x The Edward S. Rogers Sr. Department

k72 of Electrical & Computer Engineering
'~xa>’” UNIVERSITY OF TORONTO

software modeling




o,

% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering .
%) UNIVERSITY OF TORONTO modelmg

« one thing that we as software engineers
can do to better understand software is by
using models

* many choices when building models
— multiple modeling “languages”
— graphical/textual

— diagrams — ER diagrams for data, class and
object diagrams in OOP.

— ad-hoc
* in this course we'll study some UML




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

LU L]

%) UNIVERSITY OF TORONTO modeling (2)

« uml as defined by wikipedia:

“UML is a standardized general-purpose modeling
language in the field of object-oriented software
engineering. The UML includes a set of graphic notation

techniques to create visual models of object-oriented
Software-intensive systems.”

» caveat: how often do | use (strict) uml?

“...In his eighteen years as a professional programmer,

Wilson had only ever worked with one programmer who
actually used it voluntarily .” — Two Solitudes lllustrated,
Greg Wilson & Jorge Aranda, 2012

* regardless, software models are very useful




The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO why build models?
* modeling can guide your exploration:
— can help figure out what questions to ask

— can help reveal key design decisions
— can help uncover problems
* modeling can help us check our understanding:
— reason about the model to understand its consequences
* does it have the properties we expect?
— animate the model to help visualize software behavior
* modeling can help us communicate:

— provides useful abstractions that focus o the point you want
to make...

— ...without overwhelming people with detail
« throw-away modeling
— making the model is more important than the model itself

— time spent perfecting models is probably time wasted



The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

m!ﬂ UNIVERSITY OF TORONTO maps as abstractions




&%ﬁéﬁ The Edward S. Rogers Sr. Department

<

of Electrical & Computer Engineering

A




The Edward S. Rogers Sr. Department
# | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO dealing with problem Complexity

« abstraction
— ignore detail to see big picture
— treat objects as the same by ignoring certain differences
— (beware: every abstraction involves choice over what is important)
 Decomposition
— partition a problem into independent pieces to study separately
— (beware: the parts are rarely independent really)
* Projection
— separate different concerns (views) and describe them separately
— different from decomposition — does not partition problem space
— (beware: different views will be inconsistent most of the time)

 Modularization

— choose structures that are stable over time, to localize change
— (beware: any structure makes some changes easier & others harder)




The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO unified modeling language

 third generation OO method
— Booch, Rumbaugh & Jacobsen are principal authors
« still evolving (maybe) — version 2.0
e attempt to standardize proliferation of variants
— purely a notation
* no modeling method associated with it
* intended as design notation
— has become (more or less) and industry standard
* primarily promoted by IBM/Rational (who sell lots of UML
tools/services)
 Has a standardized meta-model

— use case diagrams, class diagrams, sequence diagrams,
state chart diagrams, activity diagrams, component
diagrams, package diagrams, deployment diagrams,...




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO unified modeling Ianguage (2)

State Charts ) Harel 1987
Ada/Booch

Booch m l OOSA l
1990 Wirfs-Brock ShiaerMellor
Booch '91 — _(OMT
Methodologies gn u.a. (@3
proliferate - Jacobsen Gibson/Goldberg Coad/Yourdon
Booch '93 Fusion
Coleman OODA
Booch (oMT '94 N\ ((OOSE 94 Martin/Odell
Rumbaugh
1995 OOPSLA '95 m‘
; 44
Mature practice w3 amicos” (UML 0.9 (SOMA ) (MOSES |
Graham Henderson-Seller:
At Unified Colemanu.a. Open-Group
Standardization Proce
Accepted by 1ISO Okt.2000 [ UML 1.3 RUP_’__OEP
Published Nov. 2000 [ UML 1.4
March 2003 | UML 1.5
2005 2005( UML 2.0
Executable
Language UML
: 2007( UML 2.1.2
proliferate : \[ SysML 1.1 ) ( BPMN 1.1

2008 | UML 2.2




g% The Edward S. Rogers Sr. Department

o of Electrical & Computer Engineering
X&) UNIVERSITY OF TORONTO

modeling notations

UML Class Diagrams
information structure

relationships between
data items

modular structure for
the system

UML Package Diagrams
Overall architecture

Dependencies

E - between components

i

|

Use Cases
user’s view
Lists functions

visual overview of the
main requirements

(UML) Statecharts

responses to events
dynamic behavior

event ordering,
reachability,
deadlock, etc

UML Sequence Diagrams

r—y

individual scenario

interactions between

users and system

4

LEERE L] . ; qu_ﬁb_‘

Sequence of
messages

d’llllll Y

Activity diagrams
business processes;

concurrency and
synchronization;

dependencies
between tasks;




