CSC302H1S Engineering Large Software Systems page 1/16

UNIVERSITY OF TORONTO
Faculty of Arts and Science

APRIL 2013 EXAMINATIONS
CSC302H1S
Duration - 3 hours

No Aids Allowed

Department: Computer Science
Instructor: Matt Medland

This test counts for 35% of your final grade

Name:

(Please underline last name)

Student Number:

Question Marks

/10
/35
/15
/15
/25
/25
/30

NoupbhwNneBR

Total /155 = %

CSC302H1S Engineering Large Software Systems page 2/16

1. [Large Software Systems, 10 marks Total]

(a) [Measuring Software Size - 5 marks] The focus of this course
is developing large software systems. As discussed in lecture,
there are many ways one might think about the size of a software
development project or system. List at least five (5) metrics
that could be used to classify the size of a software system.

Lines of code (LOC), number of developers, person-hours of
effort, number of users, number of processors running the
software, number of bugs, etc.

(b) [A Better Definition - 5 marks] Size alone, as measured by
one or more of the metrics listed in (a) above, does not
necessarily mean that the software is an appropriate candidate
for the tools and techniques taught in this course. Give a better
definition of the type of software system we are concerned with
in this course.

Any software that is considered non-trivial, and that benefits
from proper planning and tools. This software is usually used by
someone other than the developer. The software is usually subject
to multiple releases and revisions. The software is classified as
E-type (Embedded) by Lehman.

CSC302H1S Engineering Large Software Systems page 3/16

2. [UML Diagrams, 35 marks Total]

(a) [Reverse Engineering UML Class Diagrams - 20 marks] Given the
three classes below, draw a UML class diagram showing all fields,
modifiers, types, operations and relationships between them. Use
page 4 (and the scratch paper at the back of this package, if
necessary) to draw your class diagram.

public class Node {
protected Node 1lchild, rchild;
protected double value;

public Node(double value) {
lchild = null;
rchild = null;
this.value = value;

public abstract class AbstractTree {
protected Node root;
public abstract void insert(Node n);

public class Tree extends AbstractTree {
public void insert(Node n) { ... }

CSC302H1S Engineering Large Software Systems page 4/16

[answer question 2(a) here]

:Node 1
:AbstractTree <i:>

#1child:Node

#root:Node <<:>:____i> #rchild:Node

+insert(n:Node):void #value:double

+New(value):double

:Tree

+insert(n:Node):void

Marks for: (1) all attributes identified (2) all operations
identified (3) at least one constructor, preferably for the Node
class shown (4) all visibility modifiers shown (5) operations
parameter and return types shown (6) attribute types (7) all
three classes shown with class names (8) Tree->AbstractTree
generalization (9) AbstractTree<>->Node aggregation, and (10)
correct multiplicities (11) Node<>->Node aggregration, and (12)
correct multiplicities.

CSC302H1S Engineering Large Software Systems page 5/16

(b) [Sequence Diagram, Interaction Frames - 10 marks] Within a
sequence diagram, there is often a need to group a set of
messages together. These groupings are sometimes referred to as
Interaction Frames, or Combined Fragments. The most common reason
for using one of these frames is to show alternate, or repeated
execution based on a given guard expression. We had an example of
this in the midterm test where we used a loop frame with guard
[!isDone()] while modeling the Iterator pattern. Give the
definition for the following five (5) most common frame types:

e alt

Conditional execution like an if-statement with an else clause.

e opt

Like an if with no else.

* par

Messages in this frame can occur in any order or at the same
time.

* loop

Iterative execution of statements in frame.

* region

Ctitical section or “region” of code that can only have one
thread executing the messages at a time.

CSC302H1S Engineering Large Software Systems page 6/16

(c) [Sequence Diagram Uses - 5 marks] As software designers,
sequence diagrams are very useful tools to help shed light on
possible implementation problems, and for getting one step closer
to implementation from design. List a couple development
activities where sequence diagrams can help us, and how. Although
not required, it may help to think of some of the definitions
from the previous question.

ex. Comparing design options: sequence diagrams graphically
depict alternative behaviors and messages using alt frames.

Finding bottlenecks and potential performance issues. A sequence
diagram can show if one object has a disproportionate number of
messages routed through it, and hence it may be responsible for
too much and could become a performance issue.

