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Abstract

We exhibit an explicit functionf : {0,1}n → {0,1} that can be computed by a nonde-
terministic number-on-forehead protocol communicatingO(logn) bits, but that requiresnΩ(1)

bits of communication for randomized number-on-forehead protocols withk= δ · lognplayers,
for any fixedδ < 1. Recent breakthrough results for the Set-Disjointness function (Sherstov,
STOC ’08; Lee Shraibman, CCC ’08; Chattopadhyay Ada, ECCC ’08) imply such a separation
but only when the number of players isk < log logn.

We also show that for anyk = Alog logn the above functionf is computable by a small
circuit whose depth is constant wheneverA is a (possibly large) constant. Recent results again
give such functions but only when the number of players isk < log logn.
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1 Introduction

Number-on-forehead communication protocols are a fascinating model of computation wherek
collaborating players are trying to evaluate a functionf : ({0,1}n)k → {0,1}. The players are all-
powerful, but the input tof is partitioned intok pieces ofn bits each,x1, . . . ,xk ∈ {0,1}n, andxi is
placed, metaphorically, on the forehead of playeri. Thus, each player only sees(k−1)n of thek·n
input bits. In order to computef , the players communicate by writing bits on a shared blackboard,
and the complexity of the protocol is the number of bits that are communicated (i.e., written on the
board). This model was introduced in [CFL83] and has found applications in a surprising variety
of areas, including circuit complexity [HG91, NW93], pseudorandomness [BNS92], and proof
complexity [BPS07].

In this model, a protocol is said to beefficientif it has complexity logO(1) n. Correspondingly,
P

cc
k , RP

cc
k , BPP

cc
k andNP

cc
k are the number-on-forehead communication complexity analogs of

the standard complexity classes [BFS86], see also [KN97]. For example,RP
cc
k is the class of

functions having efficient one-sided-error randomized communication protocols. One of the most
fundamental questions in NOF communication complexity, and the main question addressed in
this paper, is to separate these classes. In [BDPW07], Beame et al. give an exponential separation
between randomized and deterministic protocols fork ≤ nO(1) players (in particular,RP

cc
k 6= P

cc
k

for k ≤ nO(1)). The breakthrough work by Sherstov [She07, She08a] sparked a flurry of exciting
results in communication complexity [Cha07, LS08, CA08] which gave an exponential separation
between nondeterministic and randomized protocols fork< log logn players (in particular,NP

cc
k 6⊂

BPP
cc
k for k < loglogn). Our main result is to improve the latter separation to larger values ofk.

Theorem 1.1 (Main Theorem;NP
cc
k 6⊂ BPP

cc
k for k = δ logn players). For every fixedδ < 1,

sufficiently large n and k= δ · logn, there is an explicit function f: ({0,1}n)k →{0,1} such that:
f can be computed by k-player nondeterministic protocols communicating O(logn) bits, but f
cannot be computed by k-player randomized protocols communicating no(1) bits.

We note that the number of playersk = δ · logn in the above Theorem1.1is state-of-the-art: it
is a major open problem in number-on-forehead communication complexity to determine if every
explicit function onn bits can be computed byk= log2n players communicatingO(logn) bits. We
also note that Theorem1.1 in particular implies an exponential separation between nondetermin-
istic and deterministic protocols (hence,NP

cc
k 6⊂ P

cc
k for k = δ logn players). Similar separations

follow from [BDPW07], but only for non-explicit functions.
We also address the challenge of exhibiting functions computable by small (unbounded fan-in)

constant-depth circuits that require high communication for k-player protocols, which is relevant
to separating various circuit classes (see, e.g., [HG91, RW93]). Previous results [Cha07, LS08,
CA08] give such functions fork < loglogn. We offer a slight improvement and achievek =
Aloglogn for any (possibly large) constantA, where the depth of the circuit computing the function
depends onA.

