

Copyright © 2012 by David A. Penny

1. Introduction

In my experience as a manager and consultant, I have observed that not

enough commercial software development is conducted in a truly

professional manner. This lack leads to extended development time,

defect-laden software, and considerable frustration. This situation is

often due to a lack of application of basic professional practices.

While there is no universal agreement on what constitutes basic

professional practice, there is a core body of practice that accomplished

professionals can agree upon. Some of these practices have come to be

known as agile practices, and others just make good sense. The

importance of these core practices and details for using them are not

generally taught at the Universities where professional software

developers are educated. Universities provide essential underpinnings

for software professionals; however their focus is not on preparing a

student specifically for commercial software development. This phase

of the student's education has been left to an informal apprenticeship.

My intent in writing this book is to provide professionals with the

practical body of knowledge required to operate effectively.

This is not a book specifically about how to design or code or test,

but rather the focus is on the management of software projects.

Building large-scale software systems is a problem of coordination,

which in our case lies under the purview of technical software

development management. However, I did not intend this book only for

managers. For individual contributors as well it provides invaluable

guideposts in how to effectively contribute to a well-functioning team.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

4 Introduction

Copyright © 2012 by David A. Penny

1.1. Agile Development

Increasingly, professional software development organizations are

embracing agile development methodologies. These encourage frequent

human interaction, iterative development in small units of functionality,

a continuously working state for the software proven through

automated testing, and embracing late-breaking requirements changes.

These ideas are not new. I used practices that have come to be

known as agile as early as the 1980's. The term "agile" came about

more recently (in 2001) to contrast these methods to the waterfall

development methodology (and other process-heavy methods).

The waterfall is a strict step-by-step document-driven method

starting with full-system requirements documents, going on to full-

system specifications documents, software design documents, finally

getting to coding, and then relegating testing to the end. The next step

in the waterfall could not start until the previous one was signed off as

being fully completed. Complex change processes were required to go

back and re-work a step.

Requirements

Design

Coding

Specification

Testing

User Acceptance

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 5

Copyright © 2012 by David A. Penny

Waterfall never worked well. In fact, the very first description of it

in the literature by Royce in 1970 in his survey paper "Managing the

Development of Large Software Systems" explained why it could not

work well because of the inherent feedback problems.

Nevertheless, because it seemed reasonable, it was widely used "by

default", despite other more agile approaches suggested in the literature

(such as Barry Boehm's "Spiral" or James Martin's "RAD"). While the

waterfall was increasingly showing itself to be problematic, at the same

time it paradoxically became increasingly entrenched in

bureaucratically-imposed approaches to software development. It was

policy in large industry and government that contractors must submit

work products according to the waterfall model, and the steps were

even embedded into standards documents.

With the accessibility of computing increasing in Universities, and

the independent software vendor coming into prominence, smaller

software development shops accountable only to themselves could

choose what methodology they wished. In the absence of a reference

framework for software development other than the waterfall, all such

organizations ran the risk of being painted with the "cowboy hacker"

brush. When things went wrong (as they often do in our business), the

"solution" was to impose the dreaded "tried and true" waterfall, which

only made matters worse.

 To counteract this and to make professionally acceptable many of

our best practices, in 2001 a group of like-minded thinkers came

together at a ski resort in Utah to publish the "Agile Manifesto" (see

http://agilemanifesto.org). A number of agile methods have been put

forward, and increasingly many organizations, including large

corporations, are embracing them.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

6 Introduction

Copyright © 2012 by David A. Penny

Agile methods are not document driven. They are driven by

producing small increments of working programs that stakeholders can

try for themselves to ensure they are getting what they want. In this

way, the development can never go too far off track. The program is

always kept in a working state by means of a strong focus on automated

testing throughout the development effort. The program is only ever

designed to meet the requirements of the next iteration of functionality,

but is designed in such a way that is easy-to-modify when new

requirements come up.

The most popular agile methods have been Kent Beck's Extreme

Programming and Sutherland and Schwaber's Scrum, as popularized by

Mike Beedle. Both of these methods were developed during the 1990s.

While agile methods are the clear way forward, when I hear from a

software development organization that they "use agile", it can mean

almost anything, and sometimes means almost nothing. Agile is

emphatically not the lack of waterfall, or avoiding writing

documentation, but rather the consistent and repeatable application of

its practices embedded in a management framework that acts as a

control system over the whole. In this book I talk about the practices

and the management controls necessary to ensure they are provably

carried out.

This book is not about specific agile methods. There are a number of

excellent books that deal with that. All agile methods, all software

development in fact, need to be supported by certain core development

practices, and need to be controlled by certain core technical

management practices. In this book we discuss these core practices

essential to any agile development method.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 7

Copyright © 2012 by David A. Penny

1.2. Continuous Release Methods

When I started my career, the software lifecycle was governed by the

notion of the big bang release. Every year or so a new major release of

the software was shipped, containing many user-visible changes with

respect to earlier releases. Consider for example the Microsoft Office

products such as Word and Excel in the 2003, 2007, and 2010 big bang

releases.

Owing to the methods by which software was delivered to its

consumers, a new release had a lot of overhead. For example, shrink

wrapped consumer software required system testing across all the

various platforms it might install on, burning physical CD's, putting

them into boxes, shrink-wrapping them, sending them out through

distribution channels, and then having them hit store shelves. Different,

but equally lengthy and high overhead processes apply to large

enterprise software deliverables, as another example.

These big bang releases provided an ideal planning horizon. By

managing what the product would look like in nine-month increments,

the business could plan its future. Deciding all the features to go into

the next major release was a significant event, as these were make or

break decisions for a product line.

While this approach is still relevant in certain circumstances, a lot of

commercial software has now moved to more continuous release

methods. We need software management methods that can address

release and distribution models across the spectrum.

Some of the most aggressive continuous distribution methods are

enabled by SaaS (Software-as-a-Service). The idea of SaaS is that the

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

8 Introduction

Copyright © 2012 by David A. Penny

software vendor not only writes the software but also runs a large

centralized instance. Customers access the software remotely using web

browsers.

With SaaS, businesses do not need to buy large compute and

database servers, house them, power them, maintain them, and back

them up. Rather the customer simply signs up for the service on a web

site, and begins using the software immediately. They pay on a usage

basis model: so many dollars per user per month.

All customers share the centralized common instance, with the

software itself maintaining separation between customers using the

"multi-tenant" model (an analogy with the idea of many tenants

occupying one large apartment building).

With the SaaS delivery method combined with agile practices, it is

possible (and advisable) to almost continuously release functional

increments to the field. These functional changes need not necessarily

be presented to customers immediately, but can be held back using

configuration switches and released just to certain customers initially

(recall a "Would You Like to Try our New Interface?" type of question

you sometimes see when using a web-based application).

Even certain software that installs onto desktop computers is coming

close to continuous release methods with downloadable patches

available on a frequent basis (my son tells multi-user gaming software

is particularly know for this, as is software such as Adobe Acrobat

which has frequent new releases). Indeed it is typical for your cable

box, smart thermostat, or even your operating system to continuously

download and apply patches, without you being aware of it.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 9

Copyright © 2012 by David A. Penny

With the advent of SaaS and continuous release methodologies, the

traditional notion of the big bang software release is disappearing, and

along with it the easy and obvious planning horizon of "the next major

release". However, something must replace it in order for us to properly

manage a software venture.

1.3. The Agile Planning Horizon

A complaint I often hear from business leaders whose development

teams embrace agile methods is that they do not know what is going on.

They do not know what will be delivered by when. They feel a lack of

control of their business's destiny.

At first glance, this seems to be an odd criticism of agile methods

that were designed to provide stakeholders with continuous visibility

and continuous feedback into what was being built.

But is the CEO trying out the software every two weeks? Even if

she were, does using the next iteration every two weeks give her an

understanding of what will be delivered by the end of the fiscal year, or

by the end of the quarter?

The reason for this lack is that "first generation" agile methods did

not particularly concern themselves with this issue. They focus on

developing small increments in functionality in a high-quality and

predictable manner. The original design point for agile methods is the

desire to build software that satisfies the needs of an identifiable user

set in the most efficient manner possible. Knowing what was going to

be delivered on a nine-month time horizon, for example, was not a goal,

and only slows things down to try to "guess".

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

10 Introduction

Copyright © 2012 by David A. Penny

This haziness over the longer time frame, however, flies in the face

of business necessity which insists that we know the timeframe and the

main feature set of the software product under development.

In moving away from "big bang releases" in favor of more

continuous release methodologies, we risk throwing out the baby

(longer-term planning) with the bathwater (big bang releases). While

the notion of the big bank release is going by the wayside in certain

environments, we must still retain a method for planning our future.

I was faced with this challenge myself as my talented Director of

Software Development began moving our SaaS software to more

continuous release methods. In order to reconcile the two, we decided

that while big releases were gong away, what we formerly called

"release planning" could be renamed "agile horizon planning". Indeed

many software development organizations have adopted a similar

notion, be it Altassian's JIRA Version concept

(http://www.altassian.com), or Sutherland's MetaScrums [Sutherland

2005, "Future of Scrum: Parallel Pipelining of Sprints in Complex

Projects"].

With horizon planning we identify a fixed planning horizon (our

business finds a quarterly planning horizon to be convenient) and we

decide before the quarter starts what set of features would be most

beneficial, yet still feasible to deliver, within that planning horizon.

The details of when exactly the various features would get released

to the field (a software development concern), and how they would be

bundled and presented to customers (a product management concern)

were unimportant. What was important was managing the set of

features that would be shipped within the planning horizon.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 11

Copyright © 2012 by David A. Penny

At first glance, this seems straightforward, but it is anything but. We

need to have a high degree of confidence that everything we were

planning to ship would ship with high quality and within the horizon.

We are not willing to just take the team's word on it. We need to see the

background work that went into the team convincing themselves that it

is feasible. This required a methodical approach, and this is the

approach we outline in this book.

However, software development is not a sure thing. We are often

building things that have never been built before, and managing the

uncertainty in the horizon plan is equally critical as having a feasible

plan in the first place. Thus as we work through the planning horizon,

we insist that new and up-to-date information continuously flow into

the plan, and that the plan itself be updated continuously as a result.

Just as software development is uncertain, so is the business climate

in which we develop the software. New customers or partners force us

to reconsider our priorities mid-stream, as do competitive pressures. We

need to ensure our horizon plan is always ready to be reconfigured to

meet updated business needs. But also always within the constraint that

at all times the updated horizon plan would maintain the feasibility of

delivering the features with high quality within the horizon with the

available team.

Thus not only should our software development methods be agile,

but our larger horizon planning must be equally agile, hence the name

"agile horizon planning".

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

12 Introduction

Copyright © 2012 by David A. Penny

1.4. Dynamic Estimation Equilibrium

Agile horizon planning is therefore a dynamic framework where we

continuously keep track of our best estimates on how long features will

take to code, how long we need to test and stabilize them, how long we

need for release preparation, and how much development resource is

available to us. I say best estimates in the sense that, especially earlier

on, we really do not know exactly what we want, exactly how to build

it, exactly how long it will take, or even know with certainty the human

resources that will be available to us over the planning horizon. Even if

we did, the business will impose new requirements midway through the

horizon that will change the entire situation.

The best we can hope for is a dynamic equilibrium where at all

times the business stakeholders maintain their best guess as to what is

required within the agile planning horizon, and the software team

maintains their best guess as to the specification and design of the

features and the timeframe to implement them. At any given point, if

the guesses as to the timeframe given by the development team and the

guesses as to the dates required by the business stakeholders do not

jibe, then the stakeholders need to jointly agree on tradeoffs and the

dynamic balance restored. As the two sides march together, closer and

closer to the end of the planning horizon, these "guesses" become better

and better and our confidence in our feature set, delivered quality, and

final date increases.

Making sure we bring to bear all available expertise and gather and

synthesize all pertinent information in real-time is the essence of the

dynamic balance we strive for.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 13

Copyright © 2012 by David A. Penny

1.5. Essential Practices

With this background on agile methods and agile horizon planning, we

can now discuss the core essential practices I suggest are required for

effective commercial software development. When I am asked to

evaluate a software development organization, I use this list as a

template against which to compare the organization. These are:

 Source Code Control

 Defect / Feature Tracking

 Reproducible Builds and Deployment

 Automated Regression Testing

 Agile Horizon Planning

 Feature Specifications

 Architectural Control

 Effort Tracking

 Process Control

 Software Development Business Planning

If a software organization can put a checkmark beside each of these

practices, it is on solid footing in my opinion.

1.5.1. Source Code Control

Source code control is the basis for solid professional software

development. It enables a complete repository for all the ingredients of

a shipping software product, it keeps a complete history of all changes,

it enables simultaneous development by many developers, and it

efficiently enables multiple maintenance and development streams.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

14 Introduction

Copyright © 2012 by David A. Penny

A good rule of thumb is that if something does not exist under

source code control, it does not exist at all.

1.5.2. Defect / Feature Tracking

To manage a software development effort, one must control what

changes go into the source code. A workflow management system

capable of keeping track of all the defects discovered against the code,

and all the features that are slated to go into the code, and manage the

process of getting them done correctly, is an important tool to enable

this level of control. The source code control system and workflow

management system should be integrated in such a way that every

change to the source code requires a reference to either a defect or a

feature record.

1.5.3. Reproducible Builds and Deployment

Building on solid source code control, reproducible builds and

deployments are the next major practice necessary for software

development sanity.

Building a software product for testing, setting up a test

environment, creating a shippable ISO image for burning onto a CD, or

publishing the next iteration of SaaS out to production, should ideally

involve no more than issuing a single command.

This guarantees a consistently reproducible build of a product which

is necessary for efficient maintenance activities. It also is the necessary

prerequisite for automated regression testing.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 15

Copyright © 2012 by David A. Penny

1.5.4. Automated Regression Testing

Once reproducible builds are in place it is then possible to support

an automated regression testing environment. Such an environment

ideally tests every aspect of the software in a fully automated fashion.

In case of error, it should concisely report on exactly where and how

the program under test has failed.

Passing these tests should give confidence that the software has not

been broken in any way. The focus of the testing group should be in

developing and maintaining more and more complete and torturous

automated regression tests (not in manual testing).

This enables software development to move quickly and confidently

when deploying production changes.

