§

Computer Science
UNIVERSITY OF TORONTO

lecture 4:
sequence & use case diagrams

csc302h
winter 2014

§

Computer Science
UNIVERSITY OF TORONTO

administrative

last call for groups!

§

Computer Science
UNIVERSITY OF TORONTO

misc. announcements

Robots Among Us?
Socially assistive
human-robot interaction

Maja Mataric

Chan Soon-Shiong Chair, Computer Science,
Neuroscience and Pediatrics; Vice Dean for
Research, Viterbi School of Engineering;
Founding Director, USC Center for Robotics
and Embedded Systems; Director, USC
Robotics Research Lab

Tuesday, January 14

Mataric’s lab focuses on enabling robots to help people
through social rather than physical assistance. Her research
into socially assistive robotics is developing robot-aided
therapies for autism, stroke rehabilitation, dementia, and
obesity mitigation by developing algorithms for human-
robot interaction that involve embodiment, social dynamics,
and long-term adaptation. Among other honors, Mataric is
a Fellow of the AAAS and IEEE, recipient of the Presidential
Mentoring Award, the Okawa Foundation Award, NSF
Career Award, MIT TR35 Innovation Award, and the IEEE
Robotics and Automation Society Early Career Award.

BA1180 @ 11:00 am today!

§

Computer Science
UNIVERSITY OF TORONTO

misc. announcements (2)

your department turns 50 this year!

check out this article in UofTMagazine:

http://www.magazine.utoronto.ca/time-capsule/paving-the-way-for-the-
information-highway-calvin-gotlieb-j-n-patterson-hume-beatrice-worsley/

Computer Science
UNIVERSITY OF TORONTO

recap from last time

* reverse-engineering models from software &
design discovery

* software evolution
— (Lehman) program types
— S/P/E-type: only really care about E-type
(embedded) when discussing software
evolution

— laws of software evolution (also Lehman)

+ cost of software aging. ways to improve
longevity. reducing maintenance costs for
each type of development (recall pie chart)

Computer Scien .
@UNIE?R;I;; OF TORONTO recap from last time (2)

* how tools can help
— code browsing
— refactoring (for greater clarity)
— documentation
— design discovery (uml model generation)

* what tools can’t do
— tell you what the developer was thinking
— make a bad developer good

Computer Science
UNIVERSITY OF TORONTO

sequence diagrams

e University of Toronto Department of Computer Science

]

B &

Modeling Software Behaviour

- (briefly: making UML abstractions...)
- UML sequence Diagrams

- Comparing Traces

- Explaining Design Patterns

- Style tips

,E}, © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

g University of Toronto Department of Computer Science

Uses of UML

As a sketch
Very selective - informal and dynamic
Forward engineering: describe some concept you need to implement
Reverse engineering: explain how some part of the program works

As a blueprint
Emphasis on completeness
Forward engineering: model as a detailed spec for the programmer
Reverse engineering: model as a code browser

Roundtrip: tools provide both forward and reverse engineering to move back and
forth between program and code

As a Programming language
UML models are automatically compiled into working code
Requires sophisticated tools
“tripless” - the model is the code

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license 2

*e University of Toronto

Department of Computer Science

Package Decomposition

HMS
‘ contains - ‘ccntams
ServicePackage FinancialPackage
{ contains L contains

[Hotel

.n \ 0.n

l Reservation
I
L

=

|
L 1

Transaction
I

+transactions | 0.n

0.n
has_reservgtion

+account’
D{ Person !1 nog‘ Account 1

L]

Source: from Egyed “ 1 4b of Class Diagrams, TSE 2002

o] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

3

Department of Computer Science

Class Abstraction

,? University of Toronto

Higher-Level Class Diagram

- makes " | Payment
<> makes .

Payment ?

Room ‘ Reservation Transaction
I []
: AN : 0.n / +transactions | 0.n
0.1 has_reservation, '
stays.a +accoun10
0.

