by the flow graph straightening as described above.
Redundant load elimination, dead code elimination, code sinking beyond trace
exits, and loop invariant code motion effected the speed up obtained by Dy-
namo very little. The efforts that were made to peephole optimize across trace
boundaries seemed to have little effect.

Dynamo starts with fully optimized native code and hence does not need to
worry about carrying out classical optimizations. In fact, Dynamo could even
speed up executables that were compiled at the highest levels of optimization
including profile driven inlining. (See Figure 10). Dynamo achieved a speed up
even at optimization level 4, which in HP’s parlance of the day referred to full
inter-procedural optimization. It would appear that Dynamo’s improvements
are somewhat orthogonal to those of classical optimization.

6.1.7 Micro-architectural aspects to Dynamo Performance

The Dynamo papers do not report micro-architectural performance measure-
ments so the reasons for the speedup are not known with certainty. The reports

RCS file : depth.lyz,v 23 Revision : 2.2

Eyarags

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

suggest that the speedup is caused by a combination of branch prediction and
instruction Translation Look aside Buffer (TLB) effects. Part of the speedup is
probably an artifact of the branch misprediction behavior of the benchmarks
on the particular family of hardware it was tested on. No data is available for
Dynamo other than on a HP PA-8000 running HPUX 10.20.

The Dynamo technical report [3] succinctly describes the HP PA-8000 com-
puter.

The PA-8000 is a four issue, dynamically scheduled processor. The
machine uses a 56-entry instruction reorder queue (IRQ) from which
it issues instructions. Dynamic branch prediction is used, with 256
3-bit entries in a branch history table (BHT) and a 32 entry branch
target address cache (BTAC) that stores the target addresses of taken
branches. The branch misprediction penalty is five cycles. Most in-
direct branches are not predicted at all and incur the misprediction
penalty since the target address is not known until after the exe-
cute stage in the pipeline. The exception is procedure returns which
are predicted using a call return register termed the Pop Latch,
which effectively functions as a return address stack [Hunt 1999).
These traits characterize the PA-8000 as a highly speculative, deeply
pipelined processor. Additionally, the processor has a 96 entry uni-
fied TLB and a four entry micro I-TLB located adjacent to the proces-
sor core. Our system was configured with 1 MB I- and D-caches.[3,
page 85]

One theory for how Dynamo sped up these programs is that it enabled more
efficient use of the branch target address cache (BTAC). Branches that are not
taken don’t effect the BTAC and hence executing the straightened code from the
trace caches may put less pressure on BTAC than the originating code would
have done. Presumably this would lead to better branch prediction for the
remaining taken branches. A related micro architectural implication involving
branch prediction concerns indirect branches. Dynamo’s strategy is to translate
indirect branches (like calls to shared libraries and virtual function dispatches)
in the originating code to not taken conditional direct branches (See our Figure
4). This may avoid misprediction penalties paid by the originating code. For
small originating methods Dynamo will have treated both the call and the return
this way.

The detailed technical report [3] also raises the possibility that the code
layout in the trace cache results in fewer TLB slots being used for instructions.
Presumably the originating code branches around some basic blocks whereas
code in the trace cache always falls through — hence it may take fewer instruction
TLB entries to map the working set of the trace cache than were required to
map the working set of the original code. No data is presented about TLB
evacuations, however.

Instruction cache prefetch My studies suggest another explanation for the
speedup obtained by Dynamo. While it is true that collecting frequently exe-

RCS file : depth.lyz,v 24 Revision : 2.2

6 TRACE-ORIENTED DYNAMIC OPTIMIZATION

cuting paths into traces may allow better use of BTAC resources, it is also likely
to improve the use of i-cache prefetch bandwidth. I suggest that the tendency
of trace exits to fall through results in more frequent use of the instructions
prefetched into the i-cache. Research, such as the Software Trace Cache by
Ramirez et al. [40], has shown that if the basic blocks of a program are re-
ordered so as to maximize the sequentiality of instructions then i-cache misses
are reduced. Similar reasoning by Rotenberg [41] and Patel [36] were posed to
support the inclusion of trace caches in hardware. In fact, these and unrelated
considerations concerning x86 instruction decoding led to Intel including a trace
cache in recent models of the x86 architecture as described by Hinton [22].