Elaborating use cases. Shows how the user interface functions and
how the user expects to interact with the system.

Depicts opportunities for multi-threading and parallelism. Use
case diagrams do not show this explicitly, but sequence diagrams
can use par frames.

Other reasonable answers possible

3. [Software Processes, 15 marks Total]
(a) [Waterfall - 5 marks] List some of the problems or drawbacks
associated with the waterfall model.

Static requirements, ignores that they may change. Lack of user
involvement between specification and UAT at the very end.
Unrealistic separation of specification from design. Awkward, and
inefficient that each step must be complete before moving on to
the next. Often progress is tracked using Gantt charts.

Other reasonable answers possible.

CSC302H1S Engineering Large Software Systems page 7/16

(b) [Gantt Charts - 10 marks] Gantt charts are often used to do
project planning, and in particular they are popular when using a
waterfall-like software process. What are some of the potential
problems associated with using Gantt charts when managing a
software development project?

They contain too much detail for early stages, ex. who is
assigned to what task, the prerequisites between tasks, etc.
Gantt charts take a very long time to develop and are very
difficult to change. Developers can (more or less) be used
interchangeably so it does not matter who is assigned to what
throughout the entire release cycle. Gantt charts only contain
implementation tasks, not used for testing or other activities.

4, [Risk Assessment, 15 Marks Total]

Ideally, we would like to assess risk by quantitatively
calculating each individual risk exposure and the leverage of
each mitigating action. In some cases this is either impractical
or impossible. In the cases where a quantitative calculation is
not feasible, describe what types of risk assessment can be done,
and what tools we can use. Give an example risk exposure matrix
using the Therac-25 X-ray device discussed in lecture.

Qualitative analysis is the alternative if quantitative is not
possible. Explain qualitative analysis a bit...

Likelihood of Occurrence

Very Likely |Possible Unlikely
o Patient dies Catastrophic Catastrophic FSEEEE
:é v Suffers permanent Catastrophic BSIAYEgE Severe
LS injury
w £ | Patient injured Severe Severe High
T © | Temporary discomfort |High Moderate Low
= X-Ray takes too long | Moderate Low Low

Marks given if the undesirable outcomes make sense given the
context (i.e. they are bad effects on patient). The risk scale
(ex. High, medium, low) must be appropriate as well.

CSC302H1S Engineering Large Software Systems page 8/16

5. [Testing, 25 Marks Total]

(a) [Usability Testing - 10 marks] During verification &
validation, or V&V, we often have users test a prototype and
observe their activities. This is often referred to as usability
testing. As discussed in lecture, it was suggested by Jakob
Neilson that the best number of users for such activities is
between three (3) and five (5). However, it is not necessarily
true that 3-5 is the correct number all the time. List some
factors to consider when determining the number of testers for a
particular system, and why they are important.

Age of the system and its current stability level. If it is a
brand new system that has never been released before there are
likely quite a few easy to find bugs. May want to limit to only a
few people at first expecting each of them to find large numbers
of defects.

Expert level required to use the system. If you are developing a
flight simulator you would likely get a lot more valuable
feedback from a single pilot than from numerous members of the
general public.

Cost of each user. Again using the flight simulator example, a
pilot is likely an expensive resource to have testing a system. A
small number of skilled pilots will likely find the same bugs as
a large number of pilots, so best to keep the numbers low to save
money. Neilson’s advice may be appropriate in this case.

Many other acceptable answers.

CSC302H1S Engineering Large Software Systems page 9/16

(b) [Types of Testing - 10 marks] For each type of test listed
below draw a line to the item or concept it is used to verify.

Test Type what it Verifies

<:§E;I;ty Require;;;zgi:>
Integration;;;;\\\ Customer Goals

Functional Test

Code Component X

performance Test Functional Requirements 3

-/

Acceptance Test User Environment

Install Test -) Design Specifications

CSC302H1S Engineering Large Software Systems page 10/16

(c) [Test Coverage - 5 marks] Briefly describe the differences
between structural coverage (white box) and functional coverage
(black box) testing. Emphasis here is on Coverage.