1.5.5. Agile Horizon Planning

Effective agile horizon planning is the most important of the

practices given in this book. It is the means by which resourcing, dates,

and feature content are initially established and continuously tracked

and updated. Agile horizon planning must at all times preserve the

integrity of the capacity constraint: that expected remaining work

requirement at all times equals expected remaining work capacity.

With good agile horizon planning, stakeholders can be kept up-to-

date on what they can expect can be delivered to the field with good

quality within a chosen planning horizon, and they can adjust that as

they go.

With this practice, quality can be maintained, "elbow room" can be

manufactured for continuous improvement initiatives, product

management is empowered to make late-breaking decisions about

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

16 Introduction

Copyright © 2012 by David A. Penny

feature content without upsetting quality, and the uncertainties inherent

in software development can be managed.

1.5.6. Feature Specifications

One of the surest ways to upset a software project is to be unclear

about what is being built.

A professional software organization must have practices in place to

decide whether or not a given feature requires a written specification, a

capacity to produce and review written specifications, and a mechanism

to ensure that the final product adheres to the specification.

Because agile methods prefer human interaction over written

documentation, there is sometimes a misconception that writing a

feature specification is not "agile". This is not true at all, individual

feature specification documents should be written when they help to

clarify matters.

1.5.7. Architectural Control

All software products require an architecture to which coders must

adhere. The major architectural structures are the module structure

(how the source code is organized), the process structure (how the

application/process/thread structure is organized at run-time), the data

architecture (how/where external data is stored), and the software

design (major elements in the class, procedural, and/or in-memory data

structure design).

Every software project should have a coherent and evolving

architectural vision and a way of protecting the integrity of that vision

in the face of rapid change and multiple (possibly inexperienced)

developers.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 17

Copyright © 2012 by David A. Penny

Because agile methods have a philosophy of not architecting in

advance of requirements, there is again sometimes a misconception that

exerting control over the architectural is not "agile". This is not true. It

is quite proper to have a mechanism to guide the architectural evolution

of the software with a steady hand.

1.5.8. Effort Tracking

Making estimates on resource availability, on effort required to

implement features, and on ongoing effort required to fix defects is

central to agile horizon planning. However, without a means to track

the actual amount of effort expended, quantitatively-based decision

making is difficult. Therefore, we require some means of tracking time

spent against various activities to a highly granular level (i.e., fractions

of hours).

1.5.9. Process Control

Well-run software projects follow a certain defined sequence of

steps to get new features or groups of features from inception to final

ship. To have control of this process means that the steps are written

down and known explicitly to all participants, that there are automated

systems into which records of passing each step are kept, and therefore

that summary reports can be produced showing the extent to which the

process is being adhered to.

This is a pre-requisite for effectively inserting quality steps into the

process. For example, defining a specification review step and

recording the pass/fail and action items from this step. Without process

control and associated automatically generated reports, skipping these

steps is the usual outcome.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

18 Introduction

Copyright © 2012 by David A. Penny

1.5.10. Software Development Business Planning

All of the other activities listed (and especially horizon planning)

exist in a business context expressed in terms of budgets. It is critical

for a software developing organization to understand explicitly its

budget, how it will be used, available flexibility within the budget, and

that budgets can change according to business conditions.

Having a written business plan enables a software development

organization to get a budget from higher management and then to

manage to it.

1.6. Effective and Defective Organizations

If one can imagine a defective organization in which none of the above-

listed essential practices are in use, the software professional must work

to remedy the situation as described below.

1.6.1. Infrastructure

The four infrastructure practices (source code control, defect/feature

tracking, reproducible builds, and automated regression testing) form a

firm foundation upon which more can be built.

If absent, source code control, must be on the top of the list of

improvements. We must decide on a good system, purchase and/or

install it on an appropriately sized server with redundant disks and good

backups, and migrate all the existing source code into the system. This

exercise can be accomplished within a few weeks with minimal

disruption, and is utterly non-negotiable. As an alternative, many

organizations are moving to SaaS-based source code control, though

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 19

Copyright © 2012 by David A. Penny

some companies take issue with having their valuable source code

residing in the cloud.

Even if source code control is in place, but the system used is

inadequate, it should be replaced with a better one as a first priority,

with the change history imported.

The next thing to look for is a system for keeping track of defects found

in the code, and doling them out to the appropriate developers

(automatically, to the extent possible). Management must then take the

stance that defects above a certain severity level must be fixed first,

before a developer may work on a new feature. The defect tracking

system should be implemented on a more general purpose workflow

management system to enable process refinement and enforcement later

on.

The same system can provide a repository for feature requests as a

basis for tracking new work. It is also necessary that the source code

control system and the defect/feature tracking system be integrated.

That is to say, the tool should enforce that all source code check-ins be

made against either a specific feature or defect. The selection and

rollout of a defect/feature tracking system can usually be accomplished

within a month.

We now turn our attention to the manner in which developers or testers

make builds of the software and release it into the field.

If the process of building a release or assembling an installer has many

manual steps, with files copied all over the place in the process,

problems will arise.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

20 Introduction

Copyright © 2012 by David A. Penny

Professionals should strive for nothing less than a fully-automated

build facility, with all scripts and source (and no intermediate files)

pulled from source control. The goal must be a push-button build. Only

in this manner can we guarantee quality and consistency.

If the concept of "build" does not apply (as for some simple script-

based Web technologies, for example), or if the organization offers

software-as-a-service, "build" should be understood to include fully

automated deployment of the development system to staging and then

to production.

Implementing such a build facility for internal testing builds is the

first priority. Implementing it for the installer images and CD creation

for shrink-wrap software, or for pushing to production for SaaS, is the

second priority. If the build system is in rough shape, the first step can

take several weeks of dedicated effort by the top developer most

familiar with the system. The second stage can stretch for months if it

must take into account all the variants of the software that typically

need to be shipped, or all the complexities of deploying SaaS to

production.

The next priority must be an automated testing facility. Quality

products depend upon the extent of automated testing. No amount of

manual testing can make up for the lack of an automated testing

facility. Often the most effective way of doing this is architecting the

software in such a way that it has an automation API that as closely as

possible follows the code paths of GUI-based commands.

Putting in place such an API is a major feature effort (months of

development). Building an automated testing facility around it may take

several months more. It will then be a constant struggle to build a

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 21

Copyright © 2012 by David A. Penny

library of automated tests and to maintain it in the face of software

corrections and enhancements.

This effort is made considerably easier if the API was contemplated

at day-one of the architecture, and if all features in the software are

coded to be accessible to the API.

While the application regression testing infrastructure is the first

priority, full suites of automated unit tests that test internal code are

also a help in maintaining quality and tracking down defects quickly to

their source. These types of automated unit tests are usually maintained

within a framework that allows developers to contribute new test

scaffolding and test cases whenever they create a new program module

(for example, a new set of classes in C#). These suites test for correct

functioning of the programmer’s interface to these program modules,

and will typically test more completely the code paths within these

modules than can the main regression tests, as code that is currently

unused within the application is also tested, and obscure error

conditions that might never occur in the application regression tests can

be tested as well.

With Web-oriented Software-as-a-Service (SaaS), automated testing

can often take the form of cloud-based testing services that call a test

URL and emulate the behavior of client-side code running in the

various browsers.

At this stage, the basic infrastructure for solid software development is

in place. However, there is as yet little management control over the

development effort. Practices around this are the next priority.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

22 Introduction

Copyright © 2012 by David A. Penny

1.6.2. Control

In many software developing organizations, medium to longer term

planning is surprisingly lacking. I have found recently that the lack of

this is being legitimized under the banner of being agile.

The argument goes that features are being continuously released to

the field in short sprints of effort. For any sprint, the small set of

features is chosen just before the sprint starts from an unsorted backlog

of such features. If a business executive asks what is planned for the

next six months, they risk being told that the question itself is not very

agile.

Companies cannot do business like this. Independent of feature

release to the field frequency, we must always have a longer term

planning horizon.

 First priority is to set the next planning horizon and then estimate

the person-days of developer effort available. Then one may consider a

portfolio of features to include during this planning horizon, estimating

the effort involved in each one, and making sure the sum total effort

required is balanced with the effort available.

As time proceeds, re-estimation should be repeated regularly and

appropriate corrective actions taken well before the end of the horizon.

In this manner, management will have visibility into larger-scale

progress and can adjust direction as they go.

While it is a goal that the software be ready to ship at the end of every

small sprint, it is rarely achieved. The agile correction is often the

"stabilization sprint", where no new features are worked on for a period

of time. As well, with packaged software there are many activities that

must occur prior to releasing a new major release out into the field. For

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 23

Copyright © 2012 by David A. Penny

SaaS, the actual act of releasing a significant change into production

has considerable preparation associated with it. Finally, it is often wise

to include a beta testing period before declaring the new feature set

generally available.

All of these types of activities need to be factored into a planning

horizon, not just the coding and unit testing. The exact ordering of these

activities is less important. However, I should say that it is generally

unwise to leave all stabilization, release preparation, and even beta

testing of features to the end of a planning horizon. Rather, it is better

to intersperse these activities throughout, but to keep the total time

spent on them in some proportion to the coding time. If the coding time

during a planning horizon increases, so must this other time increase in

proportion to it.

Putting such a system into practice is a team effort involving

development, management, and product marketing. Initially, the tools

used need be no more than a spreadsheet. As an organization grows in

sophistication it may build custom tools that update agile horizon plans

in real-time on the corporate Intranet. Putting such practices into place

with rudimentary tools generally requires a full planning cycle to work

out the kinks, and then the following planning cycle will proceed more

smoothly.

Once the organization decides what features to work on, the next most

important practice is writing feature specifications.

Under the guise of agile methods, some development organization

will eschew written documentation. This is not the spirit of agile. Agile

values working software over comprehensive documentation, but does

not rule out documenting a complex feature.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

24 Introduction

Copyright © 2012 by David A. Penny

A feature specification is a document that describes how a new

feature will appear to the end-users of the software. Writing them

improves quality, reduces costs, and aids release predictability. A

typical planning horizon of a major software product may contain

hundreds of new features. Not all of them will deserve a full-blown

feature specification, though all will deserve at least a meeting with

notes recorded. For those that do require a specification document, not

having one is a serious mistake.

Institutionalizing the appropriate creation of feature specifications is

difficult in a coding-centric environment; however a capacity to write

and review specifications must be developed. Existing developers are

not always the best people to write specifications. Management must

set budget aside to hire or develop people with the required domain

knowledge, business analysis abilities, and writing skills.

With a solid infrastructure, horizon planning, and feature specifications

in place, the organization now has good control of the quality and

predictability of its software. However, there is a longer-term, lurking

menace in any significantly-sized software effort (i.e., more than a few

hundred thousand lines of code). The lurking menace is architectural

deterioration.

While there are exceptions, generally a first release of a successful

software product will have a fairly coherent architecture. This is

because the architecture of a first release is often tightly held by a

creative mastermind taking full ownership. However, as developers are

added to a project, as the original architectural leaders move on to other

projects, and as defect corrections and new feature additions pile onto

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 25

Copyright © 2012 by David A. Penny

an architecture not originally envisaged to cope with the requirements

now placed upon it, the architecture has a tendency to deteriorate.

Written architecture documents become out of date, which then, in a

downward spiral, further precipitate the lack of attention paid to these

documents. This causes them to become increasingly out of date and

hence more and more useless to developers.

To reverse this trend requires management action to ensure there is

always one person or one group in charge of the architecture. That

person should spearhead the development of tools and techniques to

document the architecture and, where possible, automatically extract it

and enforce it in the source code. As well, allocating a certain effort

budget not for new feature development, but for changes to the source

code to improve the architecture (or return it to compliance) is also

imperative.

1.6.3. Refinement

Once infrastructure and control is in place, refinements can be made.

The first refinement is to put in place a system for measuring the actual

effort expended on various development activities: a fine-grained time-

tracking system. There is no need to measure when an employee gets

into work or leaves; rather, for coders, it is necessary to measure how

much time they devote to each individual feature, and how much time

they each devote to fixing defects.

These measurements can then be used to refine assumptions that go

into forming a horizon plan, such as on average how much time each

workday a coder is able to devote to coding new features.

Many managers are fearful of insisting on this much discipline from

their coders. However, as long as the coders understand how the data

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

26 Introduction

Copyright © 2012 by David A. Penny

will be used (i.e., in support of their efforts and not against them) they

will welcome it.

Some commercial and open source time tracking tools have

appropriate functionality, and are capable of being integrated into an

existing environment. Putting in place such a system and integrating

may take a few weeks. Management must then insist on its use and

monitor the data closely. Within three months of management

dedicating attention to it, the habit of tracking time will be firmly in

place, requiring only infrequent reminders to staff to keep it up.

The next refinement is to get control of the software development

lifecycle process by defining it thoroughly, writing it down, publishing

it on an Intranet, and instrumenting it to assess the extent to which it is

being followed.

A simple process with the controls discussed previously may

comprise a dozen or so steps. These steps should be written down, and

the systems (especially the workflow management system used for

defect and feature tracking) should be customized to capture features

moving from one stage in the process to the next. Management can then

develop reports that indicate the flow of features through the various

stages. Non-conformance becomes immediately visible to all.

Writing down the process and instrumenting it is a few month's

effort, however it cannot be started until the informal process is being

used consistently.

The formal measured process will then bring to light situations

where the informal process is not being followed. Some of the time,

there is a good reason for this, and the process can be refined to account

for these situations.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 27

Copyright © 2012 by David A. Penny

Then, if the organization wishes to add process steps to correct

problems (e.g., a specification review, a feature demonstration meeting,

a documentation signoff, a code review, and so on) it can do so in a

controlled fashion, and can monitor and adjust for compliance.

Finally, as an umbrella for accomplishing all of the foregoing activities,

a development manager must think like any other business manager and

build a business plan for the development group. The purpose of such a

plan is to build confidence within the executive team that the situation

is well-assessed, the development group is organized with defined areas

of responsibilities, development priorities are aligned with corporate

priorities, and plans for improvement are well thought-out with

concrete timelines and resource requirements translated into budgetary

terms. This plan then forms the basis of a negotiation with executive

management on an appropriate budget.

While this exercise may seem mundane, without doing it, no

progress will likely be made on any of the other points.

1.6.4. Relationships

Of the ten core practices described above, the key practice is agile

horizon planning. Agile horizon planning is a goal towards which an

organization should strive, and is the key marker that separates well run

from poorly run organizations.