6.1.8 Summary

The performance results obtained by the Dynamo project indicate several in-
teresting facts:

e The SPECL heuristic can locate relatively small regions of an executing
program in which the program spends the lion’s share of its time.

e The notion of interpreting a program in order to locate its hot regions is
a reasonable one. Dynamo found that at the end of the day the overhead
of the interpretation was negligible.

e Trace generation is an interesting compilation technique that allows us to
generate code that takes into account properties of the program that are
unknown at compile, link edit or load time.

e The success of reactive flushing suggests that a sophisticated trace cache
management scheme may not be required.

The Dynamo results have inspired us to investigate building a Just in Time
compiler for Java bytecode based on trace generation instead of method compi-
lation. See my research proposal [48].

6.2 Recent Dynamo related work

It probably comes as no surprise that the promising results reported by Dynamo
on the PA-8000 inspired other researchers to also investigate dynamic trace opti-
mization. Researchers have failed, so far, to obtain speedups like those obtained
by Dynamo on x86 hardware, although recent efforts are closing in.

Wen-Ke Chen and others [9] built mojo, a somewhat quick and dirty system
very similar to Dynamo that was aimed at large Microsoft Office applications.
It performed poorly for a number of reasons. Perhaps the most important con-
tribution made by mojo was to warn researchers that a lot of careful engineering
work was required to follow Dynamo’s approach.

Bruening [6] describes a new version of the Dynamo infrastructure aimed di-
rectly at commercial applications on the Intel platform. Due to the complexity
of interpreting the x86 instruction set, interpretation was abandoned in favor of

RCS file : depth.lyz,v 25 Revision : 2.2

7 DYNAMIC OBJECT-ORIENTED OPTIMIZATION

basic block dispatch and copying to traces. The overhead of this was shown to
be acceptable. The project appeared to become somewhat mired in complex-
ity introduced by the event-driven programming model required by Microsoft
Windows. Again, their inability to speed up Microsoft Office applications is in-
conclusive, given the short-cuts required to manage the engineering complexity
of the task.

Hazelwood and Smith [42] used Dynamo as a black box? to evaluate more so-
phisticated trace cache management schemes than Dynamo’s all-or-nothing pre-
emptive flushing approach. They found that a relatively simple least-recently-
created scheme reduced cache misses by about half.

Very recently Bruening [7] describes how Dynamo has evolved into Dy-
namoRIO, a framework for dynamic code modification. An interesting internal
representation for traces is described that allows adaptive levels of detail to be
supported. Several interesting dynamic optimizations are built, including re-
dundant load removal, reduction in strength, and a technique for the dispatch
of indirect branches reminiscent of Holze’s Pic. On an Intel Pentium 4 Xeon
DynamoRIO outperforms the original binaries for the floating point SPEC2000
benchmarks. The integer SPEC2000 benchmarks do not fare as well: four out of
twelve integer benchmarks performed more than 25% worse than binaries, pro-
duced by gcc -03, running directly on the hardware. In comparing their results
to the original Dynamo results on the PA-8000, they comment that the Intel
Pentium Xeon (running Linux) they used for their testing had a return address
predictor, whereas the PA-8000 did not. They failed to mention, however, that
the Pentium 4 family includes a relatively small'® hardware trace cache. This
suggests to me that some of the benefit from trace dispatch may have already
have been obtained by the underlying Intel trace cache hardware.

7 Dynamic Object-oriented optimization

A detailed survey of this very active field is beyond the scope of this paper.
However, a good start can be made by describing the seminal work carried out
in the mid 1990’s by Dave Ungar and the Self team and then touching upon
the very recent work done by IBM research and many collaborators towards the
Jikes!'! Research Virtual Machine (RvM) project.

