
releases	
  



concepts	
  &	
  terminology	
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cost	
  of	
  feature	
  releases	
  

•  considerable overhead associated with a 
feature release 
–  system	
  tes'ng	
  
– marke'ng	
  collateral	
  
–  launch	
  events	
  
–  customer/partner	
  briefings	
  
–  new	
  training	
  courses	
  &	
  material	
  
–  new	
  training	
  internally	
  
–  burn	
  CDs	
  and	
  shrink-­‐wrap	
  boxes	
  
– website	
  down'me	
  
– …	
  



cost	
  of	
  feature	
  releases	
  (2)	
  

•  largest cost of them all 
–  increased	
  maintenance	
  burden	
  from	
  suppor'ng	
  
another	
  version	
  in	
  the	
  field	
  

•  reproduce	
  bugs	
  in	
  mul'ple	
  codelines	
  
•  decide	
  what/when	
  to	
  fix	
  
•  re-­‐test,	
  re-­‐release	
  

•  maintenance releases are much less costly 
–  regression	
  tests	
  will	
  catch	
  problems	
  



simultaneous	
  release	
  support	
  

•  generally support 2 feature release 
maintenance streams 

•  sometimes need to support 3 or more! 
•  MUST try to limit this 
•  if not, maintenance will erode and company 

will not be able to respond quickly to 
market conditions 
–  extreme	
  is	
  separate	
  release	
  per	
  customer	
  

•  how do web apps and mobile apply? 



simultaneous	
  release	
  support	
  (2)	
  

•  opportunity cost of developers 
–  a	
  trained	
  developer	
  is	
  a	
  scarce	
  and	
  valuable	
  
resource!	
  

–  new	
  features	
  or	
  maintenance	
  tradeoff	
  
–  opportunity	
  cost	
  of	
  maintenance	
  is	
  the	
  revenue	
  
the	
  new	
  feature	
  might	
  have	
  brought	
  in	
  

–  opportunity	
  cost	
  of	
  feature	
  development	
  is	
  
customer	
  loss	
  due	
  to	
  lack	
  of	
  maintenance	
  



8me	
  between	
  releases	
  

•  feature releases are costly: 
–  therefore	
  increase	
  the	
  'me	
  between	
  releases	
  

•  but, customers want more features 
–  therefore	
  decrease	
  the	
  'me	
  between	
  releases	
  

•  but, they also want stability in their own IT 
environment 
–  therefore	
  increase	
  the	
  'me	
  between	
  releases	
  
–  some'mes	
  customers	
  get	
  very	
  s'cky	
  on	
  old	
  
releases	
  

–  need	
  to	
  make	
  the	
  new	
  release	
  compelling	
  to	
  end-­‐
users	
  



8me	
  between	
  releases	
  (2)	
  

•  what if one customer or prospect wants a new 
feature? 
–  new	
  feature	
  release?	
  
–  probably	
  not	
  

•  what if the market condition changes rapidly? 
–  cut	
  short	
  current	
  release	
  to	
  rush	
  it	
  out?	
  
–  go	
  back	
  to	
  last	
  release,	
  extend	
  it,	
  and	
  put	
  that	
  out?	
  
–  costly:	
  because	
  of	
  short	
  release	
  cycle	
  will	
  need	
  to	
  
support	
  >	
  3	
  releases	
  in	
  the	
  field.	
  



pushing	
  back	
  

•  a successful development manager will need 
to distinguish between people asking for 
things that can be pushed off, and truly 
urgent things 
–  everything	
  is	
  presented	
  as	
  the	
  laIer!	
  

•  track the request back to its source, 
personally 
– will	
  learn	
  the	
  true	
  nature	
  of	
  thee	
  request	
  
–  can	
  deal	
  with	
  80%	
  of	
  “urgent”	
  requests	
  in	
  this	
  
manner	
  



features	
  in	
  maintenance	
  releases	
  
•  tried pushing back 
•  cannot justify a new feature release 
•  customer/prospect still wants/needs features earlier than 

the next scheduled feature release 
•  what now? 

•  slip new features into a maintenance release 
•  in theory, maintenance releases should change no 

externally visible program behavior (other than to correct it 
if faulty) 

•  what the heck, do it anyways 
•  does not have the cost of a new feature release 
•  why not? 



features	
  in	
  maintenance	
  releases	
  (2)	
  

•  cannot introduce new code without introducing 
new defects 

•  reasons for adding code: feature, bug fix 

•  if fixing bugs: 
–  fix	
  2,	
  add	
  1:	
  trend	
  is	
  good:	
  -­‐1	
  
– will	
  eventually	
  get	
  them	
  all	
  –	
  converge	
  on	
  quality	
  

•  if also doing new features: 
–  fix	
  2,	
  add	
  1,	
  add	
  new	
  feature,	
  add	
  4:	
  trend	
  is	
  bad:	
  