The four infrastructural practices, of which source code control is

the prime enabler, while having benefit in their own right exist in large

part to serve agile horizon planning.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

28 Introduction

Copyright © 2012 by David A. Penny

Agile horizon planning, in turn, enables feature control and

architectural control, two practices that are difficult to implement in an

organization always scrambling to catch up to poorly planned,

unrealistic deadlines.

The three remaining practices are considered refinements in the

sense they improve upon an already well-run operation.

The outline of the book will follow this rationale. We first proceed with

a detailed discussion of agile horizon planning. By covering this

material first we lay the groundwork to discuss the importance of the

infrastructural practices, the control practices, and the refinements.

Infrastructure

Control

Refinement

source code
control

defect/feature
tracking

reproducible
builds

automated
regression

testing

agile
horizon

planning
feature

specifications
architectural

control

business
planning

effort
tracking

process
control

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 29

Copyright © 2012 by David A. Penny

1.7. Intended Audience & Scope

The ideas contained in this book are most applicable in the context of a

commercial independent software vendor organization that has

produced the first release of a product, and is now interested in shipping

new features with increased quality and predictability.

Within such an organization, the ideas can be championed either by

decision-makers within the software development organization, or at a

more grass-roots level by developers on a practice-by-practice level.

The ideas will be of interest to those who wish to learn to manage a

reliable software organization, including executives in related areas,

individual contributors, product and project managers, and students.

I primarily stress follow-on development as opposed to "green

fields" new product development. The reason is that follow-on

development makes up the vast majority of effort expended in the

software industry, and is thus the type of software development most

likely to be encountered by the software professional.

As well, much has been written on green fields development; less on

the more economically significant topic of follow-on development. To

illustrate the economic significance of follow-on development as

opposed to green fields, consider the following hypothetical but

reasonable scenario.

A software vendor develops a modest new software product

over a one-year period using a team of three developers, a

tester, and a documenter. Using a nominal loaded cost per

employee per year of $100,000, the cost of this

hypothetical initial development is approximately

$500,000.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

30 Introduction

Copyright © 2012 by David A. Penny

Assume that the product is successful at launch, and is

still shipping new releases and maintaining older releases

five years later. During this time, the software has been

ported to multiple platforms and has been significantly

enhanced. To support the effort, the development team has

ramped up to a staffing of twenty developers, plus an

additional ten in the test and build teams and five

documenters. This follow-on effort represents

approximately 100 person-years, at a cost of $10,000,000,

and is spending $3,500,000 a year for maintenance of the

product.

As this scenario illustrates, follow-on costs dominate initial release

costs. To make the most impact, effort should be directed at ensuring

follow-on activities are efficient. For example, a 10% increase in

productivity during initial development would have saved the

hypothetical vendor company only $70,000. The same 10% increase in

efficiency during follow-on development would have saved the

company $1,000,000 to date, and $350,000 or more per year going

forwards.

This is not to downplay the importance of the initial release. It sets

the stage for everything that follows. If done well, the follow-on

releases will proceed smoothly. If done poorly, the entire product

lifetime will be a continuous game of "catch-up". Thus one of the most

important attributes of initial release development is how well it sets the

stage for subsequent development. Understanding the practices

essential to subsequent release development is therefore important to

carrying out the initial release development in an effective manner.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Introduction 31

Copyright © 2012 by David A. Penny

1.8. Professional Experience

Before continuing on our journey I will digress, if my readers allow, for

a quick word concerning professional experience directed at newly

minted professional software developers and students of our field.

Whether software developers find themselves thrust into leadership

positions, or whether they are one of many on a team, all software

professionals have a collective responsibility to improve the state of

practice within their organizations. To know how to do this requires

education and experience. To qualify as an experienced commercial

software developer one requires:

 A solid formal education in the computer sciences.

 To have been involved in several release cycles of a software

product, from release inception to ship and maintenance.

Shipping a software product that a large number of customers have paid

money to purchase is an important experience. The software developer

is no longer in the driver's seat as he or she is for school assignments.

The expectations and pressures associated with a commercial release

are much higher.

However, simply shipping the software and then moving on is not

adequate. Experience comes from having made certain decisions, and

later having to correct the problems that arise, sometimes only years

later. Only in this fashion, by learning from mistakes in a business

setting, can a software professional gather relevant experience.

The recommendations in this book stem from this type of

experience. To the inexperienced, many of the recommendations will

seem practical and sensible, and the aspiring professional will no doubt

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

32 Introduction

Copyright © 2012 by David A. Penny

wish to put the ideas into practice. However, without the experience to

know that the problems these techniques solve are important ones, it is

all too easy to lose this enthusiasm and gradually drift towards the

activities that seem to lead most directly to the end goal (i.e., coding

and debugging).

The experienced professional will recognize the importance of the

problems and how failing to address them early in the project will come

back to haunt the project later. They will be loathe, therefore, to start

any software development activity without the solutions to these

problems in place.

While experienced professionals may have different ways of

addressing the various problems, they will generally agree that the

problems being solved are important ones that must be addressed.

It is not so much knowing specific prescriptive solutions that make

the professional. Rather, it is knowing the problems and how severe

they can become if left untreated that is the true mark of the

professional.

In this book I will strive to identify these problems and propose

solutions that have worked in practice in various settings.

To the inexperienced professional or the student who has yet been

troubled by these problems, I can only plead indulgence and hope they

will take me at least somewhat on faith.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

Copyright © 2012 by David A. Penny

2. Planning

Of all the activities that ought to take place in the commercial software

development organization, the planning and subsequent tracking of

software progress is one of the most critical. The Carnegie Mellon

Software Engineering Institute identifies planning and project

management as the most basic of all software practices [see The

Capability Maturity Model, Carnegie Mellon University, Software

Engineering Institute, 1994]. Indeed, project planning is what separates

the chaotic "initial" organizations from the more sound, second-level

"repeatable" ones. Any company that has achieved CMM Level 2 is

doing well, and has a firm foundation for further improvement.

Despite its importance, good software planning and tracking is a

constant struggle. Many times the typical software organization will

make no plans at all. Other times it will make plans that seem to have

no connection to reality. Sometimes management will make a plan but

not update it as events unfold. If development makes a plan and keeps it

properly updated, the business stakeholders will often complain that it

is difficult, if not impossible, to make necessary changes to it. These

planning problems will take their toll on the software company, and can

even threaten its continued existence.

The software company that persistently finds itself in these

situations can take heart in two facts. First, they are by no means alone.

Many software companies seem to go through these chaotic early

stages. Second, when the time eventually comes to do so, it is

surprisingly easy to correct the situation.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

34 Planning

Copyright © 2012 by David A. Penny

I will describe an overall approach to the management of the software

development organization that centers on the notion of a well-defined

planning horizon, the rational planning and tracking throughout that

time period, and dynamically managing requirement changes. I discuss

these practices in the context of a living, fast-paced software

organization that has little time or management focus to devote to

process enhancement. I will include practical advice on effecting

change and making the techniques work.

The practices in this book have been developed and refined within

enterprise software vendors, shrink-wrapped software vendors, and

SaaS organizations. The ideas have proven to be simple to implement

and apply, and yet effective in practical applications.

2.1. Planning Overview

I will start in this introductory chapter to planning by discussing some

general considerations regarding plans and planning. We discuss what

happens when we do not plan, how planning and tracking necessarily

go hand in hand, and why good planning is so elusive.

Chapter 3, "Agile Horizon Planning Overview", overviews a typical

planning process for software, and I introduce my particular approach

to determining what software the development organization can write in

what timeframe with what resources.

The following three chapters go into increasing detail on the horizon

planning framework.

Chapter 4, "The Capacity Constraint", discusses the planning

framework qualitatively; Chapter 5, "The Quantitative Capacity

Constraint" delves into it from a quantitative perspective; and Chapter

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Planning 35

Copyright © 2012 by David A. Penny

6, "The Stochastic Capacity Constraint", looks at how we cope with the

uncertainties inherent in planning.

Planning having been dealt with, we proceed with chapters covering

the other key practice areas discussed in the previous chapter.

2.2. Why Plan?

In the contemporary software development environment where the

small start-up with no processes to speak of can become highly

successful, we can legitimately ask, "Why bother planning at all?"

Planning is not always a good thing. For the sole developer, alone in

her basement working on the next killer application, there is little

reason to plan. In fact, planning will only slow her down and hamper

her creativity. We can say the same of small, entrepreneurial start-ups

and skunk-works projects within larger organizations that wish to

emulate them.

Similarly, if the goal is to as efficiently as possible continuously

develop software that assists a targeted group of users in doing their

jobs, it is good enough to see a constant gradient of improvement, and

knowing what particular features will come out in a year's time is

inessential. I believe this scenario is the true design point for agile

methods, and why a naïve agile approach can therefore be a danger

when planning is required in a commercial software development

environment.

However, so long as there is little or no external pressure to produce

a given set of functionality by a given date, planning is inessential and

just slows you down.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

36 Planning

Copyright © 2012 by David A. Penny

Planning becomes useful to a business when external pressure comes to

bear on the software organization.

This external pressure is usually weak in the beginning stages of a

company’s existence. A company can exist for a considerable time

marketing their software only to what Geoffrey Moore refers to in his

ground-breaking high-tech marketing book, Crossing the Chasm, as the

innovator and early adopter market segments. These market segments

wish only new functionality delivered as soon as possible, are tolerant

of defects in the software, are resigned to poor or nonexistent

documentation, and will suffer less than adequate support. In general,

these early customers have great patience with the fledgling software

company. Once the company "crosses the chasm" and wishes to sell to

the majority market segments, the software organization’s planning

practices must change dramatically.

These majority customers will want to plan their purchase and

schedule their acceptance testing and rollout. They expect high quality

documentation and customer service, are intolerant of defects, and

expect that if they report a defect that the vendor will promptly fix it in

a maintenance release that contains no extraneous feature

enhancements. Under these conditions, planning is one factor that

separates successful software vendors from those that disappear into

Moore’s chasm.

When targeting the majority markets, the successful software

company must set expectations and then deliver to them. If an

important new customer requests specific functionality, there must be a

mechanism in place to determine if software development can deliver

within the timeframe, and then monitor to make sure that it happens.

Good documentation, customer training, marketing, customer service,

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Planning 37

Copyright © 2012 by David A. Penny

and sales are dependent upon the organization having a unified view of

the expected functionality and release date. If there are to be any

changes, it is essential that the software development department

provide warning well in advance to allow the company to take

mitigating actions as early as possible.

Whether the pressures come from new customers, venture capitalists, or

industry analysts, the common thread is external expectations. In all

cases the software organization must make commitments, manage

expectations, and deliver on those expectations. If it does not, the

company will cease being successful.

In these circumstances, proper planning is essential. Why then are

there so many software companies that fail to do a good job of it?

2.3. Gantt Charts Considered Harmful

Too many software developers and project managers look at plans in

one certain way: as a Gantt chart.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

38 Planning

Copyright © 2012 by David A. Penny

Practically all project-planning software we see revolves around this

concept. To many classically trained project managers, it is

inconceivable to start a software project without first listing out all the

detailed tasks that need to be performed, assigning personnel to these

tasks, taking into account the inter-dependencies between tasks, and

only then assessing the feasibility of getting a software release out the

door by a planned date. Typically, these plans wind up becoming large

and unwieldy, if done non-trivially at all.

The problem with the large Gantt chart plan is that it is too clumsy a

tool for the sort of agile horizon planning that needs to go on in the

typical software vendor organization. Because the plan is oriented

towards documenting a set of activities, it is awkward for performing

fast-paced "what-if" tradeoff analysis between features and dates.

More particularly, effective use of a Gantt chart implies a level of

knowledge of how events will unfold that has no justification at the

time initial planning is taking place.

A complex Gantt chart is overkill at the start of a new release

initiative. Fortunately, it is not necessary to use one.

Software organizations often lose sight of their most important

objectives when planning. These are to know what they are building, by

when, and using how many people.

 What are we building?

 By when will it be ready?

 How many people will it take?

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Planning 39

Copyright © 2012 by David A. Penny

Coming up with a plan that answers these questions (and no more) must

be the focus in agile horizon planning.

Later, when the vendor has clear answers to these questions, it can

develop an implementation plan using Gantt charts. This plan can be

used to divide work amongst people, assign people to tasks, and

sequence those tasks. In our framework, implementation plans flow

from agile horizon plans. The framework proves itself when these more

detailed plans do not contradict the agile horizon plans.

That having been said, it is my opinion that agile horizon planning

combined with agile development methods renders any implementation

plan unnecessary.

2.4. Of Mice and Men

Developing an initial plan that answers the important agile horizon

planning questions is less than half the effort. One of the biggest

culprits is not neglecting to have a plan in the first place, but rather

neglecting to update it as it unfolds.

There is one certainty in any planning effort: the plan will change.

Some would have us believe that this is a flaw with the planners. If only

they had planned properly in the first place, they would not have to

keep changing the plan.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

40 Planning

Copyright © 2012 by David A. Penny

However, it seems to be a universal truth that all sorts of plans have

a distressing habit of going astray. The Scottish poet Robbie Burns

expressed it well in 1785:

But, Mousie, thou art not alone

In proving foresight may be vain:

The best laid schemes o' mice an’ men

 Gang aft a-gley,

An’ lea’e us naught but grief an’ pain

 For promis’d joy.

[To A Mouse, on turning her up in her nest, with the plough, November,

1785, Robert Burns, from Poems, Chiefly in the Scottish Dialect]

When formulating plans it is important to understand that these plans

represent only a current understanding of one possible way reality may

unfold. Unless we accept, indeed embrace, the uncertainties in a plan,

we will be disappointed by our planning success. Embracing

uncertainty implies that as time passes, as better information becomes

available, as the business situation changes, as we uncover flaws in the

initial planning, we must update the plan. It most particularly does not

mean sticking to our plan through thick and thin, and hoping to make

up for lost time somewhere, somehow.

