CSC302 Engineering Large Software Systems page 1/14

Faculty of Arts and Science
University of Toronto

Midterm Test

Department: Computer Science
Instructor: Matt Medland
Date & Time: 10:10 am - Tuesday, Feb 26, 2013

Conditions: Closed Book
Duration: 50 minutes

This test counts for 15% of your final grade

Name:

(Please underline last name)

Student Number:

Question Marks

1 /25
2 /25
3 /10
4 /10

Total /70 = %

CSC302 Engineering Large Software Systems page 2/14

1. [Modeling Questions, 25 marks Total]

(a) [Why Build Models? - 5 marks] As software developers, we
often build models during design and/or we reverse-engineer them
from an existing system. List five (5) reasons for building these
models.

One mark for each, up to five (5). Some examples:
* Abstraction: ignore some details to get the big picture
* Decomposition: break a problem into manageable chunks

* Modularization: break into packages/modules of related
functionality

* Communication: discuss design alternatives with others
* Discovery: help to figure out what questions to ask

* Problem identification: find problems earlier

* Other reasonable answers acceptable too...

(b) [UML Diagram Types - 5 marks] Briefly describe what each of
the following types of UML diagrams are typically used for:

* Use case diagram
Show interactions between roles/actors and the system.
* (Class diagram

Depicts a system’s classes, attributes, operations and
relationships

* Sequence diagram

An interaction diagram showing how classes operate with each
other and in what order.

* Package Diagram
Depicts dependences between packages/modules in a given model.
* Robustness diagram (not really UML)

Helps to bridge the gap between requirements & design. Generally
between use case & sequence diagram. Throw them away when done.

CSC302 Engineering Large Software Systems page 3/14

(c) [UML Class Diagram Elements - 10 marks] Identify as many of
the items from the list in the UML class diagram. Marks will be
awarded for correct identification, and subtracted for incorrect
answers. Not all elements in the list appear in the diagram.

Class Diagram Elements

* generalization e composition * public attribute

* object return type * aggregation * public operation

* private attribute * exception e multiplicity

* private operation * class name e visibility modifier
* realization * stereotype * primitive attribute

* protected operation ¢ dependency

:automobile

-make:String
-model:String
-year:int

-colour:Colour 0..1 2

:headlight

#startEngine() :bool
#turnoff():void
+getYear():int
+getColour:Colour

/\

:sedan

numDoors

getNumDoors ()

CSC302

(d) [Multiplicity - 5 marks] Relationships in UML diagrams often
have multiplicities associated with them. Briefly describe, in
what each of the multiplicities below mean. Marks are
for correct answers and subtracted for incorrect answers.

English,

awarded
Maximum

* 0.

Zero or
e 1

Exactly

Engineering Large Software Systems

of five (5) marks.

.1

one

one

* n (Natural number)

Exactly

* 0.

Between

Between

Zero or

* 0..

Zero or

e 1..

n

.n

zero and n, inclusive

one and n, inclusive

more

more

*

One or more

page 4/14

CSC302 Engineering Large Software Systems page 5/14

2. [UML Diagrams, 25 marks Total]

(a) [Design Patterns & Sequence Diagrams - 15 marks] Recall from
the lectures that we created a UML sequence diagram from the
Observer pattern. See Figures 1 & 2 below for a refresher.

Subject
1 x Observer
attach(Observer) >
detach(Observer) observers | update()
Notity() ~_
====_| {for all o in observers
{o.update()} }
concretesibiect concreteObserver
subjectState ,1
< ObseNerState Swg {observerState -
getState() subject this.subject.getState()}
setState() updae() |
Figure 1: Observer Pattern Class Diagram
a Concrete X : Concrete y : Concrete
Subject Observer Observer
l | I
L <——setState() i
|
:
— . l
notify() : :
| |
par update() -1 l
i
«—getState() !
............ L e e
___update() ' >
|
|
« getState() l J
T l .
L l l

Figure 2: Observer Pattern Sequence Diagram

CSC302 Engineering Large Software Systems page 6/14

For this question, you are to draw a sequence diagram for the
Iterator pattern. The class diagram for Iterator is shown in
Figure 3 below. Use page 7 (and the scratch paper at the back of
this package, if necessary) to draw a UML Sequence diagram
representing the Iterator pattern.

Hints:

* you do not need abstract classes or interfaces in your diagram
* you will need at least one interaction frame

* there 1is one message to which you can apply a stereotype

Aggregate Iterator
Client
+createlteraton():Iterator +first():Object
+next():Object

+isDone(X boolean
+curentitem ():Object

A

ConcreteAggregate Concretelterator
+createlteraton():Iterator +first():Object
) +next():Object

+isDone(X boolean

Iterator createlterator() { +curentitem (): Object

return new Concretelteratorhis)

1

Figure 3: Class Diagram for Iterator Pattern

Marks for: (1) Exactly three objects in diagram (2) Client’s call
to ConcreteAggregate.createlterator() as solid arrow, and lower
than other objects because it didn’t exist at beginning (3) Call
to ConcreteIterator’s constructor with solid arrow, labeled as
“new” (or similar), and <<create>> stereotype (4) return dashed
line with type Iterator (5) loop interaction frame (6) loop shows
end condition (7) calls inside loop show asking for and returning
Objects. May also call other Iterator methods, and use other
interaction frames as long as it makes sense.

page 7/14

Engineering Large Software Systems

CSC302

[answer question 2(a) here]

a2 B0 e

—

.

