Computer Science
UNIVERSITY OF TORONTO

lecture 14
static analysis

csc302h
winter 2014

é Computer Science
UNIVERSITY OF TORONTO announcements

* a3is posted
* required reading posted
* a2 & midterm being graded

e |ecture series starts this week in tutorial

— attendance is mandatory, counts for
participation, and you won’t want to miss it!

Computer Science

UNIVERSITY OF TORONTO recap from Iast time

« structural testing (a.k.a. white-box testing)
— should be called “clear-box” testing
— based on structure of code
— coverage == all paths through code tested

 functional testing (a.k.a. black-box testing)
— can't see inside
— test cases derived from use cases

 other types of testing:

— data-flow, boundary, usability, acceptance,
exploratory, interference, inheritance, etc.

Computer Science

UNIVERSITY OF TORONTO recap from last time (2)

* test driven development (TDD)
1. developer writes (initially failing) unit tests
2. then, write minimum code to pass unit test

3. then refactor (i.e. write more code) to meet
full specification

« automated testing — definition is obvious

i tend to think of automated testing, TDD, and
regression testing as the same thing, or rather,
parts of a whole. these parts make up what | think
of as “developer testing” and are an essential
practice as far as i am concerned.

&

Computer Science

UNIVERSITY OF TORONTO recap from last time (3)

« when to release?

— depends on context
* how hard/easy to do a release?
* what are consequences of releasing half-baked?
e competition?
— absolute number of defects is maybe not so
important

— arrival & departure rates may be more
Important

— what about defect severities? (didn’t mention
this last time, but it is critical!)

&

Computer Science

UNIVERSITY OF TORONTO static analysis

o static (program) analysis refers to the
analysis of a program’s source code.

o afaik, lint was the first static analysis tool

— lint is almost as old as me!
* but wait, I'm not _that_ old! what gives?

* doesn’'t my IDE just do it for me?
— lets discuss this at the end...

e btw, my first “IDE” was vi (still not older than
me, but very close!)

Computer Science
UNIVERSITY OF TORONTO

PSS e)
UNIX Text Processing

Learning the

ANUTSIIL® By Linda Lamb

&Y

T O'Reilly & Associates, Inc.

l? University of Toronto Department of Computer Science

P Pt

Static Analysis Tools

Where static analysis tools fit

Example tools

Limitations of static analysis

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

University of Toronto Department of Computer Science

Static Analysis

|
s, &0

Analyzes the program without running it

Doesn’t need any test cases

Doesn’t know what the program is supposed to do
Looks for violations of good programming practice
Looks for particular types of programming error

Where it fits as a verification technique:

1) Avoid dumb mistakes
Pair Programming
Code Inspection
Developer unit testing (“test case first” strategy)

2) Find the dumb mistakes you failed to avoid
Style Checkers
— Static Analysis
3) Make sure the software does what it is supposed to
Black box and system testing
Independent testing

(Note: Also need validation techniques!)

,;‘F‘;' © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Q University of Toronto Department of Computer Science

How Static Analysis Works

void print_to_file(string filename)

if (path_exists(filename)) {
// FILENAME exists; ask user to confirm overwrite
bool confirmed = confirm_loss(filename);
if (lconfirmed)
return;

“...should have...” Correctness
I o onerty

Manual Inspection? P
(impractical or impossible)

}
// Proceed printing to FILENAME...

}

Automatically Implies
construct (automatic test
models for of logical
analysis Inference)

HCJEI{‘ Model
TE_ _ —— propeny
\) Automatic check
of derived model

Class structure State Machine Dataflow
and inheritance Model graph

_v(f‘, " © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

e* University of Toronto Department of Computer Science

v Example tools
FindBugs

Originally a research project at U Maryland
Has large number of bug patterns
http:/findbugs.sourceforge.net/

JLint

Developed by Konstantin Knizhnik, updated by Cyrille Artho
http://jlint.sourceforge.net/

PMD (“Programming Mistake Detector”??)
written by Tom Copeland
focuses on inefficient code, e.g. over-complex expressions
http:/pmd.sourceforge.net/

ESC/Java (Extended Static Checker for Java)
Originally developed at Compaq Research
ESC/Java2 is open source, managed at U College Dublin
http://kind.ucd.ie/products/opensource/ESCJava2/

53-,, © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

|% University of Toronto

Department of Computer Science

»

Different tools find different bugs

variable never used

Method result
Is ignored
(detected by

FindBugs)

Don’tuse °
to compare strings
(detected by
FindBugs and
JLint)

(detect by PMD) |

import java.io.¥*;

public class foof{
private byte[] b;
private int length;
Foo(){ length = 40;

b
ublic void bar() {

new byte[length]; }

P

{1 int y;

try {
FileInputStream x
new FileInputStream("Z") ;
| x.read(b,0,length) ;
c.close() ;}

catch (Exception e) {

_{1f (Integer.toString(50

System.out.println("Oopsie") ;}
for(int 1 1; 1 <= length; i++{£//

Byte.toString/(b f{
System.out.print(b[i] + " ")

May fail to close
stream on
exception

(detected by
FindBugs)

Array index
possibly

too large
/(detected by
ESC/Java)
Possible null

—~ dereference
(detected by

ESC/Java)

!e! © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

% University of Toronto Department of Computer Science

v Different tools find different bugs

-

Bug Category Example ESC/Java | FindBugs | JLint | PMD
General Null dereference 4 J s v
Concurrency Possible deadlock S 7 4 v
Exceptions Possible unexpected 4

exception
Array Length may be less than zero J 4
Mathematics Division by zero 4 7
Conditional, loop Unreachable code due to v v
’ constant guard
String Checking equality with == or I= s v 7
Object overriding Equal objects must have equal 4 4 4
hashcodes
I/0O stream Stream not closed on all paths 4
Unused or duplicate Unused local variable v v
statement
Design Should be a static inner class 4
Unnecessary Unnecessary return statement J
statement

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

e University of Toronto Department of Computer Science

v Limitations of Static Analysis

Large numbers of false positives
Tool reports large number of things that aren’t bugs
Programmer must manually review the list and decide
Sometime too many warnings to sort - E.g. Rutar et. al. (approx 2500 classes)

ESC/Java FindBugs JLint PMD
Concurrency Warnings 126 122 8883 0
Null dereferencing 9120 18 449 0
Null assignment 0 0 0 594
Index out of bounds 1810 0 264 0

False negatives

Types of bugs the tool won’t report
(increased risk if we filter results to remove false positives?)

Harmless bugs

Many of the bugs will be low priority problems
Cost/benefit analysis: Is it worth fixing these?

53! © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

? University of Toronto Department of Computer Science

v Which bug is worse?

int x =2, y = 3;

if -(x ==Yy) String s = new (“hello”);
it (y == 3) s = null;
X = 3;
else System.out.println(s.length());
x = 4;
Detected by:
Detected by: JLint,
PMD (if using certain rulesets) FindBugs,

ESC/Java
Not detected in testing
Also detected in testing

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