Plans change for a variety of reasons. The reasons divide into internal

and external causes. Internal causes are those resulting from changes to

the estimates we made during the initial planning. External causes are

those resulting from late-breaking changes in the requirements. Let us

consider internal causes first.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Planning 41

Copyright © 2012 by David A. Penny

In the computer industry, even professionals are notoriously bad at

being able to predict how long it will take to build cutting-edge

software. Therefore, any initial estimates upon which we base a plan

must contain a significant margin of error. As time goes by and as

development proceeds, it would be rather odd if re-estimates of how

much longer a feature will take to implement were consistent with the

initial estimate. Every time we uncover an estimation error it is a

change that upsets the plan. Unless we update the plan it descends into

meaninglessness.

A particular cause for distress is that once "padding" is removed (as

I advocate here in favor of honest estimates and rational reaction to

estimation changes by management) estimation inaccuracies are more

often than not skewed towards overly optimistic estimates. This is

because developers will rarely imagine a piece of work that needs to be

done which is not required. However, in coming up with estimates it is

likely that they will forget some work that would need to be done.

Putting a bit of padding into an estimate to account for this is advisable;

however, the tendency even in that case will be to estimate low.

Other internal causes that require plan updates are developers

quitting, personnel being re-assigned away from the project,

unexpected changes to vacation plans, and changes in the number of

hours per day a developer can devote to adding new features into the

release.

External causes can affect plans as well. Suppose a major new prospect

has arrived on the scene and will only purchase the vendor’s software if

they implement a certain new feature. For the kind of revenue they are

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

42 Planning

Copyright © 2012 by David A. Penny

expecting from that customer, chances are they will change the plan.

This is an external cause.

Other external causes for plan changes are competitor moves,

collaboration opportunities, and changes in a regulatory environment.

Whatever the reasons for change, we can be certain that we will need to

update the plan regularly throughout the development effort. It is in this

situation that the large Gantt chart shows its weakness. With so

unwieldy a document, updating it regularly is impractical.

Yet we cannot sufficiently stress that making an initial plan without

updating it is worse than useless. It actually wastes time that we could

have better spent on productive tasks. Only if we keep a plan up-to-date

in the face of reality does it continue to have meaning.

2.5. The Difficult Question

A software development organization needs to make a good initial plan

and needs to keep it up-to-date. Unfortunately, the software industry,

collectively speaking, is not good at planning. While there are three

easy questions to answer when planning, there is at least one difficult

question.

Recall the three planning questions the software vendor needs to

have answered.

 What are we building?

 By when will it be ready?

 How many people will it take?

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Planning 43

Copyright © 2012 by David A. Penny

The first question, "what are we building?" can be hard to answer for

the first release of a product, but is usually much simpler for follow-on

work. The product managers will have lists of features that the

customers have requested or that the sales force says are necessary to

close future sales. Choosing a set of these features for the next planning

horizon and refining their specification is straightforward.

The second question, "by when should it be done?" is easy enough.

The software vendor must pick a reasonable date that is not so far out

that the customers think the vendor has given up on the product.

That leaves the third question: "how many developers?" For most

ongoing software ventures, the development organization knows how

many developers they have to work with. They can think about hiring,

but unless they can get developers who are already familiar with the

code base, the newly hired developers will not contribute more than

what they consume from the other team members for on-the-job

education. Therefore, resourcing, at least for the next planning cycle, is

usually very constrained.

The easy questions are therefore "what", "when", and "how many".

There is one more thing to consider. Can the software development

organization build "what" with "how many" by "when"? This is the

difficult question; nonetheless, the software company will need to

address it. If they do not, they are likely to run into trouble as the

following tale illustrates.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

44 Planning

Copyright © 2012 by David A. Penny

2.6. A Software Vendor Fable

While the development organization often raises the essential question

of whether or not resource balance exists for a proposed plan, it is

surprising how often this question remains unanswered.

One common approach is "our developers are the best; of course

they can pull it off." If this flattery does not convince, the next line of

defense is often "it needs to get done; the business is riding on it."

Management asks development what they need to make it happen. Do

they need more money to hire consultants? Do they need extra pay for

working weekends?

The final line of defense is often: "the release has already been

promised and we can’t go back on our promises now." To this,

unfortunately, there is no rebuttal.

We are now at the point where practically nobody in the

organization thinks the release can happen on time, but nonetheless

everybody is working away on it. Edward Yourdon describes this

situation in his book Death March [Prentice-Hall, 1997]. Development

knows it cannot happen on time. Product marketing knows it will not

come in on time. The CEO hears "we’re going to really have to push

ourselves to get this one done, but we know how important it is to the

company."

As time marches on it becomes increasingly clear that the features

cannot all be done on time. Balancing this is the fact that it is also

getting increasingly painful to have to admit this. Trapped in a difficult

situation the human psyche prevails: hopeless optimism sets in. It will

be their finest hour.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Planning 45

Copyright © 2012 by David A. Penny

When the planned date passes, development management

characterizes it as a short delay, a couple of weeks at the outside to

correct the most important problems. This will typically happen more

than once. Eventually, things come to a head. Development admits that

it now appears as though it will take another couple of months.

Development, however, is blameless. Nobody agreed to the

ridiculous plan in the first place. Development said it was next to

impossible but that they would work as hard and as smart as they could.

The obstacles were too much to overcome.

Product Marketing as well is blameless. They made the plan, but

Development said it was doable. Nobody heard any complaints for the

last three months either. They were under the impression that

everything was going fine.

Unfortunately, this little fable happens far too often in the software

industry. With a little knowledge, foresight, common sense, and

commitment to change, such situations are entirely avoidable.

Read on.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

Copyright © 2012 by David A. Penny

3. Agile Horizon Planning

Overview

For a software organization to be successful, it needs to accurately plan

and track the development of its software. To enable this, the software

organization must make two commitments. The first is that they

subscribe to the notion of a longer term horizon plan. The second is that

they follow a repeatable development process. For the purposes of

introducing agile horizon planning it is not necessary that we take into

account the low-level details of the process. A sketch will do.

In this chapter, we give an overview of how agile horizon planning

operates in the context of a specific type of technical release cycle. In

subsequent chapters, we go into the details in greater depth, discussing

tradeoffs, business issues, and advice on how to make the process work

in a software organization.

We will be discussing agile horizon planning in the context of a

software vendor organization wishing to better control follow-on

releases of their software product. The median of such product ventures

will involve around three dozen people and a code base of a million

lines of code or so. However, the ideas are applicable on larger and

smaller scales, as well as in software development contexts other than a

software vendor organization.

To set the stage, we start by describing the business environment of

a typical software vendor organization.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

48 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

3.1. Software Vendors

A software vendor is a business that makes its money by providing

software and related services such as help desks, training, product-

related consulting, user groups, and so on.

The typical medium-sized software vendor organizes itself as

follows.

The marketing group is responsible for identifying market

segments and determining what software features the market would be

willing to pay for. They are also responsible for communicating the

existence and benefits of the software to these target markets, and for

identifying new channels to market. Ultimately, they are responsible for

the profitability of products.

The product management group within marketing will manage and

coordinate the horizon plans for the various products, and coordinate

the launch of new products, or new releases of existing products.

The sales group, often organized by sales region, identifies

individual prospects, negotiates terms with them, and consummates

sales. This group is responsible for the company’s revenue targets.

The client services group is responsible for helping customers get

up and running with the company’s software, and dealing with any

ongoing issues they may have. As such, they provide pre-sales support,

 Software Vendor

Sales Finance &
Administration

Marketing

Product
Management

Software
Development

Client
Services

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 49

Copyright © 2012 by David A. Penny

training, help desk services, and consulting services. They are

ultimately responsible for customer satisfaction.

The software development group is responsible for delivering high

quality product with a promised set of features by a promised date. This

group will have limited direct contact with customers. Client services

will deal with customer issues, and product management will deal with

customer requests for product enhancements.

The finance and administration group ensures that the company

has adequate funding, provides oversight over spending by establishing

budgets, and takes care of the day-to-day operations.

Human resources and internal IT are two departments that tend to

report wherever it makes most sense, given the experience of the

various executives.

The lifeblood of the software company is the flow of new features in

their software products going out the door. If the rhythm of these new

features falters, it jeopardizes the health of the company.

Customers depend upon the new features, plan ahead of time to

receive them, and make commitments based on promised deliveries. To

satisfy its customers, the software company must successfully combine

the efforts of the entire organization to meet the challenge of shipping

on time and with high quality. Therefore managing the horizon plan is

central to the management of the software company.

Managing the horizon plan means deciding what new features are to

appear by what date, and adjusting this plan as the situation changes.

The company measures success by whether it can consistently make

and meet its commitments. Agile horizon planning, as described in

what follows, is the means by which this can occur.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

50 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

3.2. The Traditional Software Product Lifecycle

Before discussing the increasingly important continuous release

methods advised for SaaS-type software, I will first describe a more

traditional release method, suitable for most other types of delivery

where the cost of releasing a new feature set to the field is relatively

high.

The preliminary stage, requirements gather, consists of gathering

potential requirements for the release. The marketing product

management group will coordinate this effort. Once they have brought

together and prioritized this wish list, the initial agile horizon planning

can begin. It consists of working with software development and key

decision makers to decide on the dates for the release and what features

from the wish list will make it in-plan.

requirements gather

specification & design

code & unit test alpha test

beta test

generally available release

development cutoff

fork

plan available

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 51

Copyright © 2012 by David A. Penny

Once the company has settled on an initial agile horizon plan,

detailed specification and design work begins on certain in-plan

features. This can involve both prototyping and written work. As

analysts, coders, and architects refine the features into specifications

and designs, they will update their initial sizing estimates, necessitating

re-planning. It is not necessary that all such work be done before coding

can begin. This phase is used to get a head start.

When design and specification has produced enough output,

development is ready to begin coding and unit testing. For traditional

release lifecycles this point is called "fork" because the source code is

logically forked into the release currently being supported in the field,

and the new release that is under development. Throughout this phase,

software development and product management update the horizon

plan as they uncover new information, and shift features and dates once

the plan is no longer within the comfort zone. Coding and unit testing

continues until the team arrives at the milestone known as

"development cutoff". At this point, no developers can identify any

remaining code they need to add to make the release feature-complete.

After development cutoff, alpha testing begins. The testing staff

uncovers defects and the developers fix them. A common variation is to

have the alpha testing phase spread out and interspersed into coding and

unit testing, in order to minimize the total time to do both.

When the new software is sufficiently stable, the organization will

release a beta testing version both internally and to select customers so

that they can get an early look at the software, try it out in the field, and

suggest improvements. At the end of the beta testing period, the

company will make the new release generally available.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

52 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

Throughout the testing phases, management keeps a close eye on

defect arrival rates to determine if the end-dates remain feasible.

The software vendor will iterate such a release cycle many times

during the lifetime of a commercially successful software product.

After the initial release, typical lifetimes would exceed five years

and have at least ten or more distinct follow-on releases, each of which

adds significant functionality to the product. Follow-on releases would

be spaced anywhere from six months to a year or more apart, closer in

certain situations.

Each feature release will require ongoing maintenance, meaning that

customers who take a release will have made available to them periodic

point releases that fix any problems they may encounter. These point

releases are pure corrective maintenance, and contain no new features.

Requirements gather is outside of the release cycle, and proceeds at

a constant pace throughout the lifetime of the software. Product

management will consider those features that do not make it into the

current release for the ones following.

R1.0 R1.1 R1.2 R2.0

Continuous
requirements
gather

Initial release

Follow-on releases

R1.0.1

R1.0.2

R1.0.3
R1.0.1a

point releases

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 53

Copyright © 2012 by David A. Penny

3.3. SaaS Lifecycle

The typical lifecycle for Software-as-a-Service differs from the

traditional lifecycle described in the previous section.

The SaaS lifecycle is more linear and continuous. Agile teams will

pick up a set of features to work on and deliver a completed set of

functionality within a two or three week sprint. Specification and

design, coding, and alpha testing are generally handled on a feature by

feature basis and attain 90% closure by the end of a sprint. Sometimes

several such sprints may be chained together, followed by a

stabilization sprint to ensure the software is ready to be put into

production.

This is repeated continuously throughout the life of the software. This

may also be mixed with the more traditional lifecycle when a very large

change needs to be made.

For the sake of longer term planning, all the features that the teams

will work on during a given time horizon will be planned out such that

elapsed time, effort required, and effort available will be correctly

balanced.

sprint sprint sprint stabilization

production

new
features

new
features

agile planning horizon

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

54 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

3.4. The Agile Horizon Plan

The central document used in managing the software is the agile

horizon plan. Here we show a simplified example agile horizon plan

below. A full version suitable for the traditional software lifecycle is

shown in Appendix A on page 345).

The horizon plan takes the form of a balance sheet. On one side are

the available development resources. On the other side is the amount of

work required to code all the features. For the plan to be valid, the

available resources must balance the required resources.

Simple Agile Horizon Plan

Planning Horizon: Jul.1—Sep.30 (64 workdays)

Coding Ratio: 3:1 (48 coding days)

Capacity: days available
 Fred 25 effective-coding-days
 Lorna 33 effective-coding-days

 … …
 Bill 21 effective-coding-days

 total 317 effective-coding days

Requirement: days required
 AR report 14 effective-coding-days
 Dialog re-design 22 effective coding days

 … …
 Thread support 12 effective-coding-days
 total 317 effective-coding-days

Status: Capacity: 317 effective-coding-days
 Requirement: 317 effective-coding-days

 Delta: 0 effective-coding-days

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 55

Copyright © 2012 by David A. Penny

Planning Horizon

The first section of the plan shows the duration of the planning

horizon and the number of workdays available within that horizon.

Coding Ratio

The next section shows within that planning horizon the typical

proportion of days available for coding and unit testing versus other

activities that need to be carried out (such as specification and design

work by coders, stabilization, and release preparation). A development

shop will arrive at this ratio through historical measurement.

Capacity

Next comes the computation of the capacity to do coding work

expressed in effective-coding-days. We explain this quantitatively in

Chapter 4. For now, the units can be simply understood as the number

of solid, 8-hour coding days (devoid of all other distractions) available

for coding.

To compute this measure we start by listing all the coders who will

contribute to the plan. For each, we count workdays available for

coding and apply a factor to convert to effective days. We then sum to

come up with a total that represents the capacity available to put

features into the release.

