
capacity'constraint'

capacity'constraint'

•  fundamental constraint governing all
planning activity

•  geometric analogy:

 requirement capacity

capacity'constraint'(2)'

•  fundamental constraint governing all
planning activity

it’s all gotta fit!

simple'release'plan'

Dates: Coding phase: Jul.1—Oct.1
 Beta availability: Nov.1
 General availability: Dec.1

Capacity: days available
 Fred 31 ecd
 Lorna 33 ecd
 … …
 Bill 21 ecd
 total 317 ecd

Requirement: days required
 AR report 14 ecd
 Dialog re-design 22 ecd
 … …
 Thread support 87 ecd
 total 317 ecd

Status: Capacity: 317 effective coder-days

 Requirement: 317 effective coder-days
 Delta: 0 effective coder days

release'planning'

•  what to build: F
•  by when to build it: T F ≤ N x T
•  using how many people: N

•  need to build an initial plan that respects the
capacity constraint

•  need to continuously update the plan to
maintain its adherence to the capacity
constraint.

most'common'problem'

•  comes from either:
–  not$knowing$
–  knowingbuthopingforthe$best$(Yourdon’s$
Death&March)$
$ $(can$happen$ini8ally,$oraswe$go)$

dealing'with'issues'
developer leaves the team

add time
cut features

both

other'issues'

 feature expansion

 developer returns

organiza9onal'issues'

•  management must appreciate that software
development carries with it certain inherent risks

•  the business of a software organization is to
manage and adapt as possibilities continuously
become reality

•  ranting and raving is unproductive

•  with good data, good managers will make good
decisions

quan9ta9ve'capacity'constraint'

•  post-facto, the following relationship must hold:
 (but, it requires careful definition)

we define carefully so that we know what it is we are
trying to estimate, and how to compare actuals
against estimates for post-mortem

T:'number'of'workdays'

•  the number of full-equivalent working days from
fork to dcut.

•  subtracts
–  weekends$
–  statutory$holidays$
–  “company$days”$

•  subtracts anything we know in advance that
nobody is expected to work.

T'='cD:'for'SaaS'

•  D = full working days in planning horizon
•  c = factor to convert to predominantly coding days

T"="cD"

N:'developer'power'

•  the average number of dedicated developers
per workday working during the T-day period.

•  dedicated developer?

work'9me'vs.'dedicated'9me'

•  work time or body time
–  definedas8$hours$per$workday$

•  excludes$weekends,$stat.$holidays,$vaca8on$en8tlement.$
•  e.g.,$9EtoE6$with1hourforlunch.$

•  dedicated time
–  uninterrupted$hour$equivalents.$
–  8me$dedicated$to$adding$new$features$totherelease.$

•  uninterrupted time
–  4hrswith30min.ofconstant$interrup8ons$

•  not3.5hrsofdedicated$uninterrupted$8me$–$more$like$2$
–  2hrswithNOinterrup8onsatall$

dedicated'“losses”'

•  maintenance (tracking down and fixing defects)
on previous releases

•  other simultaneous projects
•  team-leader duties (& helping others)
•  meetings
•  training
•  unexpected, non-made-up days off (e.g., sick

days)
•  sales/marketing support
•  loss of flow due to interruptions

measuring'N'

•  assume each developer understands the concept
of a dedicated uninterrupted hour.

•  get each of the n developers to record how many
dedicated uninterrupted hours they spent in total
during the coding phase.

•  hi is what’s in the time tracking system for the ith
developer.

T

h
N

n

i
i

⋅
=
∑
=

8
1

aGribu9ng'N'

•  di is the number of days available during the coding phase
•  vi is the number of vacation days they took during the coding phase
•  hi is as before

$
Subs8tutetoget$back$to:$

T

wt
N

n

i
ii∑

=

⋅
= 1iii vdt −=

i

i
i t

hw
⋅

=
8

T

h
N

n

i
i

⋅
=
∑
=

8
1

example'

•  Bob called in sick for 2 days: accounted for in h
•  Bob took an afternoon off, but worked on the

weekend to make up for it: accounted for in h

30535
5
35
39

=−=−=

=

=

=

bobbobbob

bob

bob

vdt
v
d
T

5.0
308
120

8

120

=
⋅

=
⋅

=

=

bob

bob
bob

bob

t
h

w

h

features'

fk = dedicated hours / 8 it took to code the kth feature

∑
=

=
K

k
kfF

1

postImortem'

•  imagine a time-tracking system that tracks:
–  hi,k,d$=$dedicated$(uninterrupted)$hours$spent&

•  bytheith$developer$
•  onthedthday
•  doing$coding$workonthekthfeature$

•  each such quantum would appear on both
sides of F= N x T constraining them to be
equal.

•  see section 5.10 in book for proof.

