Feasibility of Combining and Optimizing
Bytecode Traces.

Mathew Zaleski*
22nd April 2003

Abstract

The report summarizes the second experiment of my research project.
It builds on the results of the first experiment in which a simulation of a
trace-oriented JvM simulator called Jootch! was constructed and was used
to run selected SPECjvm98 Java benchmarks. In this experiment bytecode
traces selected by Jootch are combined together, hand-translated into C
and compiled by gcc. The hand-coded C code does not model trace exits
faithfully. Nevertheless, as a rough feasibility study, the results show
that our proposal to combine traces into a dynamically identified unit of
compilation may perform well.

1 Combining and Optimizing Traces

I would like to establish the feasibility of my suggestion that if traces are com-
bined into a combined compilation unit (CCU) and optimized system perfor-
mance will benefit. This report makes the first step, by demonstrating that a
general-purpose optimizer can significantly improve the performance of traces
selected from one small program.

We have found that a reasonable optimizer, gcc, has managed to exploit
the multiple loop nesting structure of the program. Loop invariant code that
started out in a single trace that formed the innermost loop of the program
was hoisted outside the containing loop. The main result is that the optimizer
speeds up the execution of the traces by a factor of two. This indicates that
optimizing the ccu is likely to be worthwhile. The optimized, hand-coded C
program derived from the traces runs about twice faster than a state-of-the-art
JIT runs the original Java program.

*Research Proposal for DCS PhD $Revision: 2.1 $

This draft not for public consumption. If you are not a collaborator or advisory com-
mittee member then please ask permission to read further.

Copyright Mathew Zaleski, 2003.
1Jootch stands for Java Object-Oriented Trace Cache heuristic.

RCS file : combiningTraces.lyx,v 1 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

The rest of this report will be structured as follows. First the experiment will
be described, then the sample program will be discussed. The trace generation
carried out by Jootch will be described in great detail. Then the hand-translated
C code will be presented and finally the assembler produced by gcc -O2 will be
discussed.

1.1 Background and related work

The scientific background for this report is probably best summarized by the
paper written in support of my PhD depth oral examination [3]. A much con-
densed background section appears in the first few pages of my research proposal
[1]. This report also assumes some familiarity with the Jootch JvM simulator,
which I have described in [2].

1.2 The Experiment

First, a small Java program is run by Jootch. The sample program, created for
this purpose, has a multiply nested structure that is obscured by polymorphism.
The bytecode traces identified by Jootch will be combined, by hand, into a single
flow graph. This will be translated, by hand, into a C program. The hand-
translation does not model the Java local variable array and operand stack or
trace exits in detail — our aim at this early stage is to determine if the flowgraph
of the linked traces can be dealt with by a general-purpose optimizer. The C
program will be compiled and optimized by gcc. The resulting code will be run
as well as examined.

1.3 Doubly Nested Java Program

Our small example program searches an array of objects for a particular query
object. The source for our program appears in Figures 1 and 2. There are
two interesting methods. Trace2.loop searches an array of Objects (called
otab) for a query string (q). The equality check is made by sending the equals?
message to each object in otab passing q as a parameter. Since all the objects in
otab are instances of String this always results in a call to the String.equals
method.3We have concocted, in a realistic way, an effectively monomorphic
callsite. We have borrowed String.equals straight from Sun’s JDK sources.
It starts out with a few optimizations that check if the parameter is non-null,
an instance of String, and if the comperand is the same length. If all these
conditions are met equals loops to check whether each char of the comperand
is the same as the receiver.

Our simple program can be thought of as a doubly nested loop that is ob-
scured by virtual method invocation. In this view the program has an outer loop

2The equals method is defined by the java Object class.

3Figure lists the Java Foundation Class source for String.equals. (This is an extract from
Sun’s licensed JDK sources hence clean room Java implementors may not be permitted to
view this code).