Theorem 1.2(Constant-depth circuits require high communication fork= Alog logn players). For
every constant A> 1 there is a constant B such that for sufficiently large n and k:= Aloglogn there
is a function f: ({0,1}n)k →{0,1} which satisfies the following: f can be computed by circuits of
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size nB and depth B, but f cannot be computed by k-player randomized protocols communicating
no(1) bits.

1.1 Techniques

In this section we discuss the technical challenges presented by our theorems and how we have
overcome them, building on previous work. An exposition of previous works and of some of
the ideas in this paper also appears in the survey by Sherstov[She08b]. For concreteness, in our
discussion we focus on separating nondeterministic from deterministic (as opposed to randomized)
protocols, a goal which involves all the main difficulties.

Until very recently, it was far from clear how to obtain communication lower bounds in the
number-on-forehead model for any explicit functionf with efficient nondeterministic protocols.
The difficulty can be described as follows. The standard method for obtaining number-on-forehead
lower bounds is what can be called the “correlation method” [BNS92, CT93, Raz00, VW07].1

This method goes by showing thatf hasexponentially small(2−nΩ(1)
) correlation with efficient

(deterministic) protocols, and this immediately implies that f does not have efficient protocols (the
correlation is w.r.t. some probability distribution whichin general is not uniform). The drawback of
this method is that, although for the conclusion thatf does not have efficient protocols it is clearly
enough to show that the correlation off with such protocols is strictly less than one, the method
actually proves the stronger exponentially small correlation bound. This is problematic in our set-
ting because it is not hard to see that every function that hasan efficient nondeterministic protocol
also hasnoticeable(≥ 2− logO(1) n) correlation with an efficient (deterministic) protocol, and thus
this method does not seem useful for separating nondeterministic from deterministic protocols.

In recent work, these difficulties were overcome to obtain a surprising lower bound for a func-
tion with an efficient nondeterministic protocol: the Set-Disjointness function [LS08, CA08]. The
starting point is the work by Sherstov [She08a] who applies the correlation method in a more
general way for the 2-player model in order to overcome the above difficulties. Thisgeneralized
correlation method is then adapted to handle more players(k ≫ 2) in [LS08, CA08]. The high-
level idea of the method is as follows. Suppose that we want toprove that some specific functionf
does not have efficient protocols. The idea is to come up with another functionf ′ and a distribution
λ such that: (1)f and f ′ have constant correlation, sayf and f ′ disagree on at most 1/10 mass of

the inputs with respect toλ , and (2) f ′ has exponentially small (2−nΩ(1)
) correlation with efficient

protocols with respect toλ . The combination of (1) and (2) easily implies thatf also has correla-
tion at most 1/10+2−nΩ(1)

< 1 with efficient protocols, which gives the desired lower bound for
f . This method is useful because forf ′ we can use the correlation method, and on the other hand
the correlation off with efficient protocols isnot shown to be exponentially small, only bounded
away from 1 by a constant. Thus it is conceivable thatf has efficient nondeterministic protocols,
and in fact this is the case in [LS08, CA08] and in this work.

Although a framework similar to the above is already proposed in previous papers, e.g. [Raz87,
Raz03], it is the work by Sherstov [She08a] that finds a way to successfully apply it to functions

1This method is sometimes called the “discrepancy method.” We believe that lower bound proofs are easier to
understand when presented in terms of correlation rather than discrepancy, cf. [VW07].
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f with efficient nondeterministic protocols. For this, [She08a] uses two main ideas, generalized to
apply to the number-on-forehead setting in [Cha07, LS08, CA08]. The first is to consider a special
class of functionsf := Lift (OR,φ) with efficient nondeterministic protocols. These are obtained
by combining the “base” function OR onm bits with a “selection” functionφ as described next.
It is convenient to think off = Lift (OR,φ) as a function on(k+1)n bits distributed amongk+1
players as follows: Player 0 receives ann-bit vector x, while Playeri, for 1 ≤ i ≤ k, gets an
n-bit vectoryi . The selection functionφ takes as inputy1, . . . ,yk and outputs anm-bit subset of
{1, . . . ,n}. We viewφ as selectingmbits of Player 0’s inputx, denotedx|φ(y1, . . . ,yk). Lift (OR,φ)
outputs the value of OR on thosem bits ofx:

Lift (OR,φ)(x,y1, . . . ,yk) := OR(x|φ(y1, . . . ,yk)).

