Computer Science
UNIVERSITY OF TORONTO

lecture 1:
introduction to modeling & UML

csc302h
winter 2014

J Computer Science

@UNIVERSITY OF TORONTO CUSEC 2014

Canadiageri‘r;orﬁ WSV‘

Computer Science e o .
@UNIVERSITY OF TORONTO administrative

« assignment #1 out by tuesday
« form groups today
e sign up on piazza asap!

— any problems?

— everyone familiar with piazza?

Computer Science

UNIVERSITY OF TORONTO recap from Iast time

* engineering large software systems is
difficult!

— Sbn wasted annually on botched projects

— it isn’t just the big ones that go awry

(see boyd’s toast), but they tend to with a
greater probability

 for our purposes, “large” means anything
non-trivial that benefits from proper
planning and tools, and is likely to be used
by someone other than the developer

] Computer Science .
@UNIEEtRSI;Y OF TORONTO recap from last time (2)

 work will be done in teams of 6-7

— initial groups will be formed today in the
tutorial hour.

« we will be working on a large open source
project
— project(s) selection will be finalized on tuesday
when al goes out.

&

Computer Science

UNIVERSITY OF TORONTO modeling

* one thing that we as software developers/
engineers can do to better understand
software is by using models

* many choices when building models
— multiple modeling “languages”
— graphical/Textual

— diagrams — ER diagrams for data, class and
object diagrams in OOP.

— ad-hoc
« for this course we’ll use UML (more or less)

Computer Science

UNIVERSITY OF TORONTO modeling (2)

« uml as defined by wikipedia:

“UML is a standardized general-purpose modeling
language in the field of object-oriented software
engineering. The UML includes a set of graphic notation
techniques to create visual models of object-oriented
Software-intensive systems.”

» caveat: how often do | use (strict) uml?

“...In his eighteen years as a professional programmer,

Wilson had only ever worked with one programmer who
actually used it voluntarily .” — Two Solitudes lllustrated,
Greg Wilson & Jorge Aranda, 2012

* but you gotta love software models...l do

_9 University of Toronto Department of Computer Science

v Why build models?

- Modelling can guide your exploration:

% It can help you figure out what questions to ask
% It can help to reveal key design decisions
% It can help you to uncover problems

- Modelling can help us check our understanding

Y Reason about the model to understand its consequences
» Does it have the properties we expect?

% Animate the model to help us visualize/validate software behaviour

- Modelling can help us communicate

% Provides useful abstractions that focus on the point you want to make...
% ...without overwhelming people with detail

- Throw-away modelling?

% The exercise of modelling is more important than the model itself
% Time spent perfecting the models might be time wasted...

%?‘-" © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

9 University of Toronto Department of Computer Science

i Maps as Abstractions

| ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

4]

= University of Toronto Department of Computer Science

55

[M“@‘ , ;] © 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

f? University of Toronto Department of Computer Science

L4 Dealing with problem complexity

- Abstraction

% Ignore detail to see the big picture
% Treat objects as the same by ighoring certain differences
% (beware: every abstraction involves choice over what is important)

- Decomposition

% Partition a problem into independent pieces, to study separately
% (beware: the parts are rarely independent really)

- Projection

%, Separate different concerns (views) and describe them separately
% Different from decomposition as it does not partition the problem space
% (beware: different views will be inconsistent most of the time)

- Modularization

% Choose structures that are stable over time, to localize change
% (beware: any structure will make some changes easier and others harder)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

»

.—9 University of Toronto Department of Computer Science

the Unified Modelling Language (UML)

- Third generation OO method

Y Booch, Rumbaugh & Jacobson are principal authors
» Still evolving (currently version 2.0)
» Attempt to standardize the proliferation of OO variants

% Is purely a notation
» No modelling method associated with it!
» Was intended as a design notation

% Has become an industry standard
» But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

- Has a standardized meta-model

% Use case diagrams

% Class diagrams

L Message sequence charts
% Activity diagrams

%, State Diagrams

% Module Diagrams

% Platform diagrams

S o

'@_ © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

’_9 University of Toronto Department of Computer Science

v Modeling Notations

UML Class Diagrams Use Cases
’_? ”f_‘ information structure % % % user’s view
i i I I
relatlpnshlps between Lists functions
data items
T‘f_l modular structure for visual overview of the
—1 UML Package Diagrams (UML) Statecharts
- 1 Overall architecture responses to events
I e
=,',_' -3 Dependencies @ | = | --z===-- _T__LE dynamic behavior
-- /1 between components event ordering,
: ‘>| reachability,
~— deadlock, eic
UML Sequence Diagrams Activity diagrams
X L1 L1 L[] individual scenario business processes;
< F interactions between concurrency and
< H . users and system synchronization;
) _4 . . Sequence of dependencies
| —— ;U messages . LG) between tasks;

i Seenl © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with atribution under a creative commons license. 9