RCS file : combiningTraces.lyx,v 2 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

public class Trace2 {

static String stab[] = {
lexll ,
"yyll ,
"yy", //trace generate Tracel
"123x", //trace generate Trace2
"123y",
"123z", //trace generate Trace3
"a234", //trace generate Trace4
"b234", //runs from cache
"1234" //match

};

public int loop(Object[] otab, Object q){
for(int i=0; i< otab.length; i++){

if (otab[i].equals(q)){
return i;
}

}
return -1;

}

public static void main(String[] args){
new Trace2() .loop(stab, "1234");

}

Figure 1: Trace2.java

RCS file : combiningTraces.lyx,v 3 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

VAL

*xx This code from Sun JDK sources

Compares this string to the specified object.

The result is <code>true</code> if and only if the argument is not
<code>null</code> and is a <code>String</code> object that represents
the same sequence of characters as this object.

@param anObject the object to compare this <code>String</code>
against.
@return <code>true</code> if the <code>String </code>are equal;
<code>false</code> otherwise.
@see java.lang.String#compareTo(java.lang.String)

* X X X X X X ¥ X X X X

@see java.lang.String#equalsIgnoreCase(java.lang.String)
*/
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = count;
if (n == anotherString.count) {
char vi[] = value;
char v2[] = anotherString.value;
int i = offset;
int j = anotherString.offset;
while (n-- != 0) {
if (vil[i++] '= v2[j++]) {
return false;
}
}

return true;

}

return false;

Figure 2: Source for String.equals from Sun’s JDK. (Clean room developers
and designers may not be permitted to study this code.)

RCS file : combiningTraces.lyx,v 4 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

in Trace2.loop and an inner loop in String.equals. Since there is a dynamic
method invocation in between it is not trivial for a static compiler to exploit
this structure. Once it is known that the invokevirtual in Trace2.loop is
effectively monomorphic it is obvious to a human that the code is a doubly
nested loop. If we wait until after traces have been generated perhaps this will
obvious to gcc too.

1.4 Details of Trace Generation

The way in which traces will be selected depends on the value of HOT and
the particular strings with which we initialize the stab array. For the purpose
of discussion suppose we set the HOT threshold very low, say two. Let q be
"1234", as in Figure 2. We will set otab to contain a few strings that are
different lengths than q and then a few more that are the same length as q
and differ only in the last few characters. The point of this is to contrive otab
in such a way so that the outer loop will become hot and be trace generated
first, then the inner loop, then the two will be linked together by a two more
traces. Figure 3 illustrates how basic blocks from the methods Trace2.loop
and String.equals are arranged into three traces. Basic blocks starting with
“1” (red in the figure) originate from the loop method and basic blocks starting
with “s” (in blue) originate from String.equals.* (Figures 4 and 5 list the
bytecode and control flow graphs for each method.)

Next we will describe in detail how each trace is generated and then we can
discuss the resulting traces and then how the trace might be combined. Table 1
lists the role each element of otab plays in our contrived example. Basic blocks
as illustrated by Figure 3 are often referred to.

1.4.1 Blow by blow trace generation

Is this level of detail interesting to anyone? If no one notices this sentence the
answer must be no.

Tracel The first two strings ("xx” and "yy") make the outer loop hot and
the third ("zz") is trace generated. Since the strings differ in length from
the query the inner loop is never entered. The characteristics of "zz" thus
determine the code generated in Tracel. The call to equals is guarded and
then the destination method, String.equals is inlined. Since "zz" differs in
length from q the method returns through block s8. (This return does not need
to be guarded as it matches a call in the same trace.) Tracel ends when trace
generation notices that a cycle would be formed by the reverse branch at the
bottom of block 14.

Trace2 Now that Tracel has been trace generated it is dispatched.

4Yes, this is inconsistent. These bb’s should have been named starting with “s”.

RCS file : combiningTraces.lyx,v 5 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

apy.
Ea /
15 13 ~__

Figure 3: Illustration of traces in cache for Trace2. Basic block labels correspond
to the labels in Figures 4 and 5.