The second idea is to apply to such a functionf := Lift (OR,φ) a certain orthogonality prin-
ciple to produce a functionf ′ that satisfies the points (1) and (2) above. The structure off =
Lift (OR,φ)(x,y1, . . . ,yk) is crucially exploited to argue thatf ′ satisfies (2), and it is here that pre-
vious works requirek < loglogn [Cha07, LS08, CA08].

So far we have rephrased previous arguments. We now discuss the main new ideas in this
paper.

Ideas for the proof of Theorem1.1. To prove Theorem1.1we start by noting that regardless of
what functionφ is chosen, Lift(OR,φ) has an efficient nondeterministic protocol: Player 0 simply
guesses an indexj that is one of the indices chosen byφ (she can do so because she knows the
input toφ ) and then any of the other players can easily verify whether or notx j is 1 in that position.
In previous work [LS08, CA08], φ is the bitwise AND function, and this makes Lift(OR,φ) the
Set-Disjointness function. By contrast,in this work we choose the functionφ uniformly at random
and we argue that, for almost allφ , Lift (OR,φ) does not have efficient randomized protocols,
wheneverk is at mostδ logn for a fixedδ < 1.

The above argument gives anon-explicitseparation, due to the random choice ofφ . To make
it explicit, we derandomize the choice ofφ . Specifically, we note that the above argument goes
through as long asφ is 2k-wise independent, i.e. as long asφ comes from a distribution such
that for every 2k fixed inputs ¯y1, . . . , ȳ2k ∈ ({0,1}n)k the valuesφ(ȳ1), . . . ,φ(ȳ2k

) are uniform and
independent (over the choice ofφ ). Known constructions of such distributions [ABI86, CG89]
only require aboutn ·2k = nO(1) random bits, which can be given as part of the input. Two things
should perhaps be stressed. The first is that giving a description of φ as part of the input does not
affect the lower bound in the previous paragraph which turnsout to hold even against protocols that
depend onφ . The second is that, actually, using 2k-wise independence seems to add the constraint
k < 1/2(logn); to achievek = δ logn for everyδ < 1 we use a distribution onφ that isalmost
2k-wise independent [NN93].

Ideas for the proof of Theorem 1.2. To prove Theorem1.2 we show how to implement the
function given by Theorem1.1 by small constant-depth circuits whenk is Aloglogn for a fixed,
possibly large, constantA. In light of the above discussion, this only requires computing a 2k-
wise independent function by small constant-depth circuits, a problem which is studied in [GV04,
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HV06]. Specifically, dividing upφ in blocks it turns out that it is enough to compute 2k-wise
independent functionsg : {0,1}t → {0,1}t wheret is also about 2k. Whenk = Aloglogn, g is a
(2k = logAn)-wise independent function on logAn bits, and [HV06] shows how to compute it with
circuits of sizenB and depthB whereB depends onA only – and this dependence ofB onA is tight
even for almost 2-wise independence. This gives Theorem1.2. Finally, we note that [HV06] gives
explicit (a.k.a. uniform) circuits, and that we are not aware of an alternative to [HV06] even for
non-explicit circuits.

Subsequent Work. Subsequent to our work, [BHN08] extend our main results (Theorem 1.1
and Theorem 1.2) by proving the separation in Theorem 1.1 under the stronger requirement that
the functionf is computable by explicit (unbounded fan-in) circuits of depth 5.

Organization. The organization of the paper is as follows. In Section 2 we give necessary defini-
tions and background. We present the proof of our main resultTheorem1.1in two stages. First, in
Section 3 we present a non-explicit separation obtained by selectingφ at random. Then, in Section
4 we derandomize the choice ofφ in order to give an explicit separation and prove Theorem1.1.
Finally, in Section 5 we prove our results about constant-depth circuits, Theorem1.2.