Requirement

Balancing the capacity to do work is the requirement for work to be

done. For consistency with the capacity measure, we also express this

in units of effective coding-days.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

56 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

To compute the requirement we list all the features that we wish to

include in the release, attach a sizing to each, and sum them. The

individual feature sizings are a combined estimate of the intrinsic size

of the work item, an estimate as to which developers will work on the

feature, and an estimate of how productive they will be with the hours

they dedicate to the feature. For the purposes of the horizon plan, we

combine these uncertainties into an aggregate feature sizing given in

effective-coding-days: the total number of uninterrupted hours required

to code and unit test the feature divided by a nominal eight-hour day.

There is complexity here, such as what constitutes a feature, how to

size them, how to deal with uncertainties in the estimates, and so on.

We shall discuss all of these issues in detail later on. For now, it is

sufficient to note that the end-result is a list of features understandable

equally by software development and by the business stakeholders; not

a list of tasks that software development alone can understand.

Status

At the bottom of the plan we bring together the capacity and the

requirement, subtract them, and give a delta, the number of effective-

coding-days by which we expect to come in ahead of (positive

numbers) or behind (negative numbers) our target date.

Negative delta indicates a growing need to take action to re-balance

the plan, either by extending dates, dropping features, scaling back the

scope of certain features, or adding effective resource. Positive delta

indicates that there is room in the plan to do more.

We do not view positive delta as a contingency. We deal with

contingency explicitly in the stochastics of the full plan, which we will

discuss in Chapter 6.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 57

Copyright © 2012 by David A. Penny

For more traditional software lifecycles, we focus our planning efforts

towards development cutoff. After this date, the die is cast. As we pass

this milestone, our proactive control of the plan is reduced to either

delaying the generally available release or shipping a poor quality

product.

To ship a good quality release on time, it is essential that the

software company hit their planned development cutoff date and

thereby maintain their planned course of testing and debugging. It is not

reasonable to expect that if coding has taken longer than expected, then

testing will take shorter than expected. Yet, many organizations will

default to this behavior, holding end-dates firm despite slips in

development cutoff, no doubt hoping for better-than-usual luck during

testing. Long experience has shown that if the development cutoff date

slips, it will be necessary to extend the end-dates both by the length of

the slip plus by an extra proportionate amount of time for testing.

Therefore, it is important to ensure that development cutoff does not

slip, and manage the plan to that date accordingly.

Though the sample horizon plan that we show here is simpler than the

full horizon plan shown in Appendix A, it captures the essentials of

agile horizon planning, which is a balancing of capacity and

requirement. While we must consider many details and make a study of

how to make agile horizon planning work in practice, we must not lose

track of the simplicity of the situation.

Planning in greater detail is a temptation we must avoid, as this

extra detail is not justified by the precision of the capacity and

requirement estimates.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

58 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

3.5. Implementation Planning

When planning a release we are dealing at a level of abstraction above

that required by the detailed plans used to get the job done. At a certain

stage in the development cycle, we will need to plan all activities in

detail. We must divide jobs into tasks, assign these tasks to individuals,

sequence them appropriately, and track them. All of this requires

detailed planning, or implementation planning.

When we are doing agile horizon planning, this level of detail is

counter-productive. What we are seeking is a planning method that

gives us a minimum of complexity while losing the least planning

accuracy. In this way, the horizon plan becomes easier to cope with: it

is easier to put together, easier for developers and business stakeholders

to understand, and easier to keep up-to-date on a regular basis.

We have designed the agile horizon plan to be amenable to rapid

"what if?" analysis: "what if we added this feature?", "what if we took

away that feature?", "what if we moved the date out?" We have also

designed it to be easy to keep up-to-date on a weekly basis so that at all

times we have an understandable statement of the status. If the status is

"behind schedule", the what-if capabilities of the agile horizon plan

provide us with a mechanism to consider plan adjustments.

The biggest fault with planning is not the shortcomings of a

particular planning methodology, but rather either not planning at all, or

making an initial plan but then not tracking and adjusting it. A

simplified agile horizon planning method addresses these issues.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 59

Copyright © 2012 by David A. Penny

We view the agile horizon plan as an abstracted version of the

implementation plan. It comes to the same conclusions, but is stated

and manipulated in summary form. It should always be the case that if

we can put together a valid agile horizon plan (one that appropriately

balances capacity and requirement), then we can produce a valid

implementation plan (one that gets all the tasks done with the planned

resources by the planned end-date).

To serve the abstraction we take shortcuts and make assumptions

when coming up with the agile horizon plan. These simplify the

planning. We have found that these simplifications do not reduce the

validity of the plan. In other words, even given the simplifications there

is little chance that a detailed implementation plan will contradict the

agile horizon plan.

That having been said, I consider it to be entirely unnecessary to carry

the baggage of a more detailed implementation plan in most

circumstances, and find that agile horizon plan combined with agile

development methods render a detailed implementation plan an

unnecessary burden.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

60 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

3.6. Eliciting Potential Requirements

Closing on an agile horizon plan involves first identifying the set of

potential requirements for the time horizon: a wish list. These potential

requirements are such that we can reasonably either include them or

omit them from the software. We state them at the level of business

requirements. That is, features that have a business benefit when we

implement them into the software. The benefit is usually to the

customer, but it can be to the software vendor in the case of

architectural enhancements that make the code easier to deal with going

forward.

Potential Requirements
Agile Horizon Plan

?

We can imagine the potential requirements as each being unique,

and all contained in a large bucket. Agile horizon planning involves

selecting a subset of features from the bucket for delivery within the

planning horizon.

For the first release, it takes effort to concisely define a set of

potential requirements. First, we must model the domain, for instance

using use cases and UML. Then we can define a set of potential

requirements. As well, in a first release, we ought to develop at least an

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 61

Copyright © 2012 by David A. Penny

architectural concept we think will be required for subsequent releases.

Therefore, the first release requirements usually come down to a

minimum set of features, with a maximum amount of architectural

work. This limits the scope of planning activities.

For follow-on releases, the job gets easier. The problem here is not so

much eliciting requirements as keeping track of them all.

Coming out of the first release effort is a set of features that we put

off together with some significant areas where we know we could

improve the architecture. These form the basis for a wish list of

potential requirements for the next planning cycle. When users start

applying the software to practical problems, they have many sensible

ideas for improving it. This adds to the wish list.

For the follow-on development, the problem is to keep track of the

wish list, prioritize it, size it, and decide which features will make it

into the next planning horizon.

3.7. Sizing Potential Requirements

Once product management has identified and prioritized the wish list, it

will be necessary to determine the merits of each potential feature by

means of a cost-benefit analysis. The benefit is what incremental

revenue or reduced costs the proposed feature will bring. The cost is

using the development staff to implement the feature. This has both a

financial cost and an opportunity cost. The opportunity cost is the

benefit of other software the team might have produced during that

same time.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

62 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

For software development, cost is almost entirely proportional to the

number of people we have working. Thus, estimating cost requires

sizing the potential feature or architectural enhancement in units of

person-days. For example, a potential requirement may take 30

effective person-days in total to implement.

To size a feature a developer will first seek to understand the

specification for the feature and how she will add it to the software. If a

specification and design is available, she will use it. Otherwise, she will

take an educated guess as to the nature of the specification and from

that work out a rough design. She will then divide the implementation

into component tasks, and estimate the time she will take to produce

debugged code for each component task individually based on her prior

experience with the code. Summing the timings for the component

tasks, she will arrive at an overall sizing for the feature.

The software organization can improve sizing accuracy over time by

conducting post-mortems that compare estimated to actual sizings. This

requires that the company keep track of the sizings throughout the

project, and that all the developers track the time they spend working

on the various features. A few such iterations can greatly improve

sizing accuracy.

30 36 43

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 63

Copyright © 2012 by David A. Penny

Another consideration when sizing is the precise nature of the units that

we use. Does the estimate include testers and documenters? Is

management overhead included? Are days seven hours or eight, or as

long as a developer is willing to work? Is it dedicated time or time

where other work activities are expected to interfere?

Is 30-days an average-case estimate or worst-case estimate? If it’s

worst case, what is the confidence interval: will we expect to come in

under 30 days 90% of the time, 95% of the time, or something else? If

it is average case, then what are the best and worst cases? Are they

symmetric?

There are many details surrounding the use of sizings. If we neglect

any one of them, the results may be far off. We consider these issues in

detail in Chapters 5 and 6.

A shortcut we take for agile horizon planning is to size explicitly only

the coding work associated with a feature. We shall see later that we

size other tasks, such as system testing, documentation, specification,

and design, indirectly from the code sizings.

3.8. Sizing the Available Resources

While feature sizings estimate how much coding work is required for a

candidate agile horizon plan, resource sizing estimates how much

coding person-power is available to do that work.

We start by examining the pool of capable developers available to

work on the software within the planning horizon. For follow-on work

within the next planning horizon this is often limited to those who have

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

64 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

experience with the code. Most others will use as much of the other

developer’s time for training as they will in producing useful work.

For each potential developer we estimate when they are free to start

(at least partially) working on the plan, and when they are no longer

available. During this time, we count the available workdays and

deduct any vacation the developer indicates they will be taking.

For each developer we then estimate a work factor. This factor

converts 8-hour workdays into dedicated, uninterrupted hours available

to work on putting new features into the next release. This is typically

on the order of about 0.6 or so, meaning that for each workday in the

release, they can on average spend 8  0.6 = 4.8 dedicated hours putting

features into the release. This work factor accounts for other assigned

tasks, sick days, corporate functions, meetings, training, and a poor

work environment. On the positive side, it accounts for extra hours

spent working evenings and weekends. We combine all of these things

into this one work factor.

The result of all this estimation is the average, dedicated number of

developers available to us. The units are "ideal developers" who never

quit, are available for every workday, and work an uninterrupted eight

hours putting new features into the release. We will call these ideal

troops "dedicated developers" (no disrespect intended to those 99% of

developers who, under this definition, are not considered "dedicated"!).

If we have a pool of ten developer bodies available to us, it is usual

for the average number of dedicated developers per day to be as low as

four or so.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 65

Copyright © 2012 by David A. Penny

3.9. The Capacity Constraint

Once we have an estimate for the average number of dedicated

developers available during a given planning horizon, the planned

capacity we have for coding features is that number multiplied by the

effective number of workdays dedicated to coding during the planning

horizon.

For a traditional release cycle, that is the number of days in the

coding phase. For a more continuous SaaS-based release strategy, that

is a pre-estimated fraction of the total workdays in the planning

horizon. In other words, one can either concentrate the coding in a

phase, or spread it out, but either way not all of the workdays go to pure

coding work.

As for feature sizing, we give feature capacity in units of dedicated

person-days. We can think of our available capacity as a rectangle. The

height of the rectangle corresponds to the average number of dedicated

developers. The base of the rectangle corresponds to the number of

effective workdays. The capacity to do work corresponds to the area of

this rectangle, measured in units of dedicated person-days.

1 person-day

effective workdays

p
e
r
s
o
n
s

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

66 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

On the other side of the balance sheet are the sizings for the features

we could add to the software. We should think of the area of each of the

features as its sizing in effective person-days.

The basic agile horizon planning problem is to choose a set of features

that just fit into the planning horizon. Ensuring the features fit is called

satisfying the capacity constraint.

The dimensions of planning are which features to include, and the

length of the horizon plan. The number of developers is too constrained

to be of much use for next-horizon planning.

When we have a plan that balances people, days, and features

according to the capacity constraint, we have a partially valid agile

horizon plan: "Partially" because we need to consider other resourcing

and time using a method of ratios.

effective workdays

p
e
r
s
o
n
s

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 67

Copyright © 2012 by David A. Penny

3.10. Ratios

As much as other, non-coding activities are important, the target of our

efforts must in the end be debugged code with automated tests.

Moreover, coders are usually the scarce, rate-limiting resource in a

plan. This is especially true for follow-on work where we are

constrained by the availability of developers familiar with the code

base. Coders also tend to be the most expensive type of resource.

By consequence, when planning it is worthwhile for us to devote the

majority of our attention to the coding activities of the project (which,

for future reference, such term shall always include the development of

automated tests as well). For this reason, we size explicitly only the

coding activities involved with adding new features, we look carefully

at the amount of time available for coding, and we carefully consider

the number of coders who are capable of working with the code.

However, not devoting sufficient time or resources to non-coding

activities can have just as bad consequences as for coding; all the same,

explicitly planning these other activities with the same care as the

coding is not necessary. The complexity that it adds is not worth the

increase in accuracy it brings.

The reason for this is that with other, non-coding activities such as

system testing, documentation, and the up-front specification and

design work, there is latitude regarding how much we need to do. This

latitude is not present for coding. To implement a given set of features

into the release, all of the necessary code must be finished. However,

for specifying, designing, documenting, and system testing a given set

of features it is never clear exactly when enough is enough. Therefore,

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

68 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

for these activities we have a greater ability to accept a more fixed

deadline and do the best job possible within the constraints given.

Nonetheless, the agile horizon plan must take into account the amount

of time and number of people available for non-coding activities. To

account for this time and these resources, we require that they be in

certain pre-determined ratios to the amount of coding time and the

number of coding resources.

In order to plan for the required test and documentation resource, we

use a method of ratios. We have found that ratios of about 3:1 coders to

testers, and 4:1 coders to documenters are reasonable. For example, if a

plan calls for 12 coders, we must have 4 testers and 3 documenters

available to us. In practice, the appropriate ratios will differ from

product to product and company to company, and so we must use

experience coupled with historical data to determine the situational

appropriate ratios.

We assume that we deploy these resources throughout the agile horizon

plan. In the case of traditional release cycles, in order to smooth out

resource utilization and to shorten the inter-release time gap, we

 1 CODERS

1:3 TESTERS

1:4 DOCS

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 69

Copyright © 2012 by David A. Penny

overlap releases, starting specification and design on the next release as

the previous one goes into beta test.

This same overlapping of releases also serves to smooth the use of

coding resource. The same can be said on a feature by feature basis in

the case of a SaaS lifecycle.

For a well-run development effort, we find that coding work drops off

during beta testing as the defect discovery rate drops off. At the same

time, demand for coders to work on specifications and designs

increases steadily throughout the specification and design phase as we

get more into the details.

In practice, overlapping of releases in the manner indicated above

allows us to have a smooth deployment of both coding and non-coding

resources.

developers

test & docs

code

beta previous

spec. next alpha beta

spec. next

 specification
& design

alpha
test

code &
unit test

beta
test

specification
& design

code &
unit test

R1.2

R1.3

requirements gather

maintenance

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

70 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

To determine the lengths of the non-coding phases in traditional release

cycles, we again use ratios. In practice, we have found that the

following ratios of working days in each phase are realistic.