7.1 Self

Self is an ambitious, pure object-oriented, research language and run-time sys-
tem. Self does not define any primitive types (int, boolean, byte, float,
double are examples of primitive types in C++ and Java.) Omitting primi-
tive types forces almost all work done by the Self virtual machine to require

9They filtered their data from Dynamo debug logs.

10The original revisions of the trace cache for Pentium 4 was 12K pops., which are the RISC
like opcodes i86 instructions are decoded into.

1'This project started out under the name Jalapeno and was renamed when it became an
open source project.

RCS file : depth.lyz,v 26 Revision : 2.2

7 DYNAMIC OBJECT-ORIENTED OPTIMIZATION

a message send.'? In addition, the Self system aims to support the most in-
teractive programming environment possible. To this end, it aims to support
editing and recompiling methods while a program is running with no need to
restart. This requires very late binding, much like Java. The combination of
the radically pure object-oriented approach and the ambitious goals regarding
development environment make Self a sort of trial-by-fire for object-oriented
dynamic compilation techniques.

Ungar, Chambers and Holzle have published several papers [8, 24, 23, 25]
that describe how the performance of Self was increased from more than an order
of magnitude slower than compiled C to only twice as slow. A readable summary
of the techniques are given by Ungar et al. in [45]. A thumbnail summary would
be that effective monomorphism can be exploited by a combination of type-
checking guard code (to ensure that some object’s type really is known) and
static inlining (to expose the guarded code to inter-procedural optimization).
To give the flavor of this work we will briefly describe two specific optimizations:
customization and splitting.

7.1.1 Customization

Customization is a relatively old object-oriented optimization introduced by
Craig Chambers in his dissertation[8] in 1988. The general idea is that a poly-
morphic callsite can be turned into a static callsite (or inlined code) when the
type of object on which the method is invoked is known. The approach taken
by a customizing compiler is to replicate code so as to produce callsites where
types are known.

Ungar et al. give a simple, convincing example in [45]. In Self, it is possi-
ble to write algorithms that can be shared by integer and floating point code.
An evocative example is a method to calculate minimum. The min method is
defined by a class called Magnitude in Self. All concrete number classes like
Integer and Float inherit the min method from Magnitude. A customizing
compiler will arrange that multiple customized definitions of min are compiled
for Integer as well as Float. The main effect of the customization is that the
polymorphic callsites of <!* within the original min method can be replaced by
a few arithmetic compare instructions'* in each of the customized versions of
integer and float min.

Customization can be carried out in a similar way by a Java JIT compiler.
In most cases the customized code can be inlined.

7.1.2 Method Splitting

Oftentimes, customized code can be inlined only when protected by a type
guard. The guard code is essentially an if-then-else construct where the “if”

12 A virtual method invocation in Java is called a message send in Self.

131Tn Self even integer comparison requires a message send.

Hje. the integer customized version of min can issue an arithmetic integer compare and
the float customization can issue a float comparison instruction.

RCS file : depth.lyz,v 27 Revision : 2.2

7 DYNAMIC OBJECT-ORIENTED OPTIMIZATION

tests the type of an object, the “then” inlines the customized code and the
“else” performs the original polymorphic method invocation of the method.
Chambers [8] noted that the predicate implemented by the guard establishes
the type of the invoked object for one leg of the if-then-else, but following the
merge point!'®, this knowledge is lost. Hence, he suggested that following code
be “split” into paths for which knowledge of types is retained. This suggests that
instead of allowing control flow to merge after the guard, a splitting compiler
can replicate following code to preserve type knowledge.

Incautious splitting could potentially cause exponential code size expansion.
This implies that the technique is one that should only be applied to relatively
small regions where it is known that polymorphic dispatch is hurting perfor-
mance.