2 Preliminaries

Correlation. Let f ,g : X → R be two functions, and letµ be a distribution onX. We define
thecorrelation between f and g underµ to be Corµ( f ,g) := Ex∼µ [ f (x)g(x)]. Let G be a class of
functionsg : X → R (e.g. efficient communication protocols). We define thecorrelation between
f andG underµ to be Corµ( f ,G) := maxg∈G Corµ( f ,g). Note that, wheneverG is closed under
complements, which will always be the case in this paper, this correlation is non-negative. When-
ever we omit to mention a specific distribution when computing the correlation, an expected value
or a probability, it is to be assumed that we are referring to the uniform distribution, which we
denote byU.

Communication Complexity. In the number-on-forehead (NOF) multiparty communicationcom-
plexity model [CFL83], k players are trying to collaborate to compute a functionf : X1× . . .×Xk →
{−1,1}. For eachi, playeri knows the values of all of the inputs(x1, . . . ,xk) ∈ X1× . . .×Xk ex-
cept forxi (which conceptually is thought of as being placed on Playeri’s forehead). The players
exchange bits according to an agreed-upon protocol, by writing them on a public blackboard. A
protocolspecifies what each player writes as a function of the blackboard content and the inputs
seen by that player, and whether the protocol is over, in which case the last bit written is taken as
the output of the protocol. Thecostof a protocol is the maximum number of bits written on the
blackboard.

In a deterministic protocol, the blackboard is initially empty. Arandomized protocolis a dis-
tribution on deterministic protocols such that for every input a protocol selected at random from
the distribution errs with probability at most 1/3. In anondeterministic protocol, an initial guess
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string is written on the blackboard at the beginning of the protocol (and counted towards commu-
nication) and the players are trying to verify that the output of the function is−1 (representing
true) in the usual sense: There exists a guess string where the output of the protocol is−1 if and
only if the output of the function is−1. Thecommunication complexityof a function f under one
of the above types of protocols is the minimum cost of a protocol of that type computingf . In line
with [BFS86], a k-player protocol computingf : ({0,1}n)k →{−1,1} is considered to beefficient
if its cost is at most poly-logarithmic, logO(1) n. Equipped with the notion of efficiency, one has the
NOF communication complexity classesBPP

cc
k andNP

cc
k that are analogues of the corresponding

complexity classes.

Definition 2.1. We denote byΠk,c the class of all deterministic k-player NOF communication
protocols of cost at most c.

The following immediate fact allows us to derive lower bounds on the randomized communi-
cation complexity off from upper bounds on the correlation betweenf and the classΠk,c [KN97,
Theorem 3.20].

Fact 2.2. If there exists a distributionµ such thatCorµ( f ,Πk,c) ≤ 1/3 then every randomized
protocol (with error1/3) for f must communicate at least c bits.

In order to obtain upper bounds on the correlation betweenf and the classΠk,c, we use the
following result, which is also standard. Historically, itwas first proved by Babai, Nisan and
Szegedy [BNS92] using the notion ofdiscrepancyof a function. It has since been rewritten in
many ways [CT93, Raz00, FG05, VW07]. The formulation we use appears in [VW07], except that
in [VW07] one also takes two copies ofx; it is easy to modify the proof in [VW07] to obtain the
following lemma.

Lemma 2.3(The standard BNS argument). Let f : X×Y1×·· ·×Yk → R. Then,

CorU( f ,Πk+1,c)2k ≤ 2c·2k ·E (y0
1,...,y

0
k)∈Y1×···×Yk

(y1
1,...,y

1
k)∈Y1×···×Yk





∣
∣
∣
∣
∣
∣

Ex∈X



 ∏
u∈{0,1}k

f (x,yu1
1 , . . . ,yuk

k )





∣
∣
∣
∣
∣
∣



 .

