
releases	
  



concepts	
  &	
  terminology	
  

 
R3.2 (feature release) 

R3.2.0 (initial release) 

R3.2.1a (patch release) 

R3.2.1 

R3.2.2 

R3.2.3 

R3.2.4 

R3.2.5 

(point releases) 

(beta release) R3.2B1 



another	
  example	
  
main 

maintenance 
R1 

shipping 
R1.0 

shipping 
R1.1 

maintenance 
R2 

shipping 
R2.1 

retired 

shipping 
R2.2 

active ongoing 
X 

maintenance 
R3 

shipping 
R3.0 

shipping 
R3.1 

active 

shipping 
R2.0 

R2.2.a 

shipping 
R1.2 

shipping 
R1.3 

shipping 
R2.3 



cost	
  of	
  feature	
  releases	
  

•  considerable overhead associated with a 
feature release 
–  system	
  tes'ng	
  
– marke'ng	
  collateral	
  
–  launch	
  events	
  
–  customer/partner	
  briefings	
  
–  new	
  training	
  courses	
  &	
  material	
  
–  new	
  training	
  internally	
  
–  burn	
  CDs	
  and	
  shrink-­‐wrap	
  boxes	
  
– website	
  down'me	
  
– …	
  



cost	
  of	
  feature	
  releases	
  (2)	
  

•  largest cost of them all 
–  increased	
  maintenance	
  burden	
  from	
  suppor'ng	
  
another	
  version	
  in	
  the	
  field	
  

•  reproduce	
  bugs	
  in	
  mul'ple	
  codelines	
  
•  decide	
  what/when	
  to	
  fix	
  
•  re-­‐test,	
  re-­‐release	
  

•  maintenance releases are much less costly 
–  regression	
  tests	
  will	
  catch	
  problems	
  



simultaneous	
  release	
  support	
  

•  generally support 2 feature release 
maintenance streams 

•  sometimes need to support 3 or more! 
•  MUST try to limit this 
•  if not, maintenance will erode and company 

will not be able to respond quickly to 
market conditions 
–  extreme	
  is	
  separate	
  release	
  per	
  customer	
  

•  how do web apps and mobile apply? 



simultaneous	
  release	
  support	
  (2)	
  

•  opportunity cost of developers 
–  a	
  trained	
  developer	
  is	
  a	
  scarce	
  and	
  valuable	
  
resource!	
  

–  new	
  features	
  or	
  maintenance	
  tradeoff	
  
–  opportunity	
  cost	
  of	
  maintenance	
  is	
  the	
  revenue	
  
the	
  new	
  feature	
  might	
  have	
  brought	
  in	
  

–  opportunity	
  cost	
  of	
  feature	
  development	
  is	
  
customer	
  loss	
  due	
  to	
  lack	
  of	
  maintenance	
  



8me	
  between	
  releases	
  

•  feature releases are costly: 
–  therefore	
  increase	
  the	
  'me	
  between	
  releases	
  

•  but, customers want more features 
–  therefore	
  decrease	
  the	
  'me	
  between	
  releases	
  

•  but, they also want stability in their own IT 
environment 
–  therefore	
  increase	
  the	
  'me	
  between	
  releases	
  
–  some'mes	
  customers	
  get	
  very	
  s'cky	
  on	
  old	
  
releases	
  

–  need	
  to	
  make	
  the	
  new	
  release	
  compelling	
  to	
  end-­‐
users	
  



8me	
  between	
  releases	
  (2)	
  

•  what if one customer or prospect wants a new 
feature? 
–  new	
  feature	
  release?	
  
–  probably	
  not	
  

•  what if the market condition changes rapidly? 
–  cut	
  short	
  current	
  release	
  to	
  rush	
  it	
  out?	
  
–  go	
  back	
  to	
  last	
  release,	
  extend	
  it,	
  and	
  put	
  that	
  out?	
  
–  costly:	
  because	
  of	
  short	
  release	
  cycle	
  will	
  need	
  to	
  
support	
  >	
  3	
  releases	
  in	
  the	
  field.	
  



pushing	
  back	
  

•  a successful development manager will need 
to distinguish between people asking for 
things that can be pushed off, and truly 
urgent things 
–  everything	
  is	
  presented	
  as	
  the	
  laIer!	
  

•  track the request back to its source, 
personally 
– will	
  learn	
  the	
  true	
  nature	
  of	
  thee	
  request	
  
–  can	
  deal	
  with	
  80%	
  of	
  “urgent”	
  requests	
  in	
  this	
  
manner	
  



features	
  in	
  maintenance	
  releases	
  
•  tried pushing back 
•  cannot justify a new feature release 
•  customer/prospect still wants/needs features earlier than 

the next scheduled feature release 
•  what now? 