7.2 Jikes Research Virtual Machine

Jalapeno, as the Jikes Research Virtual machine (RvM) was originally called,
differs from most Java implementations in two principal ways. First, Jalapeno
and all of its runtime support is written entirely in Java. This requires Jalapeno
to be bootstrapped. Second, it includes no interpreter — all classes are quickly
compiled by a fast baseline compiler when they are loaded. The dynamic op-
timization strategy of the RvM is to have the baseline compiler generate in-
strumented code with embedded counters which raise events that are used to
automatically create an optimization plan and subsequent recompilation of se-
lected methods. Until about 2000, Jalapeno publications such as [1] tended to
concentrate on how these two aspects of the RvM were designed.

IBM research released the Jikes RvM sources under an open software li-
cense, presumably in the hope that it would become a popular infrastructure
for researchers. This appears to have come to pass. During 2002, academic
researchers published accounts of having ported many object-oriented optimiza-
tion techniques to Jikes. Two examples we have singled out below are context
sensitive inlining and optimistic intra-procedural optimization.

7.2.1 Context-Sensitive Inlining

Early inlining techniques depended on static heuristics to decide when a callee
should be inlined. For instance, a very small callee for which the body is esti-
mated to execute in a time similar to the time required to make the call should
probably always be inlined. By the mid 1990s, the best inlining heuristics were
profile-driven, which means that they depended on profile data from a previ-
ous training run to guide inlining decisions. Nevertheless, the heuristics were
still contezt-insensitive. Profile-driven context-insensitive inlining estimates the
probability of each edge in a program’s call graph from the profile data and
chooses to inline only those routines that appear to be commonly called. The
technique is stymied by polymorphic callsites because it has no way of reacting

15The merge point is the point in the control flow graph where the “if” and “else” paths
merge together. In a simple if-then-else construct the merge point follows the code of the else.

RCS file : depth.lyz,v 28 Revision : 2.2

7 DYNAMIC OBJECT-ORIENTED OPTIMIZATION

to the fact that the common destination of a particular callsite depends on more
context than simply the routine it appears in.

Context-sensitive inlining also takes into account how a program reached a
given callsite and was first described by Grove and Chambers in [20]. Their
technique was an off-line profile-driven optimization. Hazlewood and Grove [21]
describe how they implemented on-line context-sensitive inlining in the Jikes
RVM. Obviously, the dynamic version does not have the luxury of examin-
ing profile data off-line. This complicates matters in two main ways. First,
the computation required to separate profile data into contexts counts towards
execution time. Second, inlining decisions must be made based only on data
available so far (whereas the offline profile-driven version could avail itself of
data from complete runs). Hazlewood and Groves give an Java example which
is reproduced in Figure 11.

Their example illustrates how a polymorphic callsite (the call to HashMap . get
in the runTest method) should be inlined differently depending on context. In
both cases Hashmap.get polymorphically invokes hashCode method on its first
parameter. The calls have been contrived such that the first call (commented
A: in the Figure) eventually dispatches Integer.hashValue, whereas the sec-
ond call always dispatches MyKey.hashValue. The point of the example is that
context-insensitive inlining will conditionally inline both versions into HashMap
whereas context-sensitive inlining will know what to do.

Figure 12 illustrates the difference between a context sensitive and insensi-
tive call-graph. Call graph (a) shows the actual call graph and indicates that the
call occurs in two contexts. Call graph (b) shows how a context-insensitive anal-
ysis would simplify the situation. Call graph (c) shows how context-insensitive
analysis would discriminate between the contexts.

Hazlewood and Grove’s implementation had a relatively small effect on the
performance of most SPECjvm98 benchmarks, but this is partially because the
suite has relatively few truly polymorphic callsites. One of the benchmarks
which is significantly polymorphic, jess, sped up by 2%. On the other hand,
code size shrank by 10% or more for several of the benchmarks with no slow-
down.