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO object classes in uml

Source: Adapted from Davis, 1990, p67-68

Generalization Aggregation
(an abstraction hierarchy) (a partitioning hierarchy)
:patient
:patient Name
Dale of Birth
Name _ physician
Date.o.t Birth history
physician
history
JANWAY 6o (D
1 .2 0.2
in-patient -out-patient :heart :kidney :eyes
Room Last visk Naturalartif. | | Natural/artit. | | Naturavarti.
Bed next V'S'ti Orig/implant Orig/implant Vision
Treatments prescriptions normal bpm number colour

food prefs




% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO parts of a diagram

:eye
Class name aggregation Colour
0..2| Diameter
Correction
multiplicities
: - 0..1 :kidney
attributes R g ——
=] Dpate of Birth el
M 0..1
Height <>
: Weight 1.2
services 0.1
aal heart
3 _q_-——"
generalization 1 g%g?f’t'yggm
:In-patient :Out-patient
Room Last visit :organ
Bed next visit Natural/artif.
Physician physician Orig/implant

donor




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO what are classes?

« a class describes a group of objects with
— similar properties (attributes)

— common behavior (operations)
— common relation
— and common meaning (semantics)

 example

— employee: has a name, employee number and department;
and employee is hired and fired (not very nice!); can work on
one or more projects

:employee ...
Attributes ... nhame | Name (mandatory)
. I TH e Lemplovee#
(optional) ..., | .deppart)r/nent
hire() v, .
ﬁre() ....................... <...I1'2':.:‘3_'.','.“Operat|ons
assignproject() o (optional)




g% The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO full class notation
Attribute :
type Name of the class
Attribute \ Z
name Student .
Other Properties
\\ \ / %
+ name: string [1] = “Anon” {readOnly}
R /+ registeredin: Course ["]
Visibility: \\ Default value
+,-,#, ...
+ register (c: Course) ™~ Multiplic ity
+ isRegistered (c: Course) : Boolean

A A L
Operation / / \

name Return value
Parameters




#% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

%) UNIVERSITY OF TORONTO ObjECtS vs. classes

 instances of a class are called objects

— objects are represented as: I Fred Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

— two different objects may have identical attribute values (like two
people with the same name and address)

« Objects have associations with other objects

— ex. Fred Bloggs:employee is associated with the
KillerApp:project object

— but we will capture these relationships at the class level (why?)
— note: make sure attributes are associated with the right class

* ex. don’t want managerName and employee# as attributes of a
project (why?)




#% The Edward S. Rogers Sr. Department
# | of Electrical & Computer Engineering

XJ UNIVERSITY OF TORONTO

generalization

Grade

SteffMember
{abstract}

<« alocated  0.* | staffName
staffNo

‘ gradeName

Superclass
associations are
inherited by
subclasses

» subclasses inherit attributes,
associations & operations
from the superclass

calculating bonuses

have no instances

CreativeStaff

Pl
4
’

staffStartDate

«€---- A superclass

calculate Bonus ()
assignNewStaff Grade ()
getStaffDetails ()

Two
subclasses
- ]
!
1

v

AdminStaff

CreativeStaff

calculateBonus ()

qualification

calculateBonus ()
assignStaffContact ()

e a subclass may override an inherited aspect
— ex. AdminStaff & CreativeStaff have different methods for

— implies the subclasses cover all possibilities
— ex. there are no other staff than AdminStaff and

* superclasses may be declared {abstract}, meaning they



The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

& universITY OF ToRONTO  dggregation & composition

e aggregation

— this is the “has-a” or whole/part relationship

e composition

— strong form of aggregation that implies ownership

‘Engine

composition

-Car "'—

0..1

 if the whole is removed from the model so is the part
* the whole is responsible for the disposition of its parts

‘Locomotive| ; -

@ Tran

‘Person

| . driver
aggregation

0.~

— <

]

passengers



g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

% UNIVERSITY OF TorRONTO dggregation & composition (2)

aggregation
Club <>/ y Member W
. ' this mean??
composition
Polygon {ordered} Point centre Circle
' 3. < 1

Note: No sharing - any instance of point can
be part of a polygon or a circle, but not both




The Edward S. Rogers Sr. Department
# | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO associations

« objects do not exist in isolation from one another
— a relationship represents a connection among things

— in UML there are different types of relationships:

e association, aggregation & composition, generalization,
dependency, realization