•  slip new features into a maintenance release 
•  in theory, maintenance releases should change no 

externally visible program behavior (other than to correct it 
if faulty) 

•  what the heck, do it anyways 
•  does not have the cost of a new feature release 
•  why not? 



features	
  in	
  maintenance	
  releases	
  (2)	
  

•  cannot introduce new code without introducing 
new defects 

•  reasons for adding code: feature, bug fix 

•  if fixing bugs: 
–  fix	
  2,	
  add	
  1:	
  trend	
  is	
  good:	
  -­‐1	
  
– will	
  eventually	
  get	
  them	
  all	
  –	
  converge	
  on	
  quality	
  

•  if also doing new features: 
–  fix	
  2,	
  add	
  1,	
  add	
  new	
  feature,	
  add	
  4:	
  trend	
  is	
  bad:	
  
+3	
  –	
  diverging	
  quality	
  



nega8ve	
  leveraging	
  

•  the new feature is only useful to one customer 

•  the defects introduced as a result can negatively 
impact every customer 

•  because touching code risks breaking ANYTHING, 
ANYWHERE 

•  customers get irate if a “maintenance release” 
breaks previously working functionality 
–  danger	
  even	
  when	
  just	
  fixing	
  defects	
  
–  gets	
  much	
  worse	
  if	
  adding	
  features	
  



release	
  prolifera8on	
  

•  if your software is generally of poor quality 
customers will be slow to upgrade due to fear 
of more bugs 
–  leads	
  to	
  suppor'ng	
  many	
  releases	
  

•  EVEN WORSE: if customers come to fear 
maintenance releases the situation multiplies 
–  customers	
  may	
  insist	
  on	
  patches	
  to	
  their	
  
maintenance	
  level	
  

–  turns	
  every	
  point	
  release	
  into	
  its	
  own	
  
maintenance	
  stream!	
  



mi8ga8ng	
  the	
  consequences	
  

•  “can we do it between releases?” 
•  “it’s a web app, so it’s easy” 

•  ugh! if absolutely forced to, then: 
– MUST	
  have	
  excellent	
  regression	
  tes'ng	
  
environment	
  

–  segregate	
  new	
  func'onality	
  with	
  run'me	
  
configura'on	
  switch	
  

•  code	
  review	
  to	
  ensure	
  switch	
  off	
  ==	
  no	
  new	
  code	
  
in	
  the	
  system	
  

–  try	
  not	
  to	
  allow	
  this	
  to	
  set	
  a	
  precedent	
  



versions	
  



versions	
  
•  as distinguished from “releases”. 
•  different variants of the same software 

–  differ in small ways 

•  does not apply as much to SaaS 

 

R3.2.0 

R3.2.1a 

R3.2.1 

R3.2.2 

R3.2.3 

R3.2.4 

R3.2.5 

R3.3.0 

R3.3.1 

R3.3.2 

R3.3.3 

R3.2 R3.3 

must support: 
• stream of maintenance 

releases for each version 
• each feature release will 

continue to ship that version 
•  ideally at the same time 

hard to undo the decision to 
support a new version: 

• some customer now relies on it 

version reasons: 
• multiple hardware platforms 
• multiple os’s 
• multiple databases 
• multiple app frameworks 
• multiple partner software 
• security 
•  functional tiers 
• demoware 
•  translations 
• customizations 



cost	
  of	
  versions	
  

•  surprisingly costly to support many versions 
–  not the development cost: relatively cheap – just another feature 
–  ongoing maintenance costs 

•  technical means: 
–  different code (linked differently or #ifdef’d) 
–  run-time switches (e.g., dynamically detect version of Windows and 

change API calls appropriately). 
–  different dev platform and tools 
–  binary-compatible: different test environments 

•  in any case: 
–  testers must test all supported versions 
–  coders must bear in mind they are supporting multiple versions 
–  must track down bugs in each version and fix 



javascript	
  web	
  apps	
  



version	
  prolifera8on	
  

•  software company will support many versions 
in hopes sales will increase 
–  each version opens up a new market segment 

•  danger: too hastily commit to supporting too 
many versions 

•  be aware of costs and push-back 

•  if in the business of supporting many versions: 
–  architect the software well to support it 
–  construct a superb multi-platform automated build/test 

environment 



customized	
  soAware	
  
•  a different variant of the software for important customers 

–  static methods: require a distinct executable 
–  dynamic methods: same executable 

•  run-time switches 
•  alternate dll’s (.dylib, .so) 

•  if customization required on feature release boundary 
–  evaluate if feature’s dev opportunity costs are worth the revenue 

•  if customization required sooner 
–  either: 

•  carefully insert changes into the point release stream 
•  #ifdef all code and build a unique executable for the customer 

–  can we merge the changes into the next feature release? 
–  nothing very palatable here 

•  better to build in enough configurability that customers do not 
require customizations 
–  GUI-based configuration 
–  scripting-based configuration 



user	
  extension	
  API	
  
•  allows customers to implement their own features into the 

software 
•  nowadays called “SOA” – implemented using web methods 
•  danger: 

–  must support the API forever more 
–  even if one already exists internally: 

•  clean it up 
•  identify public versus private APIs 
•  document it 
•  train customers on it 
•  hire programmers to provide help desk support on it 

–  support becomes “debug the customer’s code” 
•  maintain it unchanged 

–  do not inadvertently change behavior 

•  market it and sell it 
•  consult on it 

–  write it once 
–  support it forever? 

»  paid/unpaid? 

 

Vendor’s 
Product 

Vendor’s User 
Extension API 

Vendor’s User 
Extension Library 

User’s 
Extension 

Program Code 

Dynamic load module 

dynamically loaded into 