7.2.2 Optimistic Intra-procedural Optimization

Pechtchanski and Sarkar [37] describe an ambitious optimistic scheme for opti-
mistic dynamic intra-procedural optimization. They note that oftentimes guard
code must be generated to defend against conditions that cannot happen unless
a new class with very specific properties is loaded in the future. Hence, rather
than pessimistically execute the guard code before it is needed, they suggest
that one should optimistically omit the guard. Optimistic type assumptions are
recorded in a global value graph and examined by an enhanced class loader to
detect when a class that violates previously made type assumptions is loaded.
This requires the JvM to support a framework which can respond to invalidation
events and re-compile optimistically compiled methods whose assumptions have
been found to be incorrect.

RCS file : depth.lyz,v 29 Revision : 2.2

7 DYNAMIC OBJECT-ORIENTED OPTIMIZATION

class HashMapTest {

static int counter;

public static void main(String[] args) { Object k1 = new MyKey(22);
Object k2 = new Object();
HashMap map = new HashMap();
map.put (kl, new Integer(1));
map.put (k2, new Integer(2));
runTest (k1, k2, map);

}

public static void runTest(Object k1, Object k2, HashMap map) {
counter += ((Integer)map.get(k1)).intValue(); //A: k1 always Integer
counter += ((Integer)map.get(k2)).intValue(); //B: k2 always MyKey

}
}
class MyKey {
int key;
MyKey(int k) { key = k; }
public int hashCode() { return key; }
public boolean equals(Object other) {
return other instanceof MyKey && ((MyKey)other).key == key;
}
}

class HashMap {

// simplified version of HashMap.get
public Object get(Object key) {
int index = (key.hashCode() & Ox7FFFFFFF) J, elementData.length;
HashMapEntry entry = elementDatal[index];
while (entry != null) {
if (entry.key == key || key.equals(entry.key)) return entry.value;
entry = entry.next;

}

return null;

}

Figure 11: Context Sensitive Inlining Example reproduced from [21] Figure 1

RCS file : depth.lyz,v 30 Revision : 2.2

8 JIT AS DYNAMIC OPTIMIZER

(a) (b} ()

Figure 12: Call graphs derived from Java code of Figure 11. Reproduced from
[21] Figure 2.

The performance of their Dynamic Optimistic Intra-procedural Type (DOIT)
analysis is quite promising. A version of the Jikes RvM which includes DOIT saw
an elapsed time speedup for all benchmarks except compress. Apart from db
and javac, for which which the number of guarded interface calls decreased
dramatically, the speedups were in the range of 1%. DOIT reduced the average
proportion of polymorphic callsites from 39.5% to 24.4%. Similarly, the average
number of polymorphic interface callsites was reduced from 96.4% to 36.2%.
This suggests that the optimistic assumptions allowed by DOIT have a significant
impact on code quality. It will be interesting to see whether greater speedups
are realized as engineering improvements reduce the overhead of the assumption
checking and de-optimization frameworks.

8 JIT as Dynamic Optimizer

The first Java JIT compilers translated methods into native instructions and im-
proved polymorphic method dispatch by deploying techniques invented decades
previously for Smalltalk. New innovations in garbage collection and thread syn-
chronization, which are not discussed in this review, were also made. Despite all
this effort, Java implementations were still slow. More aggressive optimizations,
such as those described in Section 7, had to be developed to accommodate the
performance challenges posed by Java’s object-oriented features, particularly the
polymorphic dispatch of small methods. The writers of Sun’s Hotspot compiler
white paper lament:

In the Java language, most method invocations are virtual (po-
tentially polymorphic), and are more frequently used than in C++.
This means not only that method invocation performance is more
dominant, but also that static compiler optimizations (especially
global optimizations such as inlining) are much harder to perform
for method invocations. Many traditional optimizations are most ef-
fective between calls, and the decreased distance between calls in the
Java language can significantly reduce the effectiveness of such opti-

RCS file : depth.lyz,v 31 Revision : 2.2

9 SUMMARY

mizations, since they have smaller sections of code to work with.[33,
pp 17]

The result is that JIT compilers began to generate code that assumed the types
of many objects. The gambles often were right, but new techniques had to be
invented to recover when the bets were wrong. Again, from the Hotspot white

paper:

So the Java HotSpot VM must be able to dynamically de-optimize
(and then re-optimize, if necessary) previously optimized hot spots,
even while executing code for the hot spot. Without this capability,
general inlining cannot be safely performed..[33, pp 19]

A further complicating factor is that current JIT compilers compile entire meth-
ods at a time. Thus, in addition to callsites whose destination are known, there
are callsites whose destination is not known. The result is that heuristics must
be invented that decide to re-optimize methods as previously-unknown or in-
frequently executed regions of already compiled methods become hot or change
their behavior.