University of Toronto

Department of Computer Science

Source: Adapted from Davis, 1990, p67-68

Generalization

(an abstraction hierarchy)

:patient

Name

Date of Birth
physician
history

JANAN

:in-patient

Room

Bed
Treatments
food prefs

:out-patient

Intro: Object Classes in UML

Last visit
next visit
prescriptions

Aggregation
(a partitioning hierarchy)
:patient
Name
Date of Birth
physician
history
0..1]0.1
1 1.2 0.2
:heart :kidney :eyes
Natural/artif. Natural/artif. Natural/artif.
Orig/implant Orig/implant Vision
normal bpm number colour

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

10

s

Department of Computer Science

== University of Toronto

:eye
Class name aggregation Colour
0..2| Diameter
Correction
- multiplicities
. tient 0..1 :kidney
attributes Name <>
) Operational?
\- Date of Birth 0..1
Height o
. Weight 1..2
services 0.1
> :heart
. #’
generalization 1 E,‘,‘(’;[,'c‘,at'yg‘;m
:In-patient :Out-patient
B Last visit Bl
Bed next visit Natural/artif.
Physician physician Orig/implant
donor

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

11

_@ University of Toronto

Department of Computer Science

A &

What are classes?

- A class describes a group of objects with

% similar properties (attributes),

% common behaviour (operations),

% common relationships to other objects,
% and common meaning (“semantics”).

- Examples

Y employee: has a name, employee# and department; an employee is hired, and fired; an
employee works in one or more projects

Attributes
(optional)

:employee

“»
......
N

.name
employee#
-department

" .
L]
......
"
.

hire()
fire()
assignproject()

«*
at
.
-
.t
.

Name (mandatory)

wmeQOperations

(optional)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

12

{_9 University of Toronto Department of Computer Science

Fo- B 4 R

The full notation...

Attribute .
type Name of the class
Attribute \ d
name .
\ \ Student /Other Properties

+ name: string [1] = “Anon” {readOnly}

/+ registeredin: Course [*]

Visibility: T~ " Default value
+, -, #, ...

+ register (c: Course) S Multiplici
+ isRegistered (c: Course) : Boolean M ltlp hClty

P A X
Operation/ / \

name Return value

Parameters

L l@l | ©® 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

A &

¥ University of Toronto

4]

Department of Computer Science

Objects vs. Classes

- The instances of a class are called objects.
% Objects are represented as:

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

& Two different objects may have identical attribute values (like two people with
identical name and address)

- Objects have associations with other objects

% E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
& But we will capture these relationships at the class level (why?)

& Note: Make sure attributes are associated with the right class

» E.g. you don’t want both managerName and manager# as attributes of Project!
(...Why??)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

14

-3

o University of Toronto

Department of Computer Science

v Generalization

«€---- A superclass

StaffMember
{abstract}
Grade | 1.7 <« alocated 0.* [staffName
staffNo
gradeName staffStartDate
,’ﬂ calculate Bonus ()
/, assignNew Staff Grade ()
/ getStaffDetails ()
/,,/
Superclass
associations are
inherited by
subclasses

Two
subclasses

I
!

AdminStaff

CreativeStaff

calculateBonus ()

qualification

- Notes:

% A subclass may override an inherited aspect

% Subclasses inherit attributes, associations, & operations from the superclass

» e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses

% Superclasses may be declared {abstract}, meaning they have no instances

» Implies that the subclasses cover all possibilities
» e.g. there are no other staff than AdminStaff and CreativeStaff

calculateBonus ()
assignStaffContact ()

| © | ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

15

s

7 Unuversity of Toronto

»

Department of Computer Science

- Aggregation

- Composition

% This is the “Has-a” or “Whole/part” relationship

Aggregation and Composition

% Strong form of aggregation that implies ownership:
» if the whole is removed from the model, so is the pari.
» the whole is responsible for the disposition of its parts

1 | :Engine
composition -
P :.Locomotive| { -
: 1
: 0..1 -
:Car —@| Train
N\
0.1 —<
‘Person |o_~ 0.1
[. driver 1 passengers
aggregation

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

SR

16

A &

Department of Computer Science

’_? University of Toronto

aggregation
Club <>/
composition

Polygon

Member

{ordered}
AN

g

Point

centre

Aggregation / Composition (Refresher)

What does
this mean??

3.

Circle
*

Note: No sharing - any instance of point can
be part of a polygon or a circle, but not both

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

17

&

’_? University of Toronto

Department of Computer Science

Associations

- Objects do not exist in isolation from one another

% A relationship represents a connection among things.

