% The Edward S. Rogers Sr. Department
K: of Electrical & Computer Engincering
UNIVERSITY OF TORONTO

more uml:

sequence & use case
diagrams

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

) UNIVERSITY OF TORONTO uses of uml

* as a sketch:
— very selective — informal and dynamic

— forward engineering: describe some concept
you need to implement

— reverse engineering: explain how some part of
a program works

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

/) UNIVERSITY OF TORONTO

uses of uml (2)

* as a blueprint:
— emphasis on completeness

— forward engineering: model as a detailed spec
for a programmer

— reverse engineering: model as a code browser

— round-trip: tools provide both forward &

reverse engineering to move back and forth
between design and code

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

&% UNIVERSITY OF TORONTO

uses of uml (3)

* as a programming language:
— uml models are automatically compiled into
working code

e executable uml:
https://en.wikipedia.org/wiki/Executable_UML

— requires sophisticated tools
— the model is the code

% The Edward S. Rogers Sr. Department
O of Electrical & Computer Engincering
& UNIVERSITY OF TORONTO

package decomposition

HMS

e contains

ServicePackage

»-v...‘oontams

FinancialPackage

contains

+lransactions o n

+account ’

0.1 Account
s o])

% The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering
&% UNIVERSITY OF TORONTO

class abstraction

Hotel]

Higher-Level Class Diagram

’ Expense
reservation_for o0.n
stays, at -

0.n 0"/0n

- e Ew

f— S S

Payment { Expense
Lower-LevéI Class Diagram |

/ 0.n N\ O.n 1

Room Reservation ‘
< on +transactions | 0.n
0.1 " has_reservation,”
stay
S, 5 1o\ +account §
Guest

Person 0.1 Account
T.n-

% The Edward S. Rogers Sr. Department
O of Electrical & Computer Engincering
& UNIVERSITY OF TORONTO

finding dependencies

1

<<subsystem>>
ServicePackage

<<subsystem>>
FinancialPackage

0.n

Payment

Room Reservation

oon

% The Edward S. Rogers Sr. Department
@ of Electrical & Computer Engineering
&% UNIVERSITY OF TORONTO

things to model

* structure of the code
— code dependencies
— components and couplings

behaviour of the code
— execution traces
— state machine models of complex objects

function of the code
— what function(s) does it provide to the user?

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
& UNIVERSITY OF TORONTO

things to model

* structure of the code
— code dependencies
— components and couplings

* behaviour of the code
— execution traces
e models of complex objects

+ function of the code
— what function(s) does it provide to the user?

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
& UNIVERSITY OF TORONTO

sequence diagrams

an Order

an OrderLine a Product

a Customer

T
calculatePrice |

[—

PricingDetails

.
| calculateBasePrice

calculateDiscounts

getDiscountinfo

‘_____:_________________________________.

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering
& UNIVERSITY OF TORONTO

design choices

an Order an OrderLine a Product a Customer

T T

calculatePrice |) i i
| |

i

getBaseValue

T ——

i
]
|
]
1
]
1
1
i
i
]

P S ___ discountedValue _ _
]
]
]
]
]
1
i
i
i
]
i

mmmmmee

% The Edward S. Rogers Sr. Department
K= of Electrical & Computer Engincering
& UNIVERSITY OF TORONTO

object creation and deletion

a Handler

T
queryDatabase |

new a Query

-]

Command

extract results

close N

execute !
le--Jesults_______ U
L

<__-Jesul?5------.5j<

new a Database
Statement

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

|

OPt | [needs confirmation] E
1 confirm
}

&Y UNIVERSITY OF TORONTO interaction frames
. careful: regular: .