« class diagrams shoe classes and their relationships

<<emity>>
Client <<entity>>

companyAddress Campaign <<entity>>
companyName 1 0.* |Htitle 1 0.* Advert
company;elephone campaignStartDate
companyFax AN
companyEmail places campaignFinishDate |  ¢oncycted by 2etctomplelt:g()n

. . getCampaignAdverts() reateNewAdvert()
gelClgenlCampangns() addNewAdvert()
getClients()




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

UNIVERSITY OF TORONTO association multiplicity

« ask questions about the associations:
— can a campaign exist without a member of staff to manage
it?
* if yes, the association is optional at the staff end — zero or
more (0..*)

* if no, then it is not optional — one or more (1..%*)

 if it must be managed by one, and only one, member of staff —
exactly one (1)

— what about the other end of the association?

* does every member of staff have to manage exactly one
campaign?

* no, so the correct multiplicity is 0..*

* some examples:
optional 0.1 exactly one 1(or1..1)

Zero or more 0..* (or just *) one or more 1..*

range 2..6



g% The Edward S. Rogers Sr. Department

o of Electrical & Computer Engineering
N UNIVERSITY OF TORONTO

class associations

Multiplicity

A client has
exactly one staffmember

as a contact person

Multiplicity

A staff member has
zero or more clients on

His/her clientList

The staffmember's
role in this association
Is as a contact person

Role
The clients' role
in this association
is as a clientList

Name
of the
association .
:Client
StaftMember z companyAddress
staffName 1 - : 0..* | companyEmail
staff# liaises with . — companyFax
staffStartDate | contact > ClientList| companyName
person /‘ companyTelephone
Direction
The "liaises with"
association should be
read in this direction
Role




#% The Edward S. Rogers Sr. Department

of Electrical & Computer Engineering

. UNIVERSITY OF TORONTO examples
Campaign conducted by 0.* Advert
>
Grade allocated to StaffMember
deN staffName
gradeName . , | staffNo
1. < 0.. staffStartDate
Hand contains Card
0..1 > 1.7




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

m UNIVERSITY OF TORONTO navigability / visibility

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderLine ["] {ordered}

0.1 " 1

Date S : Order : > Boolean
+dateReceived +isPrepaid

* | +lineltems {ordered}

OrderLine




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

m UNIVERSITY OF TORONTO bidirectional associations

0.1 x
Person Car
Person Car
+ carsOwned: Car [] + Owner: Person [0..1]

hard to implement correctly




g% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

. UNIVERSITY OF TORONTO dependencies

— Model
I
I
I
View -———————> ViewController +———- |
I
I
I
|
——— Layout
 Examples
<<call>> <<derive>> <<refine>>
<<use>> <<instantiate>> <<substitute>>
<<create>> <<permit>> <<parameter>>

<<realize>>




#% The Edward S. Rogers Sr. Department

o of Electrical & Computer Engineering
& UNIVERSITY OF TORONTO

interfaces

Lineltems ["]

Lineltems [*]

<<interface>>
Collection
equals
add
/\
Order <<requires>> <<|nt§rface>> <<implements>> ArrayList
__________ List el
- get
get add
Collection
List (f
Order P .
O ArrayList




The Edward S. Rogers Sr. Department
@ | of Electrical & Computer Engineering

XY UNIVERSITY OF TORONTO annotations

« comments
— -- used to add comments within class description

* notes

Date Range

{length = start - end} Start: Date
TS~ End: Date
/length: integer

e constraint rules
— any further constraints {in curly braces}
— ex. {time limit: length must be less than 3 months}




#% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

& universiTy oF ToronTo WHhat class diagrams can show

 division of responsibility

— operations that objects are responsible for providing
* subclassing

— inheritance, generalization
« navigability / visibility

— when objects need to know about other objects to call
their operations

e aggregation / composition

— when objects are part of other objects
« dependencies

— when changing the design of a class will affect other classes
 Interfaces

— used to reduce coupling between objects




#% The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering

UNIVERSITY OF TORONTO static vs. dynamic modeling

« static captures fixed, code-level, relationships
— class (and package) diagrams
— object diagrams
— component diagrams
— deployment diagrams

* behavioral diagrams capture dynamic,
execution time, relationships

— use case diagrams

— sequence and interaction diagrams
— collaboration diagrams

— statechart diagrams

— activity diagrams




#% The Edward S. Rogers Sr. Department

%J UNIVERSITY OF TORONTO summary

e summary on modeling
— important to use modeling during design

— modeling can be helpful to discover design and
architecture (al)

— as with most things, it can be taken too far

— the model should provide an easier to consume
abstraction

— strict uml is good when publishing designs for
external consumption even if you don’t use it
yourself