% In UML, there are different types of relationships:
» Association
» Aggregation and Composition
» Generalization
» Dependency
» Realization

- Class diagrams show classes and their relationships

<<entity>>
Client <<entity>>

companyAddress Campaign l <<entity>>
companyName 0. |title 0.* | Advert
company;elephone campaignStartDate ;
companyFax o E
comgan;lgman places campaignFinishDate conducted by | setCompleted()

| . getCampaignAdverts() | createNewAdvert()
getClientCampaigns() addNewAdvert()
getClients()

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

18

i University of Toronto Department of Computer Science

v Association Multiplicity

- Ask questions about the associations:

% Can a campaign exist without a member of staff to manage it?
» If yes, then the association is optional at the Staff end - zero or more (0..%)
» If no, then it is not optional - one or more (1..%)
» If it must be managed by one and only one member of staff - exactly one (1)

Y What about the other end of the association?
» Does every member of staff have to manage exactly one campaign?
» No. So the correct multiplicity is zero or more.

- Some examples of specifying multiplicity:
% Optional (0 or 1) 0..1
% Exactly one 1 =1..1
%, Zero or more 0.. ="*
1..
2..

*

*

% One or more

% A range of values 6

“ © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

19

’_9 University of Toronto

Department of Computer Science

A £

Multiplicity

Class associations

Multiplicity

A client has

exactly one staffmember
as a contact person

A staff member has
zero or more clients on
His/her clientList

Name
of the
association -
Client
-StafiMember z companyAddress
staffName 1 - . 0..* | companyEmail
staff# liaises with . — companyFax
staffStartDate | contact > ClientList| companyName
person /‘ companyTelephone
Direction
The "“liaises with"
association should be
read in this direction
Role

The staffmember's
role in this association
Is as a contact person

Role
The clients' role
in this association
is as a clientList

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

20

Department of Computer Science

'_Q University of Toronto

s

More Examples

Campaign conducted by 0.* Advert
>
Grade allocated to StaffMember
deN staffName
grageiName . , | staffNo
1. < 0.. staffStartDate
Hand contains Card
0..1 > 1.7

_Q‘] © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

21

University of Toronto

Department of Computer Science

»

Date

Navigability / Visibility

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderLine [*] {ordered}

0..1 ¥

1

Order

+dateReceived +isPrepaid

* | +lineltems {ordered}

OrderLine

Boolean

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with aftribution under a creative commons license.

SRE

22

»

Bidirectional Associations

Person < Car

Person Car

+ carsOwned: Car [*] + Owner: Person [0..1]

Hard to implement correctly!

" Unuversity of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

Department of Computer Science

’_? University of Toronto

e

Dependencies

View

L <<call>>
L <<use>>

L <<create>>
L <<derive>>

L <<permit>>
L <<realize>>
L <<refine>>

|
|
I
- ———————> ViewController -———-— |
|
|
|
|

- Example Dependency types:

% <<instantiate>>

% <<substitute>>
%L, <<parameter>>

Model

Layout

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

24

!_? University of Toronto

Department of Computer Science

e

Lineltems [*]

Lineltems [*]

Interfaces
<<interface>>
Collection
equals
add
/\
Order <<requires>> <<'”It_6i‘;ace>> <cimplementsss | ATTayList

B = A get

get add

Collection
Order /L'St .
O ArrayList

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

'_? University of Toronto

Department of Computer Science

A &

- Comments

- Notes

Annotations

% —-- can be used to add comments within a class description

Date Range

{length = start - end} Start: Date

TS~ End: Date

- Constraint Rules

/length: integer

% Any further constraints {in curly braces}
% e.g. {time limit: length must not be more than three months}

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with aftribution under a creative commons license.

SR

26

s

= University of Toronto Department of Computer Science

What UML class diagrams can show

- Division of Responsibility
% Operations that objects are responsible for providing

- Subclassing
% Inheritance, generalization

- Navigability / Visibility

Y When objects need to know about other objects to call their operations

- Aggregation / Composition
Y When objects are part of other objects

- Dependencies
% When changing the design of a class will affect other classes

- Interfaces
% Used to reduce coupling between objects

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

27

&

Computer Science

UNIVERSITY OF TorRONTO Static vs. dynamic modeling

« static captures fixed code-level relationships
— class (and package) diagrams
— object diagrams
— component diagrams
— deployment diagrams

* behavioral diagrams capture dynamic
execution

— use case diagrams

— sequence and interaction diagrams
— collaboration diagrams

— statechart diagrams

— activity diagrams

&

Computer Science

UNIVERSITY OF TORONTO summary

e summary on modeling
— important to use modeling during design

— modeling can be helpful to discover design and
architecture (al)

— as with most things, it can be taken too far

— the model should provide an easier to consume
abstraction

— strict uml is good when publishing designs for
external consumption even if you don’t use it
yourself

