Computer Science
UNIVERSITY OF TORONTO

lecture 13:
automated testing

csc302h
winter 2014

Computer Science
UNIVERSITY OF TORONTO

announcements

* midterm in tutorial hour today

location groups
- The Brogrammers
SS1074 M|ssn_19 Brackets
EE—— Solutions
doge++

GB248 (lecture room)| ° SEvRn - 2

Double Double

RW229

+ THE Group
Fantasix
DOGE

b 4 University of Toronto

Department of Computer Sci

Automated Testing

Automated testing
JUnit and family

Testing GUI-based software
Testing Object-Oriented Systems
When to stop testing

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

b 4 University of Toronto

Department of Computer Science

[
;.% p..

.m Kind of Behavior
=" Per Functionality Cross Functional ,
- Acceptance Usability
Business BusirTeg:TI?\tenf Testing
Fadng (Executable Specification) Is it pleusumble?
|, Component Exploratory g@
3 Tests Testin E
w Architect Intent) 9 1
(Design of the System)| IS it self-consistent? N
Technology Unit Property from Mary
Facing Tests .TCSﬁng) p°§§:2°nfa?fci"d
Developer Intent Is it Responsive,
| .(Design of the Code) Secure, Scalable? d
m Support Critique Special-Purpose
‘ Development Product @
Purpose of Tests

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

_Q University of Toronto Department of Computer Science

Automated Testing

Source: Adapted from Liskov & Guttag. 2000, pp239-242

Where possible, automate your testing:
tests can be repeated whenever the code is modified (“regression testing”)
takes the tedium out of extensive testing
makes more extensive testing possible

Will need:

test drivers - automate the process of running a test set
sets up the environment
makes a series of calls to the Unit-Under-Test (UUT)
saves results and checks they were right
generates a summary for the developers

May need:
test stubs - simulate part of the program called by the unit-under-test
checks whether the UUT set up the environment correctly
checks whether the UUT passed sensible input parameters to the stub
passes back some return values to the UUT (according to the test case)
(stubs could be interactive - ask the user to supply return values)

? University of Toronto

Department of Computer Science

Automated Testing Strategy

Source: Adapted from Meszaros 2007, p66

Direct “Come] points Indirect gbservation points

TestCase

Fixture Test Double

»!

Setup

with ,fetum value)

! | / vxercise (
T gyt P DOC

Exercise 4 ot || Depended
/ / Under / [on
| / Test N Component
Ve ri f] /Do something
Yy Get Stafe (no return vz(vilue
Teardown Indirect control point

Direct observation points

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

E © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

_9 University of Toronto Department of Computer Science

v Principles of Automated Testing

Source: Adapted fom Meszaros 2007, p30-43
Write the Test Cases First Isolate the UUT

Minimize Test Overlap

Check One Condition Per Test

Test Concerns Separately

Design for Testability

Use the Front Door First
test via public interface
avoid creating back door manipulation

Minimize Untestable code
e.g. GUl components
e.g. multi-threaded code

Communicate Intent
Tests as Documentation!
Make it clear what each test does

etc
Don’ t Modify the UUT . .
avoid test doubles Keep test logic out of production
avoid test-specific subclasses code

(unless absolutely necessary) No test hooks!

Keep tests Independent
Use fresh fixtures
Avoid shared fixtures

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

_9 University of Toronto

Department of Computer Science

Testing interactive software

1) Start the application (e.g. UMLet)

(ene _ UNLet - New Diagram .
[l Gah bk imart s sl 1) rueis. | etmt_oulere ot o] |

Simpieciass | [AbsmaciCiass

2) Click on
File -> Open

4) click Open

Dowbie-click on & UNL element 10 the right —
304 it the dagras I models :

Name. &l DuteModtied

$12.uxf Tuesday, March 25, 2008 108 AW

File Format | UMLet diagram format (*.ux ¢)

(Cancel) fon

3) select test2.uxf

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

(S &

L 4 University of Toronto Department of Computer Sci

Automating the testing

Source: Adapted from Zeller 2000, p57

Challenges for automated testing:
Synchronization - How do we know a window popped open that we can click in?
Abstraction - How do we know it’ s the right window?
Portability - What happens on a display with different resolution / size, etc

Manual /
tests ;&. //"
ﬁ </

‘ Functlonallty
r/

! !

Automated
tests

® University of Toronto Department of Computer Science

L Testing the Presentation Layer

Source: Adapted from Zeller 2000, chapter 3

Script the mouse and keyboard events
script can be recorded (e.g. “send_xevents @400,100”)
script is write-only and fragile

Script at the application function level

E.g. Applescript: tell application “UMLet” to activate
Robust against size and position changes
Fragile against widget renamings, layout changes, etc.

Write an API for your application...
Allow an automated test to create windows, interact with widgets, etc.