Guest Person 0.1 Account

is-a == 3 \Ji
- —

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002
[© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

b o University of Toronto

Department of Computer Science

v Finding Dependencies
1]

<<subsystem>> <<subsystem>>
ServicePackage - FinancialPackage

Payment Expense

0..n o.n

0.n
Reservation

on
5 _reservation

Account

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002

S © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

5

,9 University of Toronto Department of Computer Science 9 University of Toronto Department of Computer Science

Things to Model v Sequence Diagrams

E.g. Structure of the code
Code Dependencies : ‘
Components and couplings calculatePrice | . |

|
le--aProduct ______

an Order an OrderLine a Product a Customer

E.g. Behaviour of the code
Execution traces
State machines models of complex objects

E.g. Function of the code u
What functions does it provide to the user? calculateBasePrice
calculateDiscounts

getDiscountinfo

._____:_________________________________

ngig © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license 6 © 102012 Steve . This is available free for non-commercial use with attribution under a creative commons license. 7

,9 University of Toronto Department of Computer Science 9 University of Toronto Department of Computer Science

Design Choices... v Creating and Deleting Objects

<---Ie&4hs------><

=S © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license 8 © 102012 Steve E _This is available free for non-commercial use with attribution under a creative commons license 9

an Order an OrderLine a Product a Customer a Handler
T T T T T
calculatePrice |) | I] queryDatabase |
! | new a Query
| Command
]
]
i i i new a Database
. ! ! Statement
L getDiscountedValue(anOrder)
| i execute i
| getBaseValue i U
! le--JTesults_______ ‘
] | |
I
T i extract results !
]
I I
[4__ discountedValue - -4 _______________ !
L i close |
|
I
I
I
I
|
|
|

-+

University of Toronto

Department of Computer Science

Interaction Frames

:Order

careful:
Distributor

regular:

Distributor ‘Messenger

dispatch |

T
100p | ffor each line item]

[

T
alt | [value > $10,000]

T
|
)
|
|
|
|
|
|
|
|
I
I
|
I
I
|
R |
|
- |
|
[else] !
dispatch !
u I
|
]
| |
T I
L |
I
i i
. . I |
OPt | [needs confirmation] ! !
confirm ! 1
| N
Il
0 | :
[ESem] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license 10

,e University of Toronto

Interaction Frame Operators

Department of Computer Science

Operator Meaning

alt Alternative; only the frame whose guard is true will
execute

opt Optional; only executes if the guard is true

par Parallel; frames execute in parallel

loop Frame executes multiple times, guard indicates how
many

region Critical region; only one thread can execute this
frame at a time

neg Negative; frame shows an invalid interaction

ref Reference; refers to a sequence shown on another
diagram

sd Sequence Diagram; used to surround the whole
diagram (optional)

© 1 ©2012 Steve E: . This is available free for non-commercial use with attribution under a creative commons license. 11

3

ke University of Toronto

Department of Computer Science

When to use Sequence Diagrams

Comparing Design Options
Shows how objects collaborate to carry out a task
Graphical form shows alternative behaviours

Assessing Bottlenecks

E.g. an object through which many messages pass

Explaining Design Patterns

Enhances structural models

Good for documenting behaviour of design features

Elaborating Use Cases
Shows how the user expects to interact with the system

Shows how the user interface operates

8] © 2012 Steve Easterbrook. This presentation s available free for non-commercial use with attribution under a creative commons license. 12

,9 University of Toronto

Department of Computer Science

Modeling a Design Pattern
E.g. Observer Pattern
For a one-to-many dependency, when you need to maintain consistency
The subject pushes updates to all the observers
Subject
1 N Observer
attach(Observer) >
detach(Observer) observers| update()
Notify() ~-_
=== {for all 0 in observers
{o.update()} }
concreteSubject 1 concreteObserver
subjectState observerState ~._
getState() subject ~~ {observerState =
setState() update() this.subject.getState()}
©] ©2012Steve This ion is available free for non-commercial use with attribution under a creative commons license. 13

,9 University of Toronto

Department of Computer Science

]

Sequence Diagram for Observer
a Concrete x : Concrete y : Concrete
Subject Observer Observer
:‘ setState() '

i
T

=| © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

14

g University of Toronto Department of Computer Science

¥ Style Guide for Sequence Diagrams

Spatial Layout
Strive for left-to-right ordering of messages
Put proactive actors on the left
Put reactive actors on the right

Readability
Keep diagrams simple
Don’ t show obvious return values
Don’ t show object destruction

Usage
Focus on critical interactions only

Consistency
Class names must be consistent with class diagram
Message routes must be consistent with (navigable) class associations

2] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Computer Science
UNIVERSITY OF TORONTO

use case diagrams

*9 University of Toronto Department of Computer Science

“Use Case”-Driven Design

- User Stories in Agile Development
- Introducing UML into the Software Process
- Domain Models

- Use Cases

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license 1

,9 University of Toronto

s &

Department of Computer Science

Refresher: UML Notations

Use Cases

&/ UNL Class Diagrams
information structure % % % user’ s view
| |
Lists functions

relationships between

data items b

modular structure for g) visual overview of the
main requirements

the system

V]

(UML) Statecharts
responses to events
dynamic behavior

m VUML Package Diagrams

Overall architecture
v == 'El Dependencies
between components event ordering,

reachability, deadlock,
etc

Activity diagrams
business processes;

VUML Sequence Diagrams
2 I:I individual scenario

H interactions between
” users and system
1

concurrency and
synchronization;

dependencies
between tasks;

Sequence of
messages

I[

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

,? University of Toronto

Department of Computer Science

What do users want?