9 Summary

From the earliest Smalltalk work by Deutsch and Shiffman in 1984[12] to very
recent products like Hotspot [35] we have seen dynamic compilation techniques
come to the fore. Early techniques exploited relatively predictable properties
of object oriented programs, like the high probability of a callsite having low
effective polymorphism. In-line caching techniques generated code that was fast
if the callsite behaved as expected and slow otherwise.

Today, the most extreme approaches involve optimistic dynamic techniques
such as those described by Pechtchanski and Sarkar in [37]. These techniques
generate code that is correct only if subtle type assumptions continue to hold.
A reasonable fear is that correct, well-engineered applications will load classes
in an unfortunate sequence that will trick such an optimizer into making opti-
mistic assumptions prematurely. Since the optimistic code may be embedded
in aggressively inlined methods, significant re-compilation may be required to
undo the earlier optimism. Aggressive inlining, needed to reduce the cost of
small methods, amplifies the cost of optimistic assumptions that turn out to be
wrong.

My feeling is that the current combination of method-based compilation, ag-
gressive inlining and optimistic dynamic optimization gambles too aggressively.
Optimistic dynamic optimization would be more palatable if it were possible
to repair incorrect assumptions without re-compiling entire methods and their
inlined callees.

I observe that current JIT compilers use the method as the unit of granu-
larity for both translation (from bytecode to native code) and optimization. Is
this necessary? The results of the Dynamo project suggest that traces could

RCS file : depth.lyz,v 32 Revision : 2.2

REFERENCES

be used to identify regions of code to translate. A trace-based infrastructure
must anyway handle trace-exits and the resumption of trace-generation after
the failure of an assumption. Presumably we can extend this mechanism to
guard optimistic assumptions also.

The original departure point for my own research was the idea that traces,
apart from their understood and potential properties, contain nothing but hot
code. Thus, traces present an ideal environment for optimizing polymorphic
callsites. Furthermore, a trace-based infrastructure must include a mechanism
to continue from taken trace exits. My intuition is that this trace exit mech-
anism can be reasonably extended to include assertions of more speculative
assumptions. This realization came only after reading papers such as [37] and
realizing that a trace-based approach would allow the optimistic dynamic op-
timizer to add code following trace exits when assumptions prove false rather
than re-compiling the containing methods.

Although the notion of a speculative, object-oriented trace-based JIT is in-
triguing, there is still a missing piece. Aggressive inlining within a method-based
JIT provides a way of removing method overhead and optimization barriers from
multiply nested loops. How can a trace-based approach achieve this? How can
we optimize across the multiple traces that make up a loop nest? I suggest
that as traces are linked into the trace cache the emerging control flow graph
can be monitored. When multiply nested regions are detected the traces can be
combined into a combined compilation unit (ccU) and optimized.

This topic will be discussed further in my research proposal[48].

References

[1] Bowen Alpern, Dick Attanasio, John Barton, Michael Burke, Perry Cheng,
Jong-Deok Choi, Anthony Cocchi, Stephen Fink, David Grove, Michael
Hind, Susan Flynn Hummel, Derek Lieber, Vassily Litvinov, Ton Ngo,
Mark Mergen, Vivek Sarkar, Mauricio Serrano, Janice Shepherd, Stephen
Smith, VC Sreedhar, Harini Srinivasan, and John Whaley. The Jalapeno
virtual machine. In IBM Systems Journals, Java Performance Issue, 2000.

[2] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and
Brian N. Bershad. Fast, effective dynamic compilation. In SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 149—
159, 1996.

