% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

XJ UNIVERSITY OF TORONTO

csc444h:
software engineering |

matt medland
matt@cs.utoronto.ca
http://www.cs.utoronto.ca/~matt/csc444

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

&% UNIVERSITY OF TORONTO

testing

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

% UNIVERSITY OF TORONTO

top-10

including other types
of testing

source code _
control reproducible
builds

infrastructure
automated

defect/feature
tracking regression
testing

. effort process
refinement tracking control
business
planning

should have read ch 1-12 now (ch 10 today, skip ch 6)

control

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

E‘ J
X UNIVERSITY OF TORONTO software quallty assurance

* humans are fallible
— infeasible to completely fix the humans
— need to double and triple check their work to find

the problems

* testing
— running the software to see if it works the way it is

supposed to.
» works according to specifications
* ensures specifications are reasonable (that they solve the

intended problem)

proving programs correct

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

Y UNIVERSITY OF TORONTO SO

ftware quality assurance (2)

* reviews
— inspecting written work products looking for errors

* requirements, specifications, designs, and code

* proofs
— proving that the software behaves according to a

written, formal specification
* important in control systems and other critical software

amenable to proof
* can useful for general-purpose software as well

%) UNIVERSITY OF TORONTO

should think of programs logically, not operationally.
understand the program as a predicate transformer

» predicate:
— alogical expression that characterizes the state of the system

» pre {P} post
— the program transforms the pre predicate into the post predicate

— each line of the program should be thought if in those terms
* each line transforms the pre condition closer and closer to the post

condition

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering . .
induction

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
example

‘\
%/ UNIVERSITY OF TORONTO

precondition: array has >= 5 elements

post-condition: # of elements printed ==

proven!

no “off-by-one” errors here
this kind of thinking becomes second nature when programming

a very, very powerful tool

‘\

%) UNIVERSITY OF TORONTO

» proving by induction is also a useful
technique

* ex, prove that:
factorial(n) = n!

« for all natural numbers n
— start with base case, usuallyn=0orn=1
— prove by induction that if it’s true for n then it

must be true for (n+1)

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

XY UNIVERSITY OF TORONTO unit test

+ testing performed by the coder as they are coding.
+ will test in their dev debug build

+ will want to build “test scaffolding” to test the code they have
written independent of the final application.
— can use pre-build unit testing frameworks such as xUnit (Kent Beck — Extreme
Programming)
* JUnit, CUnit, CPPUnit, PyUnit Test::Unit, VbUnit, ...
— best practices is to not just test and discard, but consistently maintain the
automated unit tests and have them execute after every nightly build.
— try to break dependence on any other modules, use “mockups” and DI
(dependency injection) instead.
— catches problems very early, right at the source.
— confident in changing a module
— living “documentation” of how to use a module
— strengthens interface v.s. implementation

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

UNIVERSITY OF TORONTO cOmponent (or function) test

+ started when a feature is relatively complete and stable.
 occurs during coding phase (pre-dcut).

» performed by a tester, not by the coder.

+ uses a nightly dev release build.

» tester will:

— try out those parts of the feature that the coder says are supposed
to work

— communicate issues back to the coder in an informal fashion
* i.e., not counted as “defects” yet
re-test as coder works out issues

develop a test plan for the feature
* adocument describing how the feature will be tested

develop automated tests for the feature

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

integration test

 after dcut.

 all features of all executables have been
coded

* testers begin executing their test plans

+ test that the features work together as
expected

» problems are recorded as formal “defects”.

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

system test

 as the system stabilizes.
+ tests of full production installs

+ tests on how this application works with
other related applications

final release test

* last minute checklist before a release goes
out the door

— not rushed!

The Edward S. Rogers Sr. Department
v | of Electrical & Computer Engincering
@ UNIVERSITY OF TORONTO

regression testing

+ tests made to ensure that functionality that
once worked continues to work.