As o \'\btqriqn,I
wark to be able

Yo Seorch Sor bodks
by publication \eor.

User Stories

Used in XP, Scrum, etc.

Identify the user (role) who wants it
Typically written on notecards

(User Interface) Storyboards
Sketch of how a user will do a task
Shows the interactions at each step
Commonly used in Ul Design

Use Cases

Sets of user features
UML diagram shows inter-relationships

is available free for non-commercial use with attribution under a creative commons license.

O Je2012steve This

Department of Computer Science

,9 University of Toronto

v Use Case Diagram

¢ (&> %
| —
/\] Update /\

Trading Accounts Accounting
manager Analyse - System
Risks ey,
NG
Value a
O
T eal
/N

\
Capture a

Deal N~
— N\

Salesperson

mgmé © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Department of Computer Science

,9 University of Toronto

Relationships between Use Cases

<<extends>> when one use case adds behaviour to a base case
used to model a part of a use case that the user may see as optional system behavior;
also models a separate sub-case which is executed conditionally.

<<uses>>: onhe use case invokes another (like a procedure call);
used to avoid describing the same flow of events several times
puts the common behavior in a use case of its own.

Print
Campaign
Summary

<<extends>>

Check Campaign
Budget

<<uses>>N\
Find Campaign

is available free for non-commercial use with attribution under a creative commons license.

©] ©2012 Steve E; This

3 University of Toronto Department of Computer Science

3 University of Toronto

Department of Computer Science
Using Generalizations v Describing Use Cases

S 4

Actor classes

Identify classes of actor For each use case:
Where several actors belong to a single class a “flow of events” document, written from an actor’s point of view.
S°{E§ sf;::ases are nesded by all members in describes what the system must provide to the actor when the use case is
Record completion Other use cases are only needed by some executed.
of an advert members of the class

Actors inherit use cases from the class

Typical contents
Cg:::ct Use Case classes How the use case starts and ends;
Change a client Sometimes useful to identify a generalization Normal flow of events;
contact of several use cases Alternate flow of events;
Exceptional flow of events;
Assign individual Documentation style:
S‘a"cfm":;;:” a Choice of how to elaborate the use case:
Assign staff towork English language description
Campaign on a campaign
Manager

Activity Diagrams - good for business process
Collaboration Diagrams - good for high level design
Sequence Diagrams - good for detailed design

Assign team of staff
to work on a
campaign

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

9 = © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10
3 University of Toronto Department of Computer Sci Computer Science . .
v . universiTy of Toronto detailed use case to diagram
- Detailed Use Case
Buy a Product y -
)) /broase _@idasy { S
Main Success Scenario: \cotolor
1. Customer browses catalog and selects items to buy St
2. Customer goes to check out
3. Customer fills in shipping information (address, next-day or 3-day delivery) 5 = <
4. System presents full pricing information - / " e
5. Customer fills in credit card information .4 ’\ — N o Y
6. System authorizes purchase A B \Q(heckout)} ¥ feo
7. System confirms sale immediately Cuslomev” - <
8. System sends confirming email to customer
2
Extensions: 3
3a: Customer is Regular Customer 7
.1 System displays current shipping, pricing and billing information :
.2 Customer may accept or override these defaults, returns to MSS at step 6 ' \“ S R — / o
6a: System fails to authorize credit card e \\ G‘“— > AN
.1 Customer may reenter credit card information or may cancel (emas|) cc pagrad) credit car
© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

11

[

b o University of Toronto Department of C ter Scil

P

Finding Use Cases

Browse through existing documents
noun phrases may be domain classes
verb phrases may be operations and associations
possessive phrases may indicate attributes

For each actor, ask the following questions:
Which functions does the actor require from the system?
What does the actor need to do ?

Does the actor need to read, create, destroy, modify, or store some kinds of
information in the system ?

Does the actor have to be notified about events in the system?
Does the actor need to notify the system about something?
What do those events require in terms of system functionality?

Could the actor’s daily work be simplified or made more efficient through new
functions provided by the system?

© 2012 Steve Easterbrook. This presentation is available free for ial use with attribution under a creative license.

12

Computer Science
UNIVERSITY OF TORONTO

the end