Okden ‘ Distributor ’ Distributor ’ Mescenger
dispatch : : 3 E
H 5 § !
loop | (for eacr line item] ! ! !
1] 1
alt | fvalue > $10,000] ! .
—d“““““—‘D' [! !
S | S I |
felse P ! :

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
» UNIVERSITY OF TORONTO

interaction frames (2)

Operator Meaning

alt Alternative; only the frame whose guard is true will
execute

opt Optional; only executes if the guard is true

par Parallel; frames execute in parallel

loop Frame executes multiple times, guard indicates how
many

region Critical region; only one thread can execute this
frame at a time

neg Negative; frame shows an invalid interaction

ref Reference; refers to a sequence shown on another
diagram

sd Sequence Diagram; used to surround the whole

diagram (optional)

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

%7 univERsITY OF TorRONTO When to use sequence diagrams

comparing design options

— shows how objects collaborate to carry out a task
— graphical form shows alternative behaviours
assessing bottlenecks

— ex. an object through which many messages pass
explaining design patterns

— mostly an academic exercise (my opinion)
elaborating use cases

— shows how user expects to interact with system

— shows how user interface operates

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering

% UNIVERSITY OF TORONTO modeling a design pattern

* ex. observer pattern
— one-to-many dependency, maintaining consistency
— subject pushes updates to observers

Subject
1 Observer
attach(Observer) >
detach(Observer) observers| update()
Notify() ~__
=== {for all 0 in observers
TB‘ {o.update()} }
Eonooe wre 1 concreteObserver
SUDIeCtState < observerState ~_ .
getState() subject ~~| {observerState =
setState() update() this.subject.getState()}

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

Y UNIVERSITY OF TORONTO observer pattern sequence diagram

a Concrete x : Concrete y : Concrete
Subject Observer Observer

—1 I i

notify() i i

par update() : i

getState() | | |
""""""""""""" e T

| |

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

) UNIVERSITY OF TORONTO —Sequence diag. — style points

spatial layout

— left-to-right ordering of “messages”

— proactive “actors” on left, reactive on right
readability

— keep as simple as possible

— ok to omit obvious return values

— ok to omit object destruction

usage

— focus on critical interactions (part of keep it simple)
consistency

— class names consistent with class diagrams

— message routes consistent with class associations

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
) UNIVERSITY OF TORONTO

use case diagrams

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
) UNIVERSITY OF TORONTO

use case driven design

user stories in agile development
introducing uml into the software process
domain models

* use cases

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

! UNIVERSITY OF TORONTO refresher — uml notations
VUML Class Diagrams o Use Cases
information structure i % /\.\ user' s view

i il |
:;I:I;:::ps betweon b Lists functions
modular structure for visual overview of the
the system main requirements

g
VUML Package Diagrams
Overall architecture
| laa- o
’D Dependencies
E— < E between components

(UML) Statecharts
responses to events
dynamic behavior

event ordering,
reachability, deadlock,
etc

VUML Sequence Diagrams
X L] GJ G2 individual scenario
i interactions between

g users and system

Sequence of

Activity diagrams
business processes;

concurrency and
synchronization;

dependencies
between tasks;

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
& UNIVERSITY OF TORONTO

what do users want?

» user stories
— used in XP, scrum, etc.
— identify the user (role)
who wants it
* (UI) storyboards

— sketch of how a user will .

As o \'\btqciqn,I
wark to be able

to Search Loc bodks
by publication \ear.

do a task g_,
— shows interactions at each =~

step
— used in Ul design

* Uuse cases

— sets of user features

— uml diagram shows inter-
relationships

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering
& UNIVERSITY OF TORONTO

tracking the stories

NoT
engereo our] CECKEQ UTT Oonet _:n) SPRINT GOAL: ST4-0E40Y TELEARE!
e e
| oot (75 ~Homonn
- '.,'. f a'.'f‘
R S s

/

¥yt

M rvepss ’E_.. !
2% J;"“:l"' Mrons]‘

- ‘-&""—I L _ J

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering
/ UNIVERSITY OF TORONTO