» test made to ensure that previously
discovered and corrected defects do not re-
appear

— a fertile source of defects

* can be performed manually
— but would take too long

The Edward S. Rogers Sr. Department
v | of Electrical & Computer Engincering . .
& universiTY oF ToronTo automated regression testing

+ an extension of the nightly builds

+ software scripts will execute a set series of tests and report
the results back into a database
* QA will examine the results each morning
— 4reasons for a failure:

* the function was broken
¢ the function was changed
* the function was improved
* the testis faulty

+ the function of the test team is to ensure good coverage on
automated regression tests
— each new function should get a suite of regression tests
* should be formalized in the feature creation process
— each defect should get a test that would have caught it
* should be formalized in the defect resolution process

The Edward S. Rogers Sr. Department
v | of Electrical & Computer Engincering
@ UNIVERSITY OF TORONTO

performance regressions

+ easy to build test cases and forget to measure the
time it takes to execute them

+ systematically
— collecting this information,
— consolidating it,
— and reporting on it

will show up performance trends

* required because sometimes coders will check-in
a change that looks to be functionally ok, but has
very negative performance implications

— e.g., if coder only tested on a few simple test cases and did not
notice because the run-time was swamped by the overhead

The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engincering

) UNIVERSITY OF TORONTO memory leak r egri essions

* run a special version of the software,
instrumented to find memory leaks, bad
memory allocation errors, and bad pointer

chasing
— e.g., Purify from IBM/Rational/Pure

* runs slowly, but can use a representative
sample of the nightly regression tests.

* less required when running managed code
— C#.NET
— Java

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

% university oF Toronto benefits of regression testing

locks-in quality

— once you achieve quality, you don’t backslide

— everybody focuses on new features and forgets the old
finding defects sooner

— finds the defect nearest the point in time it was injected

— freshest in the coder’s mind
— least expensive time to fix it

development aid
— can work on complex, central bits of the code without fear of
breaking something major on not finding out
releasing
— if need a last minute critical defect fix to release

— if no/poor automated regression, might have to delay until re-
tested

% The Edward S. Rogers Sr. Department
K of Electrical & Computer Engincering
&7 UNIVERSITY OF TORONTO

regression coverage

+ to manage a program to institute or improve
automated regression testing, you require a coverage
metric.

+ what % of the application is tested.
— can count functions from the outside
* coverage of all functions
* # of tests per function
— can count lines of code traversed
* excellent coverage metric
* will not necessarily get all combinations

- other measures of coverage...

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
, UNIVERSITY OF TORONTO

testing the GUI

two general approaches to testing GUI-based
apps:

1) use a GUI test tool (ex. selenium)
— pumps Ul events at the app
— extracts results from text widgets, bitmaps, files

— problems:
* very sensitive to changes in the GUI
very sensitive to changes in GUI sequencing

* many false positives

¢ costly to maintain

* easy to drive the app, hard to see if results are correct
* hard to get at the results

* throw it all away if make a big gui change

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
, UNIVERSITY OF TORONTO

testing the GUI (2)

2) architect to test at a layer just beneath the GUI
— create an a.r.t. API
— might use an embedded interpreter
* Perl, Python, VBScript
— might hit the app from outside
* COM
e C/C++ API
problems:
* not really testing the GUI, testing something a bit different
* coders need to develop and maintain APIs

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering 3 ;
UNIVERSITY OF TORONTO example automated regression architecture

web
m e

Test Server

« execute nightly, and from dev/
test desktops

« cross-platform
« plug-ins for new types of tests
« extreme fault tolerance

— constantly monitoring itself

Test
Platform

RDBMS for
test data

result

— re-start if hangs or dies
files

— try last test again
— if fails then go on
«log all actions

— maintain history prior to a
crash

[l
« records results to an RDBMS
_I « records timings as well

« reports accessible via web

Source Code Server

comMm
-\\ browsers
“ P';’gfi‘mt « all test cases and baselines in
under tes
s Taatard] source control

baselines

(from source control)

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

& UNIVERSITY OF ToronNTO SaaS automated regression

* trick with Saa$S is so much code is now javascript
running in various browsers (not all of which
behave the same way)

* open source frameworks to the rescue:

— Selenium
for recording and executing “in browser” tests
(also has Selenium Hub for parallelizing tests)
can output tests in a scripting language for storage.

— Bromine
for storing tests, organizing them, scheduling them, recording
results, and reporting on results

+ commercial services
— Saucelabs
for running Selenium instances in the cloud
(pay per “test-minute”) — Bromine integrates with Saucelabs