As an example, if we assume coding takes 90 working days, then we

estimate that specification and design head-start phase will take 60

working days, and the entire release cycle 240 working days (about one

calendar year). Again, the ratios will differ from project to project and

company to company, and, so again, we must use experience coupled

with historical data to determine the situational appropriate ratios.

In the case of a more continuous release method, we use an overall

ratio of coding days to other days, typically in the range of 3:1 or 3:2 or

so. These "other days" are considered overhead days that account for

release preparation, stabilization sprints, delayed start sprints due to

lagging specification and design work, and so on, but spread all across

time and all across developers. It is important to measure the total

number of days spent coding versus the total number of days spent on

other related activities to hone in on the correct ratio for any specific

organization, software product, and release process.

Using such ratios, we work out the number of workdays within the

overall planning horizon available to do coding. The effort within those

coding days is planned explicitly using the capacity constraint, and is

controlled by determining the feature content delivered within the

planning horizon.

specification
& design

alpha
test

code &
unit test

beta
test

3 2 2 1

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 71

Copyright © 2012 by David A. Penny

Therefore, in addition to satisfying the capacity constraint, two further

requirements for a valid agile horizon plan are that the number of non-

coder resources is in appropriate proportion to the number of coders,

and that the number of non-coding days is in appropriate proportion to

the number of coding days. If we find on any given planning cycle that

any of these ratios are excessively optimistic or pessimistic (e.g., we

found that the documentation was of poor quality due to lack of time

and resources), then we must adjust the ratios for the next planning

cycle.

3.11. Shipping the Release

For a traditional release cycle, once we are at the end of the coding

phase, we have done everything we can to ensure the release includes

all intended features and will come out on time. We must now monitor

the stability of the release to ensure that we can ship on schedule.

alpha
test

beta
test

GA
release

first point
release second

point
release

third point
release

defect arrival rate

shipping threshold

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

72 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

We do this by tracking the defect arrival rate: the rate at which we

find defects measured in new defects discovered per unit time. Ideally,

this statistic should decline during alpha test, and decline further

(though at a lesser rate) leading up to the ship date. After the ship date,

it should be tolerably low. The company should have policies regarding

what arrival rate constitutes "tolerably low".

After the GA release, there will be sequence of maintenance point

releases scheduled for once a month or so. During this maintenance

period, the defect arrival rate should continue to decline.

To determine whether the software is on-track for its beta and GA

releases, management compares the defect arrival rate with historical

values for the same product. If the arrival rates are overly high or not

declining sufficiently, we should consider postponing the ship date.

To avoid this problem going forward, the company ought to use this

new baseline data in determining appropriate coding to test ratios for

future releases. Of course, they should also be thinking of ways to

decrease the total number of defects that they inject into future releases.

However, management would be unwise to count on such

improvements until they actually see them. Thus, the company should

adjust their ratios nonetheless.

For SaaS based releases, there is often a stabilization time that comes

about when we start to notice that defect arrivals are too high.

However, these stabilization sprints will typically be scattered

throughout the planning horizon in order to keep the software in

continuous good repair. However, the sum total of all these stabilization

days must be counted as "non-coding" time and our ratios set

accordingly to take them into account.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 Agile Horizon Planning Overview 73

Copyright © 2012 by David A. Penny

3.12. Summary

In this chapter, we presented an overview of the agile horizon planning

process that we will describe in detail in the next several chapters.

We began by describing the business context, iterative release cycle,

and overall lifecycle typical of a commercial software vendor company,

and another lifecycle more applicable to continuous release SaaS

environments.

We then presented a simplified version of an agile horizon plan,

stressing its essence as a balance sheet with feature sizings on one side

and available resourcing on the other. We emphasized how the heart of

agile horizon planning is keeping requirement and capacity in balance

with the agile horizon plan acting as our scorecard.

We continued by discussing the relationship between the agile

horizon plan and the implementation plan. An implementation plan is a

document containing detailed task breakdowns, task orderings, and

assignment of personnel to tasks. We can view the agile horizon plan as

a higher-level abstraction of the implementation plan. We intend that if

the agile horizon plan is valid then we can produce a valid

implementation plan in due course.

We then went on to introduce the three cornerstones of agile horizon

planning: eliciting potential requirements, sizing those requirements,

and estimating how many dedicated developer equivalents we will have

available. With this information, we produce the plan guided by the

capacity constraint that governs the relationship between time,

resources, and features.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

74 Agile Horizon Planning Overview

Copyright © 2012 by David A. Penny

Next, we discussed additional validity constraints on the plan

involving the use of ratios that relate effort and time for coding days to

effort and time required for other purposes.

We then described how, after the code is complete, it is necessary to

track defect arrivals, comparing them to historical values to determine

whether it remains feasible for the release to be made generally

available on its scheduled date. For SaaS-based lifecycles, we stressed

the need to monitor this continuously and introduce stabilization sprints

where required to bring these values back into line.

The basic approach to agile horizon planning described here works well

in practical situations. It is sufficiently lightweight that the fast-paced

software organization is not slowed down and yet sufficiently rigorous

as to make a real difference in how the company manages its software.

The approach is an enabler that allows marketing product management

and software development to come to terms, dividing their

responsibilities in a way that fosters a good working relationship and

results in a successful outcome for both the software vendor and its

customers.

Putting the approach into practice is straightforward, requiring only

a relatively small commitment as compared to other areas of process

improvement. As far as tool support goes, a company can get by with as

little as one internal web page per product to hold its horizon plans.

While the basic process is simple to understand, there are pitfalls

that can sabotage our efforts. The following chapters 4 through 8 are

devoted to a careful study of the details required to make agile horizon

planning work in practice, and to some of the larger organizational

issues.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

Copyright © 2012 by David A. Penny

4. The Capacity Constraint

A good plan respects always the "art of the possible". It may push up

against the limits of what is reasonably possible, but if these limits are

broken outright, the plan becomes irrelevant.

As we have seen from the previous chapter, the art of the possible is

governed by a relationship between the number of people we have, the

amount of time they use, and the effort involved in putting features into

the release. We call this relationship the capacity constraint. In this

chapter, we will talk in general terms about it and some of the

considerations surrounding it.

4.1. A Geometric Analogy

As we mentioned previously, the purpose of agile horizon planning is

to answer the following three questions and no more.

The difficult part is to ensure the "what", "when", and "how many"

are in balance. We primarily use the capacity constraint to determine if

these things are in balance.

 What are we building?

 By when will it be ready?

 How many people will it take?

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

76 The Capacity Constraint

Copyright © 2012 by David A. Penny

To help explain the capacity constraint, we use a rectangle as a

geometric analogy.

The number of people working is the height of the rectangle. The

number of days is the length of the base. The number of person-days it

takes to implement all the features corresponds to the area.

For a rectangle, the area is the base times the height:

 area = base  height

For software releases, the analogous relation holds:

 features = time  people

The more time we have the more features we can put in. The more

developers we have (within reason), the more features we can put in.

For a given set of features, if the number of developers decreases, the

time must increase. This is all common sense.

In practice, the dimensions of planning are the base and the area: time

and features. The height, the number of developers available, is not

usually something we can adjust easily. It is a given, and tends only to

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Capacity Constraint 77

Copyright © 2012 by David A. Penny

shrink due to unexpected personnel losses (had the losses been

expected, we would have planned on them).

The reason it is difficult to increase staffing is that only developers

who understand the code base are useful to us. We cannot hire these

developers; we must train them. Unfortunately, the act of training them

uses as much, if not more, productivity than what they contribute

during their training period.

Increasing the strength of the development team operates on a

longer-term planning horizon than the next release. We must address

these sorts of issues in the software development department’s annual

business plan, which we will cover in Chapter 16. "Business Planning",

on page 323.

The key to planning is that time and features are dependent on one

another. With a given a set of developers, if we try to set the base and

the area independently, more than likely we will wind up with features

overflowing the sides of our rectangle.

This plan violates the capacity constraint. When this happens, we must

take action. We must either increase the time to accommodate the

desired features, or cut features from the plan.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

78 The Capacity Constraint

Copyright © 2012 by David A. Penny

A typical mishap is show below. Here one or more developers have left

the team leading to a violation of the capacity constraint.

Assuming it is impossible to replace these developers in the short

term, we have three options. The first option is to cut features from the

plan, holding firm to our dates.

The second option is to hold firm to our feature set, and move the

dates out.

The final option, and the most practical, is to combine the two,

cutting the less essential features and moving the dates out slightly.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Capacity Constraint 79

Copyright © 2012 by David A. Penny

The following diagram represents another mishap. This could represent

either additional features coming into plan, or a re-estimation upwards

of the amount of effort we require to get the remaining features

implemented.

Whatever the cause of the violation of the capacity constraint, the

reactions are the same. We can either cut features, extend dates, or

both.

Occasionally, good things happen. In the diagram below a developer

who knows the code base has come back to us. We can now move in

the dates, add features to the plan, or do both.

Whatever the causes or reactions, maintaining the integrity of the

capacity constraint requires always that

features = time  people

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

80 The Capacity Constraint

Copyright © 2012 by David A. Penny

4.2. Organizational Issues

So far, this has all been common sense. Unfortunately, the trouble with

common sense is that it is not very common.

Divergences from common sense will generally take one of two

forms. The first form is not even trying to estimate how long features

will take to implement, or how much actual time developers have

available to work on new features. The second form is to deliberately

overstuff the plan in hopes that the developers will rally and get it done

on time anyway.

Closely related are the two forms of divergence from common sense

subsequent to the initial planning. The first is to not track the plan,

blithely assuming that everything is going to plan. The second is to

know that something significant has just happened (a feature has just

been added to the plan, a feature came in very late, or a developer left

the team), and still take no action to adjust the plan.

This last can arise all too easily, and stems from a lack of

appreciation for the true importance of the capacity constraint to the

software organization.

At a certain point in time, the company closes on an initial plan.

Assume that development signs off that this is a reasonable plan. As

work proceeds, the developers may realize that their initial estimates

were off for one reason or another. When they bring up this fact, the

response is sometimes, "You agreed to the plan. The business is

counting on it. We’ve made commitments around the plan. Don’t tell us

your problems. Get it done anyway, that’s what you’re paid for."

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Capacity Constraint 81

Copyright © 2012 by David A. Penny

While this attitude is highly "accountability-driven", it is counter-

productive.

The software company as a whole must respect the fact that the

capacity constraint is central to its business. In other words, the

capacity constraint is not a problem for development to overcome; it is

a fact for the software company to deal with.

Development is the messenger of the bad news, but the company

must rally to solve its problems. This typically means facing the

situation squarely, re-planning, and mitigating as best as possible the

business consequences. There is no choice.

In fact, it is precisely in these situations where the strength of the

business managers can shine through. Developers can let us know the

bad news in a blunt way. However, this is not the most appropriate way

to pass on the news to our customers. The business side of the operation

– sales, marketing, the CEO – must spin things and take concrete action

to minimize the impact of the change in plan to the business. If the

attitude is one of denial it will be too late to do any of these things

when the inevitable happens.

Better still, the business can understand the risks up front and take

pains to mitigate their business exposure before the plan slips by setting

expectations lower and then over-delivering on them.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

82 The Capacity Constraint

Copyright © 2012 by David A. Penny

4.3. Setting Expectations

Software companies sometimes frustrate their customers by saying very

little about future releases. This is sometimes the company’s reaction to

having made previous commitments on which they failed to deliver.

However, customers will not be satisfied with this approach, and the

successful business must give out certain information.

On the other hand, it is also surprising how many times a software

company will come up with an initial plan and then let their customers

and prospects know every detail of the plan. A proviso is always given

that the plan is "subject to change". The trouble is, expectations have

been set.

In the software business, client and market expectations are key to

everything. When we release our plan, we set expectations. If we fall

short of those expectations, there will be unfortunate consequences.

The software company must set expectations in such a way that they

can be satisfied. This does not mean they have to be completely tight-

lipped about their next release. This will backfire also. Rather they must

make general statements about the release, and get into specifics as

little as possible, and only when there is a compelling reason to do so.

The company must only say as much as it takes to satisfy their

customers and prospects, and no more. In this way, they minimize the

number of commitments they must make and retain flexibility in

planning that will be required as events unfold.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Capacity Constraint 83

Copyright © 2012 by David A. Penny

4.4. A Web of Commitments

One of the most important things a company can do is to respect its

commitments. In this way, the company will garner the respect,

admiration, and goodwill of its customers and partners.

Many customers, and for good reasons, would rather deal with a

software company that has poorer software but honors its commitments

than deal with one with better software that does not. This goodwill can

act as a valuable buffer for the business when times are bad.

The reason for respecting commitments is not solely moralistic.

There is a good deal of pragmatics involved as well.

When the software company gives its customer a commitment, the

customer turns around and gives commitments themselves. For

example, if a software vendor promises to provide a new release of its

financial accounting software with a certain set of new features by a

given date, the customer will start making plans around that. The

purchaser in IT will tell his boss that he can expect the new business

functionality to be up by a certain date. The IT department promises the

business side this new functionality. The business side promises its

partners that new information will be available by a certain date. It goes

on and on, extending a surprising distance.

A "web" of further commitments is built around the initial

commitment made by the software vendor. If the software vendor

reneges on their commitment, everybody looks bad, misses their

bonuses, misses their revenue targets, loses that promotion, upsets their

customers, upsets their bosses, and so on.

This is hardly the way to treat loyal customers!

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

84 The Capacity Constraint

Copyright © 2012 by David A. Penny

4.5. Managing the Plan

The key to avoiding these sorts of issues is to go into a planning cycle

with a good plan and track that plan as it unfolds.

 The plan will identify dates by when specified new features will be

made available. The plan will balance capacity and requirement for

both the coding activities (planned explicitly) and the non-coding

activities (planned using ratios). The company will formulate the plan

in such a way that there is a high likelihood of achieving it.

This agile horizon plan, so constituted, will act as a document that

defines what the company is committing to itself to do at the current

instant in time. However, as external and internal events unfold, the

company will update the plan to reflect these events, and re-balance the

plan once it leaves the comfort zone.

