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sequence & use case
diagrams
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* as a sketch:
— very selective — informal and dynamic

— forward engineering: describe some concept
you need to implement

— reverse engineering: explain how some part of
a program works
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uses of uml (2)

* as a blueprint:
— emphasis on completeness

— forward engineering: model as a detailed spec
for a programmer

— reverse engineering: model as a code browser

— round-trip: tools provide both forward &

reverse engineering to move back and forth
between design and code

% The Edward S. Rogers Sr. Department
[ @ | of Electrical & Computer Engineering

&% UNIVERSITY OF TORONTO

uses of uml (3)

* as a programming language:
— uml models are automatically compiled into
working code

e executable uml:
https://en.wikipedia.org/wiki/Executable_UML

— requires sophisticated tools
— the model is the code
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class abstraction
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finding dependencies
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things to model

* structure of the code
— code dependencies
— components and couplings

behaviour of the code
— execution traces
— state machine models of complex objects

function of the code
— what function(s) does it provide to the user?
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things to model

* structure of the code
— code dependencies
— components and couplings

* behaviour of the code
— execution traces
e models of complex objects

+ function of the code
— what function(s) does it provide to the user?
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sequence diagrams
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design choices
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object creation and deletion
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interaction frames (2)

Operator Meaning

alt Alternative; only the frame whose guard is true will
execute

opt Optional; only executes if the guard is true

par Parallel; frames execute in parallel

loop Frame executes multiple times, guard indicates how
many

region Critical region; only one thread can execute this
frame at a time

neg Negative; frame shows an invalid interaction

ref Reference; refers to a sequence shown on another
diagram

sd Sequence Diagram; used to surround the whole

diagram (optional)

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engincering

%7 univERsITY OF TorRONTO When to use sequence diagrams

comparing design options

— shows how objects collaborate to carry out a task
— graphical form shows alternative behaviours
assessing bottlenecks

— ex. an object through which many messages pass
explaining design patterns

— mostly an academic exercise (my opinion)
elaborating use cases

— shows how user expects to interact with system

— shows how user interface operates
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* ex. observer pattern
— one-to-many dependency, maintaining consistency
— subject pushes updates to observers

Subject
1 Observer
attach(Observer) >
detach(Observer) observers| update()
Notify() ~__
=== {for all 0 in observers
TB‘ {o.update()} }
Eonooe wre 1 concreteObserver
SUDIeCtState < observerState ~_ .
getState() subject ~~| {observerState =
setState() update() this.subject.getState()}
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spatial layout

— left-to-right ordering of “messages”

— proactive “actors” on left, reactive on right
readability

— keep as simple as possible

— ok to omit obvious return values

— ok to omit object destruction

usage

— focus on critical interactions (part of keep it simple)
consistency

— class names consistent with class diagrams

— message routes consistent with class associations
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use case diagrams
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use case driven design

user stories in agile development
introducing uml into the software process
domain models

* use cases
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what do users want?

» user stories
— used in XP, scrum, etc.
— identify the user (role)
who wants it
* (UI) storyboards

— sketch of how a user will .

As o \'\btqciqn,I
wark to be able

to Search Loc bodks
by publication \ear.

do a task g_,
— shows interactions at each =~

step
— used in Ul design

* Uuse cases

— sets of user features

— uml diagram shows inter-
relationships
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<<extends>> one use case adds behaviour to a base case

— used to model a part of a use case that the user may see as
optional system behaviour

— also models a separate sub-class which is executed conditionally
<<uses>> one use case invokes another

— used to avoid describing the same flow of events several times

— puts common behaviour in a use case of its own

Print
Campaign
Summary

<<extends>>

Check Campaign
Budget

<<uses>>N\
Find Campaign
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using generalizations

’e

/\

Staff
Contact

/\

Campaign
Manager

» actor classes
— identify classes of actor
* where several actors belong to a
single class

¢ some use cases are needed by all
members in the class

* other use cases are only needed by
some members in the class

/ et compeion ) — actors inherit use cases from the
\ \cla\adverl/ I
- class
™~ ——
\ﬁmwm,ml \) * use case classes
contact . . .
S — sometimes useful to identify a
B generalization of several use cases
Assign individual
S 6« to work on a ) —
~ NN e

Assign staff towork
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campaign

_—— ona campaign
\\@edm of sun\/\7\ -

% The Edward S. Rogers Sr. Department
(2 of Electrical & Computer Engineering
7. UNIVERSITY OF TORONTO

describing use cases

for each use case:

a “flow of events” document, written from actor’s
p.0.V.

— describes what system must provide to actor
when use case is executed

typical contents

— how the use case starts & ends

— normal flow of events

— alternate & exceptional (separate) flow of events
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describing use cases (2)

documentation style
— choices on how to elaborate the use case:
* english language description
* activity diagrams — good for business process
* collaboration diagrams — good for high-level design
* sequence diagrams — good for detailed design
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Buy a Product

Main Success Scenario:

Customer browses catalog and selects items to buy

Customer goes to check out

Customer fills in shipping information (address, next-day or 3-day delivery)
System presents full pricing information

Customer fills in credit card information

System authorizes purchase

System confirms sale immediately

System sends confirming email to customer

ONOOAWN =

Extensions:
3a: Customer is Regular Customer
.1 System displays current shipping, pricing and billing information

.2 Customer may accept or override these defaults, returns to MSS at step 6
6a: System fails to authorize credit card

.1 Customer may reenter credit card information or may cancel
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2 universiTy oF ToronTo  detailed use case — diagram
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finding use cases

» browse through existing documents
— noun phrases may be domain classes
— verb phrases may be operations and associations
— possessive phrases may indicate attributes

+ for each actor, ask the following questions:
what functions does the actor require (from the system)?
what does the actor do?

does the actor need to read, create, destroy, modify or store
info?

— does the actor need to be notified about events?
— does the actor need to notify the system about something?
— what do the events require in terms of system functionality?

— could the actor’s work be simplified or made more efficient
if new functions were added?