D X
'
/\/ //\

Update

example use case diagram

O

Trading Accounts Accounting
manager Analyse - System
Risks gy,
~ g,
Sooa
Value a
O~ L rme i
/ eal

/\ \

Trader ™~

Capture a
Deal

Salesperson

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

%7 universITY oF TorONTO Felationships between use cases

<<extends>> one use case adds behaviour to a base case

— used to model a part of a use case that the user may see as
optional system behaviour

— also models a separate sub-class which is executed conditionally
<<uses>> one use case invokes another

— used to avoid describing the same flow of events several times

— puts common behaviour in a use case of its own

Print
Campaign
Summary

<<extends>>

Check Campaign
Budget

<<uses>>N\
Find Campaign

% The Edward S. Rogers Sr. Department

K of Electrical & Computer Engincering
7. UNIVERSITY OF TORONTO

using generalizations

’e

/\

Staff
Contact

/\

Campaign
Manager

» actor classes
— identify classes of actor
* where several actors belong to a
single class

¢ some use cases are needed by all
members in the class

* other use cases are only needed by
some members in the class

/ et compeion) — actors inherit use cases from the
\ \cla\adverl/ I
- class
™~ ——
\ﬁmwm,ml \) * use case classes
contact . . .
S — sometimes useful to identify a
B generalization of several use cases
Assign individual
S 6« to work on a) —
~ NN e

Assign staff towork

to work on a)
campaign

_—— ona campaign
\\@edm of sun\/\7\ -

% The Edward S. Rogers Sr. Department
(2 of Electrical & Computer Engineering
7. UNIVERSITY OF TORONTO

describing use cases

for each use case:

a “flow of events” document, written from actor’s
p.0.V.

— describes what system must provide to actor
when use case is executed

typical contents

— how the use case starts & ends

— normal flow of events

— alternate & exceptional (separate) flow of events

% The Edward S. Rogers Sr. Department
K of Electrical & Computer Engincering
7. UNIVERSITY OF TORONTO

describing use cases (2)

documentation style
— choices on how to elaborate the use case:
* english language description
* activity diagrams — good for business process
* collaboration diagrams — good for high-level design
* sequence diagrams — good for detailed design

% The Edward S. Rogers Sr. Department
[@ of Electrical & Computer Engincering

uNIvERsITY OF ToroNTO detailed use case — description

Buy a Product

Main Success Scenario:

Customer browses catalog and selects items to buy

Customer goes to check out

Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information

Customer fills in credit card information

System authorizes purchase

System confirms sale immediately

System sends confirming email to customer

ONOOAWN =

Extensions:
3a: Customer is Regular Customer
.1 System displays current shipping, pricing and billing information

.2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card

.1 Customer may reenter credit card information or may cancel

% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Enginecering

2 universiTy oF ToronTo detailed use case — diagram

broase Sy

3
@) / o k'\;"\' —
’t \\\\ '/1 kout) &nidess /Catealss
‘ hec Ko e,
Cuslemav”\ < Aleduiugy
— y—) -
%, C‘) ((astborrce
: v P Al ¢ parheta
5 &7 A E I
2 7 autherza™
2 \ rchaSe
: T :
' rowwﬂ‘ "”‘"Lz» \
\ o
\ L h
T S‘-'/.es(.\ / 7:
/ + Packs >
emaz\ €O Pravres Crodid card
K_,/ CEvpun

% The Edward S. Rogers Sr. Department
[@ | of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

finding use cases

» browse through existing documents
— noun phrases may be domain classes
— verb phrases may be operations and associations
— possessive phrases may indicate attributes

+ for each actor, ask the following questions:
what functions does the actor require (from the system)?
what does the actor do?

does the actor need to read, create, destroy, modify or store
info?

— does the actor need to be notified about events?
— does the actor need to notify the system about something?
— what do the events require in terms of system functionality?

— could the actor’s work be simplified or made more efficient
if new functions were added?