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Transparent dy-
namic optimization: The design and implementation of Dynamo. Technical
report, Hewlet Packard, 1999. HPL-1999-78.

[4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a
transparent dynamic optimization system. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 1-12, 2000.

RCS file : depth.lyz,v 33 Revision : 2.2

REFERENCES

[5] Derek Bruening and Evelyn Duesterwald. Exploring optimal compilation
unit shapes for an embedded just-in-time compiler. In 8rd ACM Workshop
on Feedback-Directed and Dynamic Optimization FDDO-3, 2000.

[6] Derek Bruening, Evelyn Duesterwald, and Saman Amarasinghe. Design
and implementation of a dynamic optimization framework for windows.
In 4th ACM Workshop on Feedback-Directed and Dynamic Optimization
(FDDO-4), December 2000.

[7] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infras-
tructure for adaptive dynamic optimization. In In Proceedings of the First
Annual IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO), March 2003.

[8] Craig Chambers. The Design and Implementation of the Self Compiler, an
Optimizing Compiler for Object-Oriented Programming Languages. PhD
thesis, Stanford University, 1988.

[9] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies. Mojo: A
dynamic optimization system. In Proceedings of the Third ACM Workshop
on Feedback-Directed and Dynamic Optimization (FDDO-3), 2000.

[10] Standard Performance Evaluation Corporation. SPEC jvm98 benchmarks.
http://www.spec.org/osg/jvm98.

[11] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. Compiling Java just in time. IEEE
Micro, 17(3):36-43, 1997.

[12] Peter L. Deutsch and A. M. Schiffman. Efficient implementation of the
Smalltalk-80 system. In Conference Record of the Eleventh Annual ACM
Symposium on Principles of Programming Languages, ACM SIGPLAN No-
tices, pages 297-302, Salt Lake City, Utah, January 1984. ACM Press.

[13] Karel Driesen. Efficient Polymorphic Calls. Klumer Academic Publishers,
2001.

[14] Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path
prediction: less is more. ACM SIGPLAN Notices, 35(11):202-211, 2000.

[15] Paolo Faraboschi, Joseph A. Fisher, and Cliff Young. Instruction scheduling
for instruction level parallel processors. In Proceedings of the IEEE, 2001.

[16] Stephen Gilmore. Programming in standard ML ’97: A tutorial introduc-
tion. http://www.dcs.ed.ac.uk/home/stg, 1997.

[17] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-
Wesley, 1989.

RCS file : depth.lyz,v 34 Revision : 2.2

REFERENCES

[18] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Su-
san J. Eggers. DyC: an expressive annotation-directed dynamic compiler
for C. Theoretical Computer Science, 248(1-2):147-199, 2000.

[19] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Su-
san.J. Eggers. An evaluation of staged run-time optimizations in Dyc. In
Conference on Programming Language Design and Implementation, May
1999.

[20] David Grove and Craig Chambers. A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and Systems,
November 2001.

[21] Kim Hazlewood and David Grove. Adaptive online context-sensitive inlin-
ing. In International Symposium on Code Generation and Optimization,
March 2002. San Francisco.

[22] Glenn Hinton, Dave Sagar, Mike Upton, Darrell Boggs, Doug Carmean,
Alan Kyker, and Patrice Roussel. The microarchitecture of the pentium 4
processor. Intel Technology Journal, Q1, 2001.

[23] Urs Holzle. Adaptive Optimization For Self:Reconciling High Performance
With Exploratory Programming. PhD thesis, Stanford University, 1994.

[24] Urs Holzle, C. Chambers, and D. Ungar. Debugging optimized code with
dynamic deoptimization, 1992.

[25] Urs Holzle and David Ungar. A third-generation Self implementation: Rec-
onciling responsiveness with performance. In Proceedings of the OOPSLA
’94 conference on Object Oriented Programming Systems Languages and
Applications, 1994.

[26] Ronald L. Johnston. The dynamic incremental compiler of apl 3000. In
Proceedings of the international conference on APL: part 1, pages 82-87,
1979.