RCS file : combiningTraces.lyx,v 6 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

10:
0 const_0
1 istore_3

1:

5 aload_1
6iload_3
7 aaload
8 aload_2

12:
9 nvokevirtualequas
12if eq 17

14:
17 iinc3 1
13: 20 iload _3
15iload_3 21 aload_1
16 ireturn 22 arraylength
23 if _icmphb

15:
26 iconst_m1
27 ireturn

Figure 4: Original Trace2.loop control flow graph annotated with bytecode
contained in each basic block.

RCS file : combiningTraces.lyx,v 7 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

s0: s1:
Oal oad_0 sOb: 11al oad_1
1al oad_1 7al oad_1 12instanceof String>
2if _acmpng 8 if nul93 15if eq 93

if (this==[anObj eft{
return true;

s2:

18al oad_1
19ch eck casBtring
22astore_2
23al oad_0
24getf iel @unt
+ int n = count; 2 7istore_3
s0a: if (n == anoth erString. count Sgg |Og:d—?2
5 onst_1 30 getf iel aunt
6 ireturn 3 if _icmp ned3
s8:
93 iconst_0
94 ireturn s3:
36 al oad_0
37 getf ielvdal ue
40 astor 4
42 al oad_2
43 getf iel\dal ue
46 astore 5
48 al oad_0
49 getf ielaf f set
52istore 6
54al oad_2
55getf ielaf f set
58istore 7
60 goto 84
hil dn-- 1 =0) { s
whil gn--! 63al oad 4 .
itV ikl 2])£ 65il 0a® chawv 1l =val ug;
returnf al se; 67iinc6 1 charm 2] = anotherString. val ue
70cal oad
71al oad 5
73il oad
75iinc7 1
78cal oad
79if _icmped4
s5:
82 iconst_0 s6:
83 ireturn 84 il cad_3
85iinc3- 1
88if ne63
RCS file : combiningTraces.lyx,v 8 Revision : 2.1
s7:
91 const_1
92 ireturn

Figure 5: String.equals control flow graph and bytecode.

1 COMBINING AND OPTIMIZING TRACES

otab element

string value | comment

0 XX Warms up outer loop 14 latch

1 vy Fully warms up 14 latch

2 ZZ Trace generates Tracel

3 123x Dispatches Tracel. Warms up trace exit from
Tracel (from s2) and trace generates Trace2 (inner
loop)

4 123y Fully warms trace exit from Tracel (from s2) and
warms trace exit from Trace2 (s6).

5 123z Trace generates Trace3 connecting Tracel and
Trace2. Fully warms trace exit from Trace2 (at
s6).

6 a234 Trace generates Trace4 connecting Trace2 and
Tracel.

7 b234 Runs from trace cache.

Table 1: Details of otab data and trace generation of Trace2.

The string s[3] ("123x") is the same length as q and so warms the trace
exit from Tracel at the conditional trace exit corresponding to branch that at
the end of block s2. Interpretation thus resumes at block s3 of String.equals.

As this String is the same length as q the inner loop (blocks s4 and s6)
of String.equals iterates twice (for "12") becomes hot, and then is trace
generated on its third iteration. Trace2 contains just this loop.® Trace2 is
dispatched with the remaining characters of the string (just "x" in this case).
Since x differs from the last char of the query the conditional trace exit at the
bottom of s4 is taken.

Trace3 The next string in otab, s[4] "123y" causes the trace exit from Tracel
to become hot. Hence Trace3 is trace generated for "123z". This is a short trace
starting from the now hot trace exit from Tracel to the target of the rearward
branch that begins Trace2. All three traces link together.

Interpretation resumes but immediately reaches the head of Trace2 and so it
is dispatched. Trace2 executes as far as the conditional trace exit at the bottom
of s4 which becomes hot as a result. Interpretation resumes again in s5, returns
and reaches the head of Tracel.

Traced4 Tracel links to Trace3 which links to Trace2 so s[6] "a234" executes
in the trace cache to the hot conditional trace exit from Trace2. Trace generation
is entered for the last time in this example. Trace4 extends from Trace2 to the
latch of the outer loop in Tracel (originally block 14). Trace4 includes the
return guard matching the call guard in Tracel.