Units
m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11 m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12
? University of Toronto Department of Computer Scil % University of Toronto Department of Computer Science
‘ How to Test Object Oriented Code? Inheritance Coverage
Source: Adapted from IPL 1000
Encapsulation
If the object hides it' s internal state, how do we test it? [coverage achievea by testing Deriveaa
Could add methods that expose internal state, only to be used in testing . Coverage achieved by testing DerivedB
But: how do we know these extra methods are correct?
Inherited methods not exercised
Inheritance o
. Misleading coverage reported by
When a subclass extends a well-tested class, what extra testing is needed? traditional structural coverage metrics
e.g. Test just the overridden methods?
But with dynamic binding, this is not sufficient
e.g. other methods can change behaviour because they call over-ridden methods
. DerivedA DerivedB
Polymorphism -
When class A calls class B, it might actually be interacting with any of B's Inherited methods Inhented methods
subclasses...
New methods New methods
15 Ee©] ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

? University of Toronto

Department of Computer Science

Consider this program...

Source: Adapted from IPL 1999

Base

+foo()
+bar()
-helper()

1

Derived

}

-helper()

}

class Base {

class Derived extends Base {

public void foo() {

. helper(); ...

}

public void bar() {
. helper(); ...

}

private helper() {...}

private helper() {...}

‘m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

Department of Computer Science

_9 University of Toronto

& 2

Test Cases

Source: Adapted from IPL 1999

public void testFoo() {

}

public void testBar() {

Base b = new Base();
b.foo();

Derived d = new Derived() ;
d.bar();

}
Base

+foo() -- Exercised in testFoo
+bar() -- Untested!
-helper() -- Exercised in testFoo

Derived
{+#foo()} -- Untested!
{+bar()} -- Exercised in testBar “\ inherited methods
-helper() - Exercised in testBar inherited metnods

©] ©2012 Steve This ion is available free for non-commercial use with attribution under a creative commons license. 18

. 2

_9 University of Toronto

Department of Computer Science

Extend the test suite

Source: Adapted from IPL 1999

public void testBaseFoo() {
Base b = new Base();
b.foo();

}

public void testBaseBar () {
Base b = new Base();
b.bar();

}

public void testDerivedFoo() {
Base d = new Derived();

Base
+foo() -- Exercised in testBaseFoo
+bar() -- Exercised in testBaseBar

-helper() -- Exercised in tBF and tBB

d.foo();

}
public void testDerivedBar() {

T

Derived d = new Derived();
d.bar();

Derived
{+foo()} -- Exercised in testDerivedFoo
{+bar()} -- Exercised in testDerivedBar
-helper() -- Exercised in iDF & tDB

[EcS] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attibution under a creative commons license.

19

,9 University of Toronto

Department of Computer Science

&

Subclassing the Test Cases

Source: Adapted from IPL 1999

Base

Base methods

I 1

DerivedA

DerivedB

new methods

inherited methods

new

inherited methods

methods

)

testBase

Test Base methods

testDerivedA

testDerivedB

re-test inherited methods
test new methods

re-test inherited methods
test new methods

m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

e University of Toronto

Department of Computer Science

A é When to stop testing?

Typical testing results The bad news

5
>

N
>

defects found
Probability of more defects

5 >

Time (e.g. days)

Number of defects found to date

4 University of Toronto

Department of Computer Science

When to stop testing?

Source: Adapted from Pflesger 1998, p359

Motorola’ s Zero-failure testing model
Predicts how much more testing is needed to establish a given reliability goal

empirical consfmr

Inputs needed:

basic model: ,5. .
failures = ae'b(o gl
Reliabili . . testing time E
eliability estimation process
test time

fd = target failure density (e.g. 0.03 failures per 1000 LOC)
tf = total test failures observed so far
th = total testing hours up to the last failure
Calculate number of further test hours needed using:
In(fd/(0.5 + fd)) x th
In((0.5 + fd)/(tf + fd))
Result gives the number of further failure free hours of testing needed to
establish the desired failure density
if a failure is detected in this time, you stop the clock and recalculate
Note: this model ignores operational profiles!

e ©] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21 m © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22
L o4 University of Toronto Department of Computer Sci Computer Science .
@ . UNIVERSITY OF TORONTO midterm test
= Fault Seeding
Seed N faults into the software * midterm...now!
Start testing, and see how many seeded faults you find
Hypothesis: location groups
Detected seeded faults Detected nonseeded faults . The Brogrammers
= + Missing Brackets
551074]
Total seeded faults Total nonseeded faults . Solutions
Use this to estimate test efficiency
Estimate # remaining faults + doge++
- Seven -2
. GB248 (lecture room
Alternatively (). Double Double
Get two teams to test independently
Estimate each team’ s test efficiency by: + THE Group
- Fantasix
faults found by team 1 Faults found by both teams RW229
- - - DOGE
Efficiency(team1) =
Total number of faults Total # faults found by team 2
unknown
_©] ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