+3	
  –	
  diverging	
  quality	
  



nega8ve	
  leveraging	
  

•  the new feature is only useful to one customer 

•  the defects introduced as a result can negatively 
impact every customer 

•  because touching code risks breaking ANYTHING, 
ANYWHERE 

•  customers get irate if a “maintenance release” 
breaks previously working functionality 
–  danger	
  even	
  when	
  just	
  fixing	
  defects	
  
–  gets	
  much	
  worse	
  if	
  adding	
  features	
  



release	
  prolifera8on	
  

•  if your software is generally of poor quality 
customers will be slow to upgrade due to fear 
of more bugs 
–  leads	
  to	
  suppor'ng	
  many	
  releases	
  

•  EVEN WORSE: if customers come to fear 
maintenance releases the situation multiplies 
–  customers	
  may	
  insist	
  on	
  patches	
  to	
  their	
  
maintenance	
  level	
  

–  turns	
  every	
  point	
  release	
  into	
  its	
  own	
  
maintenance	
  stream!	
  



mi8ga8ng	
  the	
  consequences	
  

•  “can we do it between releases?” 
•  “it’s a web app, so it’s easy” 

•  ugh! if absolutely forced to, then: 
– MUST	
  have	
  excellent	
  regression	
  tes'ng	
  
environment	
  

–  segregate	
  new	
  func'onality	
  with	
  run'me	
  
configura'on	
  switch	
  

•  code	
  review	
  to	
  ensure	
  switch	
  off	
  ==	
  no	
  new	
  code	
  
in	
  the	
  system	
  

–  try	
  not	
  to	
  allow	
  this	
  to	
  set	
  a	
  precedent	
  



versions	
  



versions	
  
•  as distinguished from “releases”. 
•  different variants of the same software 

–  differ in small ways 

•  does not apply as much to SaaS 

 

R3.2.0 

R3.2.1a 

R3.2.1 

R3.2.2 

R3.2.3 

R3.2.4 

R3.2.5 

R3.3.0 

R3.3.1 

R3.3.2 

R3.3.3 

R3.2 R3.3 

must support: 
• stream of maintenance 

releases for each version 
• each feature release will 

continue to ship that version 
•  ideally at the same time 

hard to undo the decision to 
support a new version: 

• some customer now relies on it 

version reasons: 
• multiple hardware platforms 
• multiple os’s 
• multiple databases 
• multiple app frameworks 
• multiple partner software 
• security 
•  functional tiers 
• demoware 
•  translations 
• customizations 



cost	
  of	
  versions	
  

•  surprisingly costly to support many versions 
–  not the development cost: relatively cheap – just another feature 
–  ongoing maintenance costs 

•  technical means: 
–  different code (linked differently or #ifdef’d) 
–  run-time switches (e.g., dynamically detect version of Windows and 

change API calls appropriately). 
–  different dev platform and tools 
–  binary-compatible: different test environments 

•  in any case: 
–  testers must test all supported versions 
–  coders must bear in mind they are supporting multiple versions 
–  must track down bugs in each version and fix 



javascript	
  web	
  apps	
  



version	
  prolifera8on	
  

•  software company will support many versions 
in hopes sales will increase 
–  each version opens up a new market segment 

•  danger: too hastily commit to supporting too 
many versions 

•  be aware of costs and push-back 

•  if in the business of supporting many versions: 
–  architect the software well to support it 
–  construct a superb multi-platform automated build/test 

environment 



customized	
  soAware	
  
•  a different variant of the software for important customers 

–  static methods: require a distinct executable 
–  dynamic methods: same executable 

•  run-time switches 
•  alternate dll’s (.dylib, .so) 

•  if customization required on feature release boundary 
–  evaluate if feature’s dev opportunity costs are worth the revenue 

•  if customization required sooner 
–  either: 

•  carefully insert changes into the point release stream 
•  #ifdef all code and build a unique executable for the customer 

–  can we merge the changes into the next feature release? 
–  nothing very palatable here 

•  better to build in enough configurability that customers do not 
require customizations 
–  GUI-based configuration 
–  scripting-based configuration 



user	
  extension	
  API	
  
•  allows customers to implement their own features into the 

software 
•  nowadays called “SOA” – implemented using web methods 
•  danger: 

–  must support the API forever more 
–  even if one already exists internally: 

•  clean it up 
•  identify public versus private APIs 
•  document it 
•  train customers on it 
•  hire programmers to provide help desk support on it 

–  support becomes “debug the customer’s code” 
•  maintain it unchanged 

–  do not inadvertently change behavior 

•  market it and sell it 
•  consult on it 

–  write it once 
–  support it forever? 

»  paid/unpaid? 

 

Vendor’s 
Product 

Vendor’s User 
Extension API 

Vendor’s User 
Extension Library 

User’s 
Extension 

Program Code 

Dynamic load module 

dynamically loaded into 