5Note that this is an opportunity for return guard problems in a bigger program.

RCS file : combiningTraces.lyx,v 9 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

All remaining® String entries in otab execute from the trace cache until a
match occurs and the program exits.

1.5 Issues with the Generated Traces

On the surface the trace selection heuristic has performed its job admirably.
The call to equals has been guarded and inlined. However, there are a couple
of characteristics of the traces illustrated in Figure 3 that may prove challenging.

1. Return Guard Problem. In a larger program we should expect String.
equals to be called from many places. Hence one would expect that
Trace2 might be linked to by many traces. Then the return guard in
Trace3 would often fail.

2. Code replication. Blocks 12 and 14 appear in both Tracel and Trace3. Ob-
viously a more complicated if-then-else (one with more conditional trace
exits) statement could cause more replication yet.

3. Complex flowgraph. The double rearward branch in Figure 3 does not
look very optimizer-friendly. Particularly worrisome is the possibility an
optimizer would fail to hoist invariant code from the innermost (String.
equals) loop.

So far, we have no solution for the return guard problem. Hopefully we will
have an opportunity to investigate it later in this project. Code replication is
not clearly a problem — it might also be a benefit when it helps achieve better
branch prediction and/or better utilize instruction cache prefetch bandwidth.

1.6 Hand coded traces in C

A trace-based JIT has the opportunity to create a combined control flow graph
as traces link together in the trace cache. We anticipate that a heuristic can
be found that will detect when interesting new loop structures emerge. Our
proposed scheme would then translate the traces into some intermediate repre-
sentation producing a combined compilation unit. To form an initial impression
of the code quality of the code that could be produced by optimizing this new
compilation unit we will hand-code, in C, a function that does more-or-less the
same thing. Then we will compile and optimize the C using gcc and examine
the resulting code. This program appears in Figure 6

We are curious” to learn if a realistic optimizer cleans up the loop invariant
code in the innermost loop. If it does there is some reason to expect that our
proposed technique may work. In any case the performance of our hand coded
C can serve as a target to strive towards.

Figure 7 shows the resulting assembler. The flowgraph created by Jootch
is clearly evident. Figure 8 focuses on the innermost loop before and after
optimization.

8Note that nulls or instance of object other than String will cause trace exits from Tracel.
Tanxious even

RCS file : combiningTraces.lyz,v 10 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

typedef struct string {
char *s_ptr;
int s_len;

} string;

string otab[] = {

{"XX" , 2}’
{nyyu , 2}’
{"1234", 4}

};
int otab_len

=3;
int *stack = 0;

main(){
stack = malloc(42);
string q;
q.s_ptr = "1234";
q.s_len = 4;

doloop(otab,3,q9);
return *(stack-1);

doloop(string otab[], int lotab, string q){
int i_otab;

string s;
int i_str;
char *si;
char *ql;
i_otab = 0;

tracel: //x¥kxkkxkkx tracel kxkkkskkikskkkk <——+
s.s_ptr = otab[i_otab].s_ptr; /71
s.s_len = otab[i_otab].s_len; //1
if (s.s_len == q.s_len){ /71

xstack++ = 0; //push false
goto trace3; //linked trace exit |

} //1

if (*(--stack) == 1) return -1; //1

i_otab++; /71

if (i_otab<=otab_len) goto tracel; // --—-+
goto traceb; //linked trace exit

trace2: /Hxskkkkkkk trace *xkkkdkikxkkxk/ <——+
if (s.s_ptrli_str] !'= q.s_ptrli_str]){ //|
goto trace4; //linked trace exit |
} //1
i_str++; //1
if (i_str<=q.s_len) goto trace2; // ---——+
goto traceb; //linked trace exit
trace3:/xxkkkkkkk traceld kxkkkkkkxkxkkk/
sl = s.s_ptr;
ql = q.s_ptr;
i_str=0;
goto trace2; //linked trace exit
traced: /[¥kkkkkkk traced kkkkkxkkkkkkx/
xstack++ = 0; //push false
if (*x(--stack) == 1) goto trace5;
i_otab++;
if (i_otab<=otab_len) goto tracel;
traceb: /dxskkskkkokk traceb k¥kskkokkokskkkk /
xstack++ = 1; //push true
//return guard here
if (*(--stack) != 1){
return -1; //trace exit
}
xstack++ = i_otab; //push true
return; //exit from trace cache