The company will use the agile horizon plan internally by its various

groups to plan their activities. Development will do detailed

implementation planning based on the plan. Documentation will

formulate what changes they will need to make to their publications.

Client services will determine new training needs both for their own

support people and for their customers. Testing will develop their test

plans and test cases. Marketing will begin preparing collateral materials

(brochures, white papers, advertising). Product management will brief

sales on the new features and their benefits. In short, the activities of

the entire company will coalesce around this plan.

Development will indicate their status by updating the agile horizon

plan on a regular basis. As the plan delta holds at zero, the company

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Capacity Constraint 85

Copyright © 2012 by David A. Penny

knows that the plan is on track. If the delta drops negative, management

will understand there to be a growing need to re-balance the plan.

Externally, the company will use the agile horizon plan as a guideline

for determining what to say about new functionality being made

available.

While the plan gives specific expected end-dates, in the early stage

the software company will only announce availability in general terms,

such as by a certain quarter. As the end-dates get closer, and as

customers require more certainty, the company can tighten its

externally announced dates. The company can do this safely because as

they get closer to their end-dates, the probability of hitting the planned

dates in the balanced horizon plan rises.

Early announcements prepared by marketing will give the general

themes of the production releases, but not disclose specific features and

functionality. This is both to retain competitive advantage, and to avoid

setting specific expectations as much as possible.

By means of client services, certain customers will be demanding

features. Where necessary, and if in-plan, these features can be

transformed into commitments, and marked accordingly on the plan. If

subsequent to this the company must drop any features from plan, those

committed to explicitly must be the last to go. The company does the

same to manage commitments required by sales to close new deals.

From the external point of view, the operative concept is to say only

that which is required and no more in order to retain flexibility. This

flexibility is required in case uncertainties in the plan go against the

company, to address issue raised by customers, to enable the inclusion

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

86 The Capacity Constraint

Copyright © 2012 by David A. Penny

of functionality required to close new sales, and to give the company

room to react to competitive threats and market opportunities.

Thus, the well-run software company embraces the concept of agile

horizon planning, and orients its activities around it.

By contrast, the poorly run company rarely knows what it is

building, or when it will be ready, yet makes more commitments

(which it cannot meet) than does the well-run company. Moreover, it

finds itself constantly hampered by these commitments and therefore

unable to effectively react to customer and market conditions. It often

does not realize it is missing its commitments until it is too late to do

anything about it. The result is dissatisfied customers, missed

opportunities, and, ultimately, a failed business.

In order to improve its ability to engage in well-planned feature

releases to the field, a software company must adopt a horizon planning

mindset. However, having only a general idea of the horizon planning

process is insufficient. The company must have a solid, definitional

basis on which to base agile horizon plans so that there be no confusion

regarding its terms of reference. Thus, the company must adopt a

quantitative view of their plans.

In the next chapter, we will again discuss the capacity constraint, but

this time quantitatively, giving the precise definitions that will enable

the willing software company to put the ideas into action.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

Copyright © 2012 by David A. Penny

5. The Quantitative Capacity

Constraint

Up to now, we have looked at agile horizon planning qualitatively,

examining the context, benefits, and overall process. In this chapter, we

begin to look at quantitative definitions for the terms we have been

using informally up to now.

While it may seem excessively detailed, experience has shown that a

rigorous definition of the numerical quantities involved is necessary to

apply agile horizon planning in practice. Only with precise definitions

can we determine the validity of an agile horizon plan. Without these

precise definitions, there is room for interpretation that can lead us to

believe that our plan is balanced when in fact it is anything but.

To avoid this situation, and to eliminate any questions of

interpretation, we present a quantitative formulation of the capacity

constraint here, with rigorous definitions of all the quantities involved.

To avoid confusion, for the bulk of the chapter we will

quantitatively treat a planning cycle where all coding is concentrated

into a single coding phase. Necessary modifications must be made

when dealing with other methods of release, such as a more continuous

SaaS-based release approach. We will end the chapter with a

demonstration of how to modify the capacity constraint accordingly.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

88 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

5.1. Basic Definitions

We have seen previously that a rectangle filled with features provides

us with a visual analogy for the capacity constraint.

The base of the rectangle is the number of working coding days

available over the course of the planning horizon. We will refer to this

quantity as T.

The height of the rectangle is the average number of dedicated

developers available to us during each of those T days. We will refer to

this quantity as N.

Therefore, the total number of dedicated developer-days available to

us in the plan is N  T.

We fill the interior of the rectangle with features. We will refer to

the sum of all the individual feature sizings (expressed in dedicated

developer-days) by the quantity F.

Expressed in these terms, the capacity constraint requires that

F = N  T

or, in words, that the requirement to get work done (F) is exactly

balanced by the capacity to do work (N  T)

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 89

Copyright © 2012 by David A. Penny

5.2. Post-Facto Considerations

In formulating a precise definition for the numerical terms in the

capacity constraint, we will adopt a post-facto (after-the-fact) mindset.

In other words, we will define the quantities with a view towards

gathering certain metrics during the time horizon in question, and then

computing realized values for N, T and F using these metrics.

Even though when we are planning we will need to estimate these

quantities in advance, adopting a post-facto definitional framework is a

good way to proceed for two reasons.

Most obviously, we will gather these metrics during the planning

horizon, and we will want to compute these numbers so that we can

compare them to our initial estimates. It is only by closing the loop on

our estimates that we can improve them going forwards.

A second reason is for the sake of clarity in estimation. With good

post-facto definitions we know exactly what it is we are trying to

estimate.

The definitions for N, T, and F will be such that after we have

completed a release, if we were to perform a post-mortem we would

find that the capacity constraint held. That is, if we were to measure the

average number of full-time equivalent developers who worked on the

release (N), count the number of working coding days they had on the

release (T), and examine time logs to determine the total effort put into

coding all features (F), we would find that F = N  T.

It would not matter if the release were a disaster or a great success.

After the dust has settled, we will always be able to verify that the

capacity constraint held.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

90 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

This does not happen by coincidence, it happens by definition. The

capacity constraint is a true constraint. It is not a suggestion that we

ought to balance the capacity and the requirement. It is a law of nature

that constrains us to being able to put into a plan only as much effort on

features as we have person-power available to us, no more and no less.

However, making things work out so that, post-facto, F = N  T

always, takes a certain precision of definition. If we do not make the

effort and define these terms precisely, the constraint would not hold,

and, by consequence, we could make errors in our planning. It is well

worth the effort in being explicit and making our definitions rigorous.

With that said, let us now define N, T, and F in detail.

5.3. Number of Workdays, T

Let us start by defining the simplest quantity, T.

T is the number of full-equivalent working days from the start of

coding to the end of coding. For example, if we intend to start coding

on December 10, 2007 and finish on February 8, 2008, then there are

T = 39 working coding days (this excludes weekends and the time from

Christmas to New Year’s).

It will not necessarily be the case that all developers work all of

these T days. Some may have vacation, or some may take sick leave.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 91

Copyright © 2012 by David A. Penny

This does not matter. Only if we know with certainty that no developers

can work on a certain day should we remove that day from T.

What about developers working weekends and holidays? As a rule,

statutory days off should never be included in T. If developers persist in

working days not included in T, the extra work will be taken into

account elsewhere. T can be fractional in those cases where, for

instance, all developers have a half-day off.

5.4. Developer Power, N

From the simplest, T, let us now move on to the most subtle, N.

N is the average number of dedicated developers per day working

during the period T. The term "dedicated developers" takes some

explanation. As a simple example of N, say we have five developers

available for every one of the T = 39 days from the previous example,

each working 8 uninterrupted hours per day adding features to the

release, then, under these circumstance, N = 5.

Central to the definition of N is the notion of a dedicated developer. A

dedicated developer is one who works 8 uninterrupted hours for every

one of the T days of the coding phase doing nothing but adding features

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

92 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

to the release. A dedicated developer is an idealization that does not

exist in reality.

The reason for this is that we do not assume that body time is the

same as dedicated time. Body time is the time during which a

developer’s body is available to work each day. Let us assume that one

workday consists of 8 body hours. That is a 9 to 6 job with one hour for

lunch. Dedicated time is the uninterrupted time during the day used to

get new features into the release. Depending upon what else is on the

go, this might be, for example, only 4 hours.

The word "uninterrupted" is important. Consider two developers.

They both come to work for 8 hours. They both are doing something

else for 4 of those hours. If the first developer had his 4 hours of feature

work all in one adjacent chunk of time, then the number of

uninterrupted hours he worked was 4. If the second developer had her 4

hours of feature work come in fits and starts throughout the day, she

may have gotten the equivalent of only 2 hours uninterrupted work

done because of all the distractions. Her dedicated time is therefore

only 2 hours.

For a developer to have fewer dedicated hours than body hours does

not necessarily carry a negative connotation. The developer’s manager

may be asking him to be doing other important things during the day.

This serves to reduce the amount of dedicated time available for the

release, but reflects well on the developer.

Given that each developer understands what a dedicated hour is, and

given that the climate of the organization is such that they have no fear

in being honest about reporting it, then it is possible to compute a post-

facto N for the project.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 93

Copyright © 2012 by David A. Penny

To do this, each developer must carefully track all the dedicated

time spent adding new features into the release during the T day coding

phase. Say there are a total of n developer bodies working during the

coding phase. For the i
th
 developer, 1  i  n, we will call the measured

number of dedicated hours hi. We then have,

T

h

N

n

i

i






8

1

In words, we sum all the hours spent over all of our pool of n

developers, divide by 8 hours to convert dedicated hours into dedicated

days, and then average the result over the T days of the coding phase by

dividing by T. The result is the average number of dedicated developers

deployed per day during the coding phase.

If each developer actually spends 8 dedicated hours for each of the T

days, then N = n. The simple example at the start of the section

assumed this. It is unlikely to happen in practice.

5.5. Attributing N

For estimating N in advance, the numerical formulation given above is

not very useful. It is difficult to estimate hi, the total number of hours

that we expect a given developer to work during a release cycle, in

advance. Moreover, if we find that our measured hi differ widely from

our estimated ones, it is unclear how to go about attributing the

estimation error. To make the capacity constraint more usable, we need

to develop a breakdown of N in which the terms are more intuitive.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

94 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

 An improvement is to think in terms of a work factor, wi that for the i
th

developer converts body days into dedicated days.

For example, a typical work factor might be 0.5, indicating that a

developer can, on average, find half a dedicated day, equal by

definition to 4 dedicated hours, each workday. It is easier to estimate a

work factor than to estimate the total number of hours a developer will

work during the release cycle.

A developer’s work factor will be applied to the number of days

they, in particular, were expected to have worked during the T day

coding phase. For the i
th
 developer we will call this quantity ti.

This quantity is always less than T. We subtract from T any days not

allocated (at least partially) to the project, and any vacation days taken

during the time allocated. Here vacation days mean discretionary time

off that the developer does not intend on making up. Another way of

stating ti is as follows,

where di are the number of days at least partially allocated to the coding

phase of this release, and vi are the number of vacation days taken

during that time. This leads to the following definitions for wi and N.

If we substitute wi into the equation for N, we’ll get back the original

equation for N.

Let us now look at some examples that illustrate these definitions.

T

wt

N

t

h
w

n

i

ii

i

i
i











1

8

iii vdt 

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 95

Copyright © 2012 by David A. Penny

Assume that the coding phase is T = 39 workdays long. A certain

developer, Bob, tells us that he had 35 workdays on coding the release

(he started 4 days late because of other projects), and then took 5 days

of vacation. Bob’s workdays were therefore 30.

Say Bob called in sick for two days. That does not affect these numbers

in any way. The workdays are still tbob = 30. The hours lost during those

sick days will go to reduce Bob’s hours (hbob) and hence his work

factor, (wbob) but not his days worked (tbob). The only thing that can

reduce days worked is taking extra vacation (vbob), or re-assigning Bob

to different projects (dbob).

Say Bob took a morning to run some errands and an afternoon to see

Star Wars Episode 3. These were not vacation days, but rather time he

intended to make up. Again, even though Bob was not at work for the

equivalent of a day, the workdays are still 30. The non-vacation time-

off day he took reduces his hours and therefore his work factor.

Say Bob makes up the time on a Saturday. Say even that Bob has no

life whatsoever and works every weekend as well as during the week.

Even though Bob worked all these extra days, the workdays in the

formula remain at 30. The extra time gained goes to increase Bob’s

measured hbob, and hence increase his work factor, wbob.

30535

5

35

39









bobbobbob

bob

bob

vdt

v

d

T

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

96 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

If Bob took one fewer or one more vacation day, this would affect

vbob. If we take Bob off the release prematurely so that he can work on a

different project this would affect dbob.

Bob tells us that during the release cycle he put in a total of 120 hours

of dedicated time on new features in the release (hbob = 120). This

number should include all dedicated time, including dedicated time

during the workday and dedicated time working after hours and

weekends. Bob’s average number of dedicated hours per workday over

his 30 workdays is therefore
120

/30 = 4. Dividing to convert dedicated

hours into 8-hour dedicated days, we get that Bob’s work factor is
4
/8 =

0.5.

Work factors can theoretically be greater than 1. If a workaholic

developer tells us that their average was 12 hours of dedicated time

each workday, then their work factor would be
12

/8 = 1.5.

Unexpected days off, sick days or family emergencies, will reduce

wi. Discretionary days off, planned vacation, will not. If a developer

takes off the morning but then works late at home, this has an entirely

neutral effect. Vacations are those days that are gone, not those that the

developer makes up.

Note that some developers will be able to accomplish more in a

dedicated hour than others. We do not consider this in the work factor.

We consider this in the feature sizings later on.

5.0
308

120

8

120











bob

bob
bob

bob

t

h
w

h

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 97

Copyright © 2012 by David A. Penny

When we go beyond the initial, simple definition of N to include di, vi,

and wi, what we are doing is defining quantities that help us to attribute

the contributors to N in an intuitive fashion. If we have a pool of 20

developers working on our release, there are then 20  3 = 60

individual contributing factors: di, vi, and wi for each of the 20

developers.

Attributing N in a fine grained, intuitive fashion will later enable us

to hone in on the causes of estimation error and understand those

factors that reduce our developers’ productivity.

There are many alternative ways of dividing N into contributing factors.

For example, say that sick days taken by developers were of particular

concern to the organization. Then we might introduce an si analogous to

wi which is the developers propensity for sickness (si = 0 is perfectly

healthy, si = 1 is deceased).