We later writey for (y1, . . . ,yk).

Degree. The ε-approximate degree of fis the smallestd for which there exists a multivariate
real-valued polynomialg of degreed such that maxx | f (x)−g(x)| ≤ ε. We will use the following
result of Nisan and Szegedy; see [Pat92] for a result that applies to more functions.

Lemma 2.4 ([NS94]). There exists a universal constantγ > 0 such that the(5/6)-approximate
degree of theOR function on m bits is at leastγ ·√m.

The following key result shows that if a functionf hasε-approximate degreed then there is
another functiong and a distributionµ such thatg is orthogonal to degree-d polynomials andg has
correlationε with f . Sherstov [She08a] gives references in the mathematics literature and points
out a short proof by duality.
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Lemma 2.5 (Orthogonality Lemma). If f : {0,1}m → {−1,1} is a function withε-approximate
degree d, there exist a function g: {0,1}m→{−1,1} and a distributionµ on{0,1}m such that:

(i) Corµ(g, f ) ≥ ε; and

(ii) for every T⊆ [m] with |T| ≤ d and every function h: {0,1}|T| → R, Ex∼µ [g(x) ·h(x|T)] = 0,

where x|T denotes the m bits of x indexed by T.

3 Non-explicit Separation

In this section we prove anon-explicitseparation between nondeterministic and randomized pro-
tocols. As mentioned in the introduction, we restrict our attention to analyzing the communication
complexity of certain functions constructed from abasefunction f : {0,1}m → {−1,1}, and a
selectionfunctionφ . The base function we will work with is the OR function, whichtakes on the
value -1 if and only if any of its input bits is 1.

We now give the definition of the function we prove the lower bound for, and then the statement
of the lower bound.

Definition 3.1 (Lift) . Let φ be a function that takes as input k strings y1, . . . ,yk and outputs an
m-element subset of[n]. Let f be a function on m bits. We construct alifted function Lift( f ,φ) as
follows. On input(x∈ {0,1}n,y1, . . . ,yk), Lift ( f ,φ) evaluatesφ on the latter k inputs to select a
set of m bits in x and returns the value of f on those m bits. Formally,

Lift ( f ,φ)(x,y1, . . . ,yk) := f (x|φ(y1, . . . ,yk)),

where for a set S= {i1, . . . , im} ⊆ [n], x|S denotes the substring xi1 · · ·xim of x indexed by the ele-
ments in S, where i1 < i2 < .. . < im.

The inputs toLift ( f ,φ) are partitioned among k+ 1 players as follows: Player 0 is given x
and, for all1≤ i ≤ k, Player i is given yi .

The following is the main theorem proved in this section.

Theorem 3.2. For everyδ < 1 there are constantsε,α > 0 such that for sufficiently large n, for
k = δ · logn, and for m= nε , the following holds. There is a distributionλ such that if we choose
a random selection functionφ : ({0,1}n)k →

([n]
m

)
, we have:

Eφ [Corλ (Lift (OR,φ),Πk+1,nα
)] ≤ 1/3.

3.1 Overview of the Proof

We obtain our lower bound on the randomized communication complexity of Lift(OR,φ) using an
analysis that follows [CA08]. In their paper, Chattopadhyay and Ada analyze the Set-Disjointness
function, and for that reason, their selection functionφ must be the AND function. In our case,
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we allow φ to be a random function. While our results no longer apply to Set-Disjointness, we
still obtain a separation between randomized and nondeterministic communication (BPP

cc
k and

NP
cc
k ) because, no matter what selection function is used, Lift(OR,φ) always has an efficient

nondeterministic protocol.
At a more technical level, the results of [CA08] requirek< loglogn because of the relationship

betweenn (the size of player 0’s input) andm (the number of bits the base function OR gets applied
to.) For their analysis to go through, they needn > 22k ·mO(1). In our case,n = 2k ·mO(1) is
sufficient, and this allows our results to be non-trivial fork≤ δ logn for anyδ < 1.