Y/

Figure 6: A Hand coded highly simplified combined trace cache for Trace2

RCS file : combiningTraces.lyx,v

11 Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

Trace2_s_trunc.txt

_doloop:
mflr r0
stw r5,32(rl)
bcl 20,31,L2$pb
L2S$pb:
mr r4,r3
mflr r2
stw r6,36(rl)
mtlr r0
1i r7,0
addis r5,r2,hal6(_stack-L2$pb)
b L3
L16:
lwz r6,36(rl)
L3:
slwi r0,r7,3
add r9,r0,r4
lwzx rl0,r4,r0
lwz rll,4(r9)
stw rl0,-32(rl)
cmpw cr0,rll,ré6
stw rll,-28(rl)

Tracel

bne+ cr0,L4

lwz r9,0(rll)
1i r8,0

stw r0,0(r9)
addi r9,r9,4
stw r9,0(rll)
lwz rl0,-32(rl)
lwz rll,32(rl)
b L9

la rll,lol6(_stack-L2$pb) (r5)
1i r0,0

4: <
la r10,lol6(_stack-L2$pb) (r5)
1i r3,-1
lwz rll,0(rl0)
addi r0,rll,-4
stw r0,0(rl0)
lwz r9,-4(rll)
cmpwi cr0,r9,1
beqlr- cr0
addis r9,r2,hal6(_otab_len-L2$pb)
addi r7,r7,1
lwz r9,1016(_otab_len-L2$pb)(r9)
cmpw cr0,r7,r9
bgt- cr0,L8
b L3

L9: /

1lbzx r0,r10,r8

1lbzx r9,rl1l,r8

cmpw cr0,r9,r0

bne- cr0,L11

lwz r0,36(rl)

addi r8,rs8,1

cmpw cr0,r8,r0 -
bgt- cro0,L8

b 19 Trace 2

Wed Dec 04 14:10:55 2002 1

Ll1:

/—)la rl0,lol6(_stack-L2$pb) (r5)
1li r0,0

lwz rll1,0(rl0)
stw r0,0(rll)
addi rll,rll,4
addi r0,rll,-4
stw r0,0(rl0)
lwz r9,-4(rll)
cmpwi cr0,r9,1
beg- cr0,L8
addis r9,r2,hal6(_otab_len-L2$pb
addi r7,r7,1

lwz r9,10l6(_otab_len-L2$pb) (r¥)
cmpw cr0,r7,r9
ble+ cr0,Ll6

}8;1;:1 r10,1lo16(_stack-L2$pb) (r5)
1i r0,1

lwz r8,0(rl0)

1i r3,-1

stw r0,0(r8)

addi r8,r8,4

addi r0,r8,-4

stw r0,0(rl0)

lwz r9,-4(xr8)

cmpwi cr0,r9,1

bnelr+ cr0

stw r7,-4(r8)

stw r8,0(rl0)