Structural coverage means that every part of the code, including
all conditional branches, is covered by some test case.
Functional coverage typically means that every type of input is
tested, including valid input, edge (or corner) cases and error
cases.

6. [Software Quality, 25 Marks Total]

(a) [Capability Maturity Model - 15 marks] Name, and give a brief
description of, each of the five (5) levels of the Capability
Maturity Model (CMM).

One mark for the name, and two for a good description.

1. Initial: Ad-hoc development with no estimation or project
management to speak of.

2. Repeatable: Process depends on individuals in the group.

3. Defined: There is a documented process in place and it is used
throughout the software development team/organization.

4. Managed: Process metrics are measured. For example, estimate
vs. actual for feature sizing.

5. Optimizing: Feedback into process for continued improvement.

CSC302H1S Engineering Large Software Systems page 11/16

(b) [Six Sigma & Software - 10 marks] List some reasons why Six
Sigma might not be appropriate for judging software.

Software processes are “fuzzy” and depend on human behavior. Hard
to establish and measure a degree of conformance. Can’t actually
accurately measure the number of faults in a piece of software.
Prescribes a failure level of 0.0034 faults/KLOC, where the
shuttle had 0.1 faults/KLOC and cost approx. $1,000 per LOC! So
not cost effective, or even attainable?

7. [Release Planning, 30 Marks Total]

(a) [Balanced Resources - 5 marks] A development plan is like a
financial balance sheet. In finance, the sheet is balanced if
your payables are equal to your receivables. What is the
counterpart to this in a software development plan?

Your capacity to do development work must be at least as great as
the amount of (estimated) work you have to do.

CSC302H1S Engineering Large Software Systems page 12/16

(b) [The Capacity Constraint - 10 marks] In the lectures, we
defined three (3) quantities that relate to capacity and
requirement. Namely F, N and T. These quantities are related to
each other by the equation F = N x T or, preferably F < N x T.
Give a definition for each of F, N and T and describe how they
relate to software development capacity and requirement.

F is the total amount of feature work planned for a given
release. It is also, by definition, the requirement.

N is the number of developers (8 hour developer-day equivalent’s)
assigned to do feature work on a given release.

T is the amount of time (in days) for a given release.

N x T is the capacity, or rather, the amount of work the team can
accomplish with the given amount of time. N x T should be greater
than F at all times or else the capacity constraint is violated.

(c) [Balancing the Plan - 10 marks] If at some point the plan
becomes unbalanced (i.e. the capacity constraint is violated)
there are some mitigating actions that can be taken. List some of
these actions and their expected effectiveness & consequences.

1. Cut features. This decreases the requirement (F) and can bring
a plan back into balance but has the negative impact of
delivering less functionality to the customer.

2. Extend the deadline for the release. This increases capacity
by giving the existing development team more time (increased T)
but has the negative impact of delaying the availability of the
new functionality to the users.

3. Add developers to the plan. This will increase capacity by
adding more effective developers to the plan (N). This has the
positive effect of delivering on time and the negative effect of
costing more in terms of developer salary. This strategy rarely
works in practice because the new developers have a learning
curve that may nullify their positive contribution.

CSC302H1S Engineering Large Software Systems page 13/16

(d) [When to Take Action - 5 marks (+5 bonus)] It is not usually
a good idea to wait until a plan is out of balance (i.e. capacity
constraint is violated) before taking a mitigating action. Name a
type of graph that can help to make this decision earlier, and
describe how to keep it up to date with current and historical
information. Bonus points for drawing an example.

The burndown graph (or any other equivalent variant) can help the
project manager determine ahead of time when a project could get
in danger and react before a crisis is upon them. The burndown
graph can be used to track progress and essentially take a
derivative of progress to release. This derivative, or rate in
the change of requirement, can help the manager predict when a
problem may occur (i.e. capacity constraint violation) and react
early.

Up to 5 bonus points for a good burndown graph example:

LIKELY VIOLATION OF
CAPACITY CAPACITY CONSTRAINT

START TODAY DEADLINE

CSC302H1S Engineering Large Software Systems page 14/16

[scratch paper]

CSC302H1S Engineering Large Software Systems page 15/16

[scratch paper]

CSC302H1S Engineering Large Software Systems page 16/16

[scratch paper]