[27] William N. Joy, Susan L. Graham, Charles B. Haleya, Marshall Kirk McKu-
sick, and Peter B. Kessler. Berkeley pascal user’s manual version 3.1.

[28] Thompson K. Regular expression search algorithm. CACM, June 1968.

[29] Peter Lee and Mark Leone. Optimizing ML with run-time code gener-
ation. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 137-148, 1996.

[30] Mark Leone and Peter Lee. Lightweight Run-Time Code Generation. In
Proceedings of the 1994 ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, pages 97-106, June 1994.

[31] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1996.

RCS file : depth.lyz,v 35 Revision : 2.2

REFERENCES

[32]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D.
Lichtenstein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg.
The Multiflow Trace Scheduling compiler. The Journal of Supercomputing,
7(1-2):51-142, 1993.

Sun Microsystems. The Java hotspot virtual machine, v1.4.1, technical
white paper. Sun White paper for 1.4.1, no performance numbers., 2002.

Steven S Muchnick. Advanced Compiler Design and Construction. Morgan
Kaufman, 1997.

M. Paleczny, C. Click, and C. Vick. The Java hotspot server compiler. In
2001 USENIX Java Virtual Machine Symposium, 2001.

Sanjay Patel and Steven S. Lumetta. rePLay:a hardware framework for
dynamic program optimization. Technical report, University of Illinois,
1999.

Igor Pechtchanski and Vivek Sarkar. Dynamic optimistic interprocedural
analysis: A framework and an application. In 2001 ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications, Oc-
tober 2001.

Steven Pemberton and Martin C. Daniels. Pascal Implementation, The P/
Compiler. Ellis Horwood, 1982.

Rob Pike, Bart Locanthi, and John Reiser. Hardware/software trade-
offs for bitmap graphics on the blit. Software - Practice and Experience,
15(2):131-151, 1985.

Alex Ramirez, Josep-Lluis Larriba-Pey, Carlos Navarro, Josep Torrellas,
and Mateo Valero. Software trace cache. In International Conference on
Supercomputing, pages 119-126, 1999.

Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: A low
latency approach to high bandwidth instruction fetching. In International
Symposium on Microarchitecture, pages 24-35, 1996.

Kim Hazelwood Michael D. Smith. Code cache management schemes for dy-
namic optimizers. In Sizth Annual Workshop on Interaction between Com-
pilers and Computer Architectures held in conjunction with the Eighth In-
ternational Symposium on High-Performance Computer Architecture, Feb
2002.

Bjarne Stroustrup. The C++ Programming Language, Second Edition.
Addison Wesley, 1991.

Toshio Suganuma, Takeshi Ogasawara, Mikio Takeuchi, Toshiaki Ya-
sue, Motohiro Kawahito, Kazuaki Ishizaki, Hideaki Komatsu, and Toshio
Nakatani. Overview of the IBM Java just-in-time compiler. IBM Systems
Journals, Java Performance Issue, 39(1), February 2000.

RCS file : depth.lyz,v 36 Revision : 2.2

REFERENCES

[45] David Ungar, Randall B. Smith, Craig Chambers, and Urs Holzle. Object,
message, and performance: how they coexist in Self. IEEE-COMPUTER,
25(10):53—64, October 1992.

[46] Hank S Warren, Jr. Instruction scheduling for the IBM RISC system/6000
processor. IBM Systems Journals, 34(1), Jan 1990.

[47] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine
simulation. In Measurement and Modeling of Computer Systems, pages 68—
79, 1996.

[48] Mathew Zaleski. A better way of running object-oriented bytecode? a
research proposal. http://www.cs.toronto.edu/~matz/prop.pdf, April 2003.

[49] Mathew Zaleski. Jootch, a simulation of bytecode trace selection and
creation in a JVM. http://www.cs.toronto.edu/ “matz/traceCreation.pdf,
April 2003.

RCS file : depth.lyz,v 37 Revision : 2.2