blr

Trace 5

Figure 7: Output of gcc -O2 -S on hand coded C

RCS file : combiningTraces.lyx,v

12

Revision : 2.1

1 COMBINING AND OPTIMIZING TRACES

1
L9: L9:
lwz r9,48(r30) lbzx r0,r10,r8
lwz r0,64(r30) lbzx r9,rll1l,r8 gcc-OZ-S
add rl1l,r9,r0 cmpw cr0,r9,r0
lwz r9,128(r30) bne- cr0,L1l1
lwz r0,64(r30) lwz r0,36(rl)
add r9,r9,r0 addi r8,r8,1
1lbz r0,0(rll) cmpw cr0,r8,r0
extsb rll,r0 bgt- cr0,L8
1lbz r0,0(r9) b L9
extsb r0,r0
cmpw cr0,rll,r0
beq cr0,L10 trace2:
b L11 if (s.s_ptr[i_str] != g.s_ptr[i_str]){
L10: goto trace4; //linked trace exit
lwz r9,64(r30) }
addi r0,r9,1 i str++;
stw r0,64(r30) if (i_str<=qg.s_len) goto trace2;
lwz r9,64(r30)
lwz r0,132(r30)
cmpw cr0,r9,r0
bgt cr0,L8 i
b L9 handcoded source for innermost loop
gcc-S

Figure 8: Comparison of inner loops

1.6.1 Simplifications in Hand Coded Version of Traces

Our hand-coded C does not attempt to model the runtime environment of the
trace cache with much fidelity. This is not conservative since ignoring traceexits
in the way we have done may free the optimizer to remove operations that a
better model would not. The C code in Figure 6 does not model local variable
array, operand stack or trace exits This includes call and return guards. Heap
data is modeled as static or malloc’d data.

1.7 Performance Results

The demonstration shows that our idea of combining traces has some potential
to perform well. The hand coded C runs slightly more than twice as fast as
Sun’s Hotspot JIT can execute the original Java program.

1.7.1 Performance of hand coded C

When we call doloop 10 million times on a 500MHz PowerPc® the -02 opti-
mized version of our hand coded C runs for 2.0 (elapsed) seconds whereas the
unoptimized code runs for 5.2 seconds time. Compiling the code on the same

8 Apple PowerBook G4 running Mac OSX 10.2

RCS file : combiningTraces.lyx,v 13 Revision : 2.1

REFERENCES

hardware with gcc version 3.1 at O2 required about one third of a second elapsed
compilation time.

1.7.2 Performance of Production jit and Trace2

To execute Trace.loop ten million times (with the equivalent otab array to
the one in Trace2.c) Sun’s Hotspot JVM required about 4.3 elapsed seconds
on the same hardware. (This is about ten times faster than with the JIT turned
off.)

We would like to evaluate how good code the Sun Hotspot JIT generated into
its code cache. Unfortunately there is no documented user interface to cause
Hotspot to dump its generated code. The only clue we obtained (via java
-XX:+PrintCompilation) was a log of compiled and inlined methods. From
this we surmise that Java HotSpot Client VM (build 1.3.1.03-69, mixed mode)
did not inline String.equals into Trace2.loop.

1.8 Discussion of Results

The overall impression of this experiment is that our scheme for combining traces
should be pursued further. The results suggest that our technique may achieve
make it possible for classical optimization techniques to make inter-procedural
improvements despite the presence of a polymorphic callsite obscuring the mul-
tiply nested structure of our sample program.

Figure 8 shows that the inner loop, originally trace-generated by Jootch as
bytecode Trace2, has been cleared of loop invariant code. The inner loop is less
than half as many instructions long in the O2 optimized version.

It should be reiterated that the simplifications made concocting our hand
coded traces ignore the support of trace exits. Though we hope we will be able
to implement trace exits efficiently this has not been worked out and might be
extremely difficult. This means that our hand-coded translation of traces may
be better than a realistic JIT can achieve. Nevertheless, is worth noting that
Trace2, the innermost loop of the combination compilation unit, contains only
one trace exit. This suggests that the a better model of trace exits may not
make that much difference in this particular case.

References

[1] Mathew Zaleski. A better way of running object-oriented bytecode? a re-
search proposal. http://www.cs.toronto.edu/ matz/prop.pdf, April 2003.

[2] Mathew Zaleski. Jootch, a simulation of bytecode trace selection and cre-
ation in a JVM. http://www.cs.toronto.edu/ “matz/traceCreation.pdf, April
2003.

[3] Mathew Zaleski. Trace-based dynamic compilation for object-oriented
programming systems. http://www.cs.toronto.edu/ “matz/background.pdf,
April 2003.

RCS file : combiningTraces.lyz,v 14 Revision : 2.1