+Jd.u)h* “,Hw :.&5*’&

|
_

e R S o e -

A et

.

()R

n ,vwf..uﬂn_. Fou A _.r m

/
ﬁ

Joo

1

S

{
{
I
!

<R y> o

e

~AAU

— -
— —

|

\.%iﬂ%%f&ﬁzuﬂmQ

e

TORPADIRES L

I

CSC302 Engineering Large Software Systems page 8/14

(b) [Use Case Diagrams - 10 marks] Draw a UML Use Case diagram
for the detailed use case discussed in lecture below. Use page 9
(and the scratch paper at the back of this package, if necessary)
to draw the Use Case Diagram.

Use Case - Buy a Product

1. Customer browses catalog & selects items to buy

. Customer goes to check out

. Customer fills in shipping information (address,
next-day or 3-day delivery)

. System presents full pricing information

. Customer fills in credit card information

. System authorizes purchase

. System confirms sale immediately

. System sends confirming email to customer

w N

0NV B

CSC302 Engineering Large Software Systems page 9/14

[answer question 2(b) here]

One possible solution below. There are many others.

- \
~” g \
g ™~ " 2 Lot
(o rien, {32
_CcoXolok -
7 ‘—-—” -
(JLE
'v-’ 3 — <y [... v
\",pq / 4 1L >
\' / - kL\'L - A SR

\ V= 3 57 P Y
= - o

\ \’r‘;_/ e\\L% apthorize |\
\\ X \\@: cec ! nyo .C(iu,y\h'a"n.k

N ___/
\, '%\ J auu“}f' l‘:;g\\ :
\ =))
\ =§‘| \ wihaSe
\ \\?

i Fo,q e PL\,‘ «"’"‘%s b3S ‘.‘\
\ .
\ O
‘ |

PresS N / A

Zacks s
Crodid oy r}
/';:‘r",:{lM ,./

Marks for: (1) completeness: all use cases listed (2) show all
the <<includes>> for checkout (3) acknowledge the external
<<actor>> representing the credit card company (or equivalent),

and (4) optionally show some <<extends>> relationships, and
generally (5) it makes some sense.

CSC302 Engineering Large Software Systems page 10/14

3. [Software Process, 10 marks Total]

List, and discuss in a few sentences, at least three (3) factors
to consider when selecting an appropriate software development
process (ex. XP, waterfall, etc.) for a particular software
development project.

Listed below are a few sample answers. Many others are also
accatpable...

Is the development mainly experimental, or will it become a
commercial/open-source product with users other than the
developers themselves? If the project is experimental, or a
“spike,” then no formal process is needed at all. If not, then
more thought is required.

Risk factors. Could someone get hurt or die if the software
doesn’t work correctly? If so, then agile methods may not be as
appropriate as a more regimented waterfall-like process. This is
not to say that agile methods cannot be used at all, but more
care would need to be taken if, for example, Scrum was the chosen
process.

Deployment method. One extreme being Software-as-a-Service (SaaS)
and the other is a scenario where a skilled install technician
brings the software (and possibly the hardware) to the install
site, and performs the installation there. Commercial off-the-
shelf (COTS) is somewhere between these extremes. Agile methods
like XP and Scrum are often the best choice for SaaS because they
tend to allow the development team to do more frequent releases.

Do the developers and the stakeholders understand the problem,

and potential solution, well? If not, then a process that lets

the stakeholders participate in early UAT might be best. Strict
Waterfall (or Spiral for first release) may be a bad choice in

this case because UAT only happens at the end, when correcting

design mistakes is much more expensive.

CSC302 Engineering Large Software Systems page 11/14

4, [Verification and Validation (V&V), 10 marks Total]
As discussed in class, Verification and Validation, or V&V, is
often referred to as IV&V, where the I stands for Independent.
This means that those responsible for V&V are independent from
those who are responsible for producing the product. Independence
is typically broken down into three categories:

* Managerial Independence

* Financial Independence

* Technical Independence
In the space below, describe each type of independence and why it
is important to get unbiased V&V. Also, for each type of
independence, give an example of something that can go wrong if
you don’t have it.

Managerial: The V&V team and the R&D team do not share any
reporting structure. This is important so that you don’t have a
manager in charge of both that will bias one over the other.
Without this independence, the R&D manager may cut effort from
V&V in favor of adding more features, and quality will suffer.

Financial: R&D and V&V funding comes from totally independent
budgets. If they came from the same budget, funds from one could
be diverted to the other. If funds are diverted from V&V quality
will again suffer.

Technical: The staff performing V&V activities are not the same
people as those performing R&D tasks. Further, the V&V staff do
not take technical advice or direction from R&. If there was no
technical independence, the R& team may influence the V&V team’s
technical decisions, tools they employ, and bug finding
strategies. This could increase the probability that bugs hidden
to developers would also remain hidden to V&V staff.

CSC302 Engineering Large Software Systems page 12/14

[scratch paper]

CSC302 Engineering Large Software Systems page 13/14

[scratch paper]

CSC302 Engineering Large Software Systems page 14/14

[scratch paper]