The details of any particular attribution of N should be suitable to

the needs and concerns of the developing organization. The particular

division we described in this section is a reasonable possibility that has

proven effective in practice. In any case, the exact formulation is less

important than having some division that is rigorously defined and self-

consistent.

5.6. Factors Affecting wi

In our experience, a typical factor for a developer not yoked with any

management chores, working on only the one product (new features in

the next release and maintenance on previous releases), and in a good

working environment, will have a work factor of around 0.6. The

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

98 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

reason that a developer’s factor is typically less than 1 is intuitive.

During the day, most people need to do more than only work on new

features for the next release.

While there are different schools of thought on the issue of who does

maintenance on previous releases, one common and efficient approach

is to have developers simultaneously work on new features in the next

release and fix defects in the previous release. If this is the case, then

this is a large contributor to reducing the work factor (although, as was

mentioned earlier, there is no negative connotation associated with

this).

If we factor in training, team leader duties, company parties,

meetings with clients, time spent reading this book, and so on, pretty

soon we are down to only about 2 or 3 hours of dedicated time left out

of the 8-hour workday.

Say there are 3 hours left. With those scant 3 hours, if the phone

keeps ringing, if people keep dropping in on us, if those 3 hours gets

spread willy-nilly across the 8-hour day, then we will get considerably

less development done than if we can closet ourselves away for 3 solid

hours with no disruptions. For this reason, those 3 hours turn into an

effective 1 hour of dedicated time.

Say that we have 16 developers like this working on our release.

That is, each of the 16 developers has only 1 hour of dedicated time

available each day. Each of their work factors is therefore
1
/8 and

N = 16 
1
/8 = 2. Our 16 developers just got reduced to 2! Factors like

this are not unheard of, and they can cripple our productivity.

This illustrates why it is worthwhile for an employer to do

everything they can to get their developers’ work factors up. For

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 99

Copyright © 2012 by David A. Penny

example, private offices with doors that close, the ability to turn off

phones, fewer and more focused meetings, and so on. It is also good to

have the developer work on only one project at a time. Working on two

different projects at the same time will typically more than halve the

work factor for each project, owing to the overhead of switching

between the two. DeMarco & Lister have an excellent discussion of

these topics in the book Peopleware, [Dorset House, 1987].

5.7. Effort, F

Let us now go over to the other side of the capacity constraint and

define F, the total number of dedicated 8-hour person-days required for

coding all the features into the release. In our geometric analogy, F

corresponds to the area that we are trying to fit into the rectangle

defined by N and T.

In practice, F is something we have to estimate ahead of time. After the

fact, however, it is relatively easy to measure.


k

kfF

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

100 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

Where fk is the effort required to put the k
th
 feature into the release

measured in dedicated days (1 dedicated day = 8 dedicated hours). We

measure it by asking the developers (after they are all finished) how

many dedicated work hours in total they spent during the coding phase

on the k
th
 feature. We then divide by 8 to get the total number of

dedicated workdays they spent on the feature. We do this for each

feature and then sum to get F.

The measured fk should include all work done during the coding

phase by the developers in regards to that feature, and not just coding

work. In particular, we should include any extra specification work and

extra design work. The implication for a priori estimation is that we

should estimate all work that we would expect to go on during the

coding phase, and not purely the coding work. Ideally, if we complete

all the specifications and designs on time, this will be only coding and

unit testing work.

5.7.1. Common Work and Abandoned Features

In measuring a post-facto fk, it will sometimes be the case that a

developer does work common to two or more features. In this case, it is

not possible for the developer to allocate the work to just one feature, as

we have required.

We try to deal with this ahead of time by either combining the

features into one, choosing the most fundamental feature to bear the

cost of the common work, or by explicitly listing the common work as

an architectural enhancement "feature", whichever makes most sense.

In the latter two cases, the agile horizon plan should indicate a pre-

requisite relationship amongst the features so that nobody gets the idea

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 101

Copyright © 2012 by David A. Penny

they can just delete the common work and still get the dependent

features at the same estimated cost.

If the common work was unexpected (which is usually delightful), it

should be intelligently pro-rated to whatever features required it most

and that remained in plan. This will involve the developer tracking this

common time separately, and at the end of the coding phase pro-rating

the work in a sensible fashion.

Another difficulty occurs when a developer starts coding on a feature

that we later abandon from the release.

As this is an inefficient use of resource, we try to avoid this situation

as much as possible. In particular, we have a rule that says only features

that the developers have not yet started are liable for removal from

plan.

All rules have exceptions, however, and if we nonetheless abandon a

feature in mid-development we deal with it by leaving the feature in-

plan in an "abandoned" state. We charge the developer’s time to-date

against that feature, and we sum it at the end of the release cycle with

all the other features to determine F. Naturally, even though it is in-

plan, the "abandoned" marker indicates the feature is not implemented

in the release. These measures retain the integrity of the capacity

constraint in the face of abandoned features.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

102 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

5.8. Developer Productivity

Nowhere yet have we discussed the issue of who will be doing the

work. Different developers have different levels of productivity. Some

of this is due to different work factors, but some of it is due to other

factors, such as training, experience, and raw talent. As well, a certain

developer may be more productive on one kind of feature than on

another because they are more familiar with that domain, that

technology, or that part of the code.

It is interesting that the post-facto capacity constraint does not care

about this point. Everything evens out in the end. The total time spent

on features will equal the total time available to work on features, no

matter if we hire the best or the worst to do the work.

Surely then, we are missing something in the capacity constraint? The

problem only comes when we think of feature sizings as independent

from who is doing the work. This is the usual approach, and is why

academics suggest we do not size features in terms of person-days

directly, but rather in terms of lines of code, function points, or some

other metric.

When we estimate a feature sizing in person-days, we are also

making an estimate as to who will be working on the feature, and how

productively they will use each dedicated hour during that work cycle.

We have found that, in practice, estimating simultaneously who will

work on the feature and how much time they will spend on it is

eminently practical, and in fact more natural than indirect approaches.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 103

Copyright © 2012 by David A. Penny

In the common commercial software development situation, we are

familiar with the capabilities of the developers, and they can participate

in estimating the feature sizings. Developers are usually more

comfortable saying how long they will take to implement a feature than

in making some abstract sizing estimate (say in terms of function

points) and then another abstract estimate as to how productive they are

in coding function points into software. Likewise, technical managers

are often quite comfortable estimating how long a particular individual

will take to implement a feature.

If, for some reason, the developer we were expecting to work on a

feature is not available to work on it, and if the replacement takes much

longer, then we consider this to be, in fact define it to be, a sizing error.

Therefore sizing errors can come both from poorly estimating the

amount of work involved in a feature, and from poorly estimating who

will work on the feature and how productive they will be.

The estimation framework we discuss here does not constrain the

manner in which feature effort estimates should be arrived at. It only

requires that, at the end of the day, that the development organization

supplies an estimate in effective coder-days.

The effort estimate therefore combines three independent variables:

 The size of the feature (for example in lines of code or function

points).

 Which coders will work on the feature.

 The productivity of those coders working on that feature (in

lines-of-code or function points per effective coder-day for each

coder).

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

104 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

If the estimate of any of these three things is inaccurate, the feature

effort estimate will be inaccurate. For example, if the coder originally

expected to work on a feature must be replaced by a different coder

with a different productivity rating on that type of feature, it is an

estimation error.

If the organization has a preference for how to estimate feature sizings,

it can use it to advantage, combining it with the agile horizon planning

approach.

5.9. F = N  T

Given the definitions to date, we will now have post-facto agreement

between F and N  T.

We defined N such that only dedicated time working on new

features was included. Moreover, we defined it so that all dedicated

work on new features was included.

Similarly, we defined F so that it consists of all dedicated time

working on new features, and only that time.

Given these complementary definitions, it is not surprising that,

post-facto, F = N  T.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 105

Copyright © 2012 by David A. Penny

The situation is analogous to accounting balance sheets. If you are like

me, and you happen to be exposed to balance sheets, every time you

look at a corporate balance sheet you are amazed how the assets always

work out to be exactly the same as the liabilities plus the shareholders’

equity.

Well, if you are an accountant, it is not that astounding. An

accountant knows that these things are designed so that they must equal

one another. If they do not it is because something on the assets side

was not accurately reflected on the liabilities side: that there was an

error in the book-keeping. This is the essence of double-entry book-

keeping.

Similarly, we are using a sort of double-entry book-keeping to keep

track of F (the assets) and N  T (the liabilities). Every hour that every

developer spends working on new features in the release must appear in

both F and in the computation of N. The way F and N are designed then

requires that F = N  T.

Only when we have this solid definitional basis for our quantities can

we try to estimate these quantities in advance. If we defined the

quantities inexactly, we would never be sure exactly what it was we

were estimating. As it is, we know what we are trying to estimate, and

after the fact, we can check to see how close our estimates came to

what actually happened. In this manner, we have a firm basis for

improving our estimation accuracy.

Note that we do not estimate F and N directly. Rather we estimate

each of the contributing fk , n, di, vi, and wi separately. After the fact, we

then measure each of these quantities individually to attribute our

estimation errors in a fine-grained manner.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

106 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

For example, our post-mortem might reveal that our estimate for wi,

an employee's work factor, was off by a significant amount as

compared to the actual. We then know to apply our effort to figuring

out how to better estimate w in future.

5.10. Proof of the Capacity Constraint

As stated in the previous section, it is a requirement that post-facto

F = N  T. In this section, we shall prove it mathematically.

Assume that the i
th
 developer records the number of dedicated hours

working on the k
th

feature during the 24-hour period of the d
th
 working

day. Call this quantity: hi,k,d. In practice, it is a good idea to implement a

fine-grained time-tracking system that is capable of tracking this

quantity. We discuss this in Section 12.6, "Effort Tracking", on page

264.

By definition, the time in effective coder days spent on the k
th

feature is

given by summing the time spent by all developers on all days on that

feature expressed in effective coder hours, and dividing by a nominal 8

to convert to effective coder days:


i d

dki

k

h
f

8

,,
 (Equation 1.)

Given that


k

kfF (Equation 2.)

Hence, the time required for all features is:

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 107

Copyright © 2012 by David A. Penny

8

,,
 k i d

dkih

F (Equation 3.)

As we have seen in Section 5.4, N is defined as:

T

wt

N

n

i

ii




 1 (Equation 4.)

And, from Section 5.5, w for the i
th
 developer is defined as:

i

i
i

t

h
w




8
 (Equation 5.)

Where hi is the number of hours spent by the i
th
 developer on all

features on all days:


k d

dkii hh ,, (Equation 6.)

Combining Equations 4, 5, and 6 gives:

T

t

h

t

N

i i

k d

dki

i























8

,,

 (Equation 7.)

Simplifying yields:

T

h

N i k d

dki

8

,,
 (Equation 8.)

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

108 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

or:

8

,,
 i k d

dkih

TN (Equation 9.)

Substituting Equation 3 into Equation 9 yields

FTN  (Equation 10.)

which is the capacity constraint — Q.E.D.

What this demonstrates is that each quantum of coder work on a new

feature in the next release, hi,k,d, goes both to the right side and the left

side of the capacity constraint, and serves as a check that our terms are

well-defined in a consistent manner.

The work quantum contributes to work done on each feature across

all developers and all days. The work quantum simultaneously

contributes to work done by each developer across all features and all

days. The contribution to each side of the equation is equal, and

therefore requires that the capacity constraint be maintained.

5.11. Modifications for Continuous Release

When using a different style of software release, the details of the

definition of the capacity constraint will differ. For example, for a

more continuous SaaS release methodology the multiple teams of

developers will work in sprints, taking time between the sprints to

prepare for the next one, and inserting stabilization sprints from time-

to-time as the software quality warrants.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 109

Copyright © 2012 by David A. Penny

In such a case, we might choose to model it using the following

modified quantitative capacity constraint:

Where D is the number of workdays over the entire planning horizon, c

is the coding factor which converts workdays into "predominantly

coding days" (PCDs), and N is the average number of dedicated

developers deployed across those PCDs.

We can define a PCD in any number of ways. One way is to declare

that a PCD for any individual coder is any day where they spend more

than 1 hour coding new features. Alternatively, for each member of a

team it could be any day management declares to be a PCD for that

team. Or it could be defined for an individual coder as any day that

coder declares to be a PCD. Any of these definitions will work,

provided there is some way of recording it. The "1-hour" rule is

particularly easy to measure given we are tracking time.

Let Pi stand for the number of PCDs of the i
th
 coder (as determined

using any of the methods discussed previously, but applied consistently

to all coders), and let P (un-subscripted) stand for the average Pi over

the n coders as follows.

∑

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

110 The Quantitative Capacity Constraint

Copyright © 2012 by David A. Penny

Then the coding factor is computed as.

 ⁄

This is the average PCDs across the n coders in ratio to the total

number of workdays in the planning cycle, which intuitively

corresponds to a "coding factor" which takes into account all of the

predominantly non-coding days spread throughout the planning

horizon. Note that this same formulation can be used for the "Big

Bang" release cycle as well, though there is no need to estimate c as it

is planned.

We must then redefine the work factor in terms of PCDs as follows.

 ⁄

Where hi is the total feature coding hours of the i
th
 coder. Any hours

spent coding new features outside a PCD will go to increasing the

coder's work factor, the same as would coding on a weekend, for

example. Note that a coder's work factor is now influenced by the

average behavior of other's, as this formulation implicitly includes how

this coder's PCDs compare to all others.

N is then simply the sum of the work factors.

 ∑

In this formulation of the capacity constraint, the things we would

estimate on the capacity side of the equation are the work factors and

the coding factor, whereas before we only estimated the work factors.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

 The Quantitative Capacity Constraint 111

Copyright © 2012 by David A. Penny

5.12. Summary

In this chapter, we assigned quantitative meaning to the capacity

constraint that we had looked at only qualitatively until now.

In attaching quantities to the capacity constraint, we conceptualized

a division of the contributing factors that is intuitive, amenable to

estimation in advance, and that provides us guidance in attributing

estimation errors and in leading us to ways to improve productivity.

Next, we will consider the capacity constraint from the estimation

standpoint, which inevitably brings in interesting questions concerning

randomness and probability.

Exclusive use of this document for csc302h at the University of Toronto, winter term 2014, has been granted by the author.