As mentioned earlier, we will start with the base function ORonm input bits,m= nε ≪ n. We
lift the base function OR in order to obtain the lifted function Lift(OR,φ). Recall that Lift(OR,φ)
is a function on(k+1)n inputs with small nondeterministic complexity, and is obtained by applying
the base function (in this case the OR function) to the selected bits of Player 0’s input,x. We want
to prove that for a randomφ , Lift (OR,φ) has high randomized communication complexity.

We start with a result of Nisan and Szegedy [NS94] who prove a lower bound on the approx-
imate degree of the OR function. By Lemma2.5 this implies that there exists a functiong (also
on m bits) and a distributionµ such that the functionsg and OR are highly correlated overµ and,
furthermore,g is orthogonal to low-degree polynomials. Now we lift the function g in order to
get the function Lift(g,φ), and we defineλ to be a distribution over all(k+ 1)n-bit inputs that
chooses theyi ’s uniformly at random andx also uniformly at random except on the bits indexed by
φ(y1, . . . ,yk) which are selected according toµ. Sinceg and OR are highly correlated with respect
to µ, it is not hard to see that the lifted functions Lift( f ,φ) and Lift(g,φ)are also highly correlated
with respect toλ . Therefore, to prove that Lift( f ,φ) has low correlation withc-bit protocols it
suffices to prove that Lift(g,φ) has. To prove this, we use the correlation method. This involves
bounding the average value of Lift(g,φ) on certaink-dimensional cubes (cf. Lemma2.3). For this,
we need to analyze the distribution of the 2k sets that arise from evaluatingφ on the 2k points of
the cube. Specifically, we are interested in how much these 2k sets are “spread out,” as measured
by the size of their union. If the sets are not spread out, we use in Lemma3.4 the fact thatg is
orthogonal to low-degree polynomials to bound the average value of Lift(g,φ) on the cubes. This
step is similar to [She07, Cha07, LS08, CA08]. The main novelty in our analysis is that since we
chooseφ at random, we can prove good upper bounds (Lemma3.6) on the probability that the sets
are spread out.

3.2 Proof of Theorem3.2

Let m := nε for a smallε > 0 to be determined later. Combining Lemma2.4and2.5, we see that
there exists a functiong and a distributionµ such that:

(i) Corµ(g,OR) ≥ 5/6; and

(ii) for everyT ⊆ [m], |T| ≤ γ
√

m and every functionh : {0,1}|T| → R, Ex∼µ [g(x)h(x|T)] = 0.

Define the distributionλ on{0,1}(k+1)n as follows. Forx,y1, . . . ,yk ∈ {0,1}n, let

λ (x,y1, . . . ,yk) :=
µ(x|φ(y1, . . . ,yk))

2(k+1)n−m
,

7



in words we selecty1, . . . ,yk uniformly at random and then we select the bits ofx indexed by
φ(y1, . . . ,yk) according toµ and the others uniformly.

It can be easily verified that Corλ (Lift (g,φ),Lift (OR,φ)) = Corµ(g,OR)≥5/6. Consequently,
for everyφ andc,

Corλ (Lift (OR,φ),Πc) ≤ Corλ (Lift (g,φ),Πc)+2 ·Pr
λ

[Lift (OR,φ) 6= Lift (g,φ)]

≤ Corλ (Lift (g,φ),Πc)+1/6, (1)

where in the last inequality we use that Corλ (Lift (OR,φ),Lift (g,φ)) = Eλ [Lift (OR,φ)·Lift (g,φ)]≥
5/6. Therefore, we only have to upper bound Corλ (Lift (g,φ),Πc), and this is addressed next. We
have, by the definition ofλ and then Lemma2.3:

Corλ (Lift (g,φ),Πc)2k
= 2m·2k

CorU(µ(x|φ(y1, . . . ,yk))g(x|φ(y1, . . . ,yk),Πc)2k

≤ 2(c+m)2k
Ey0,y1





∣
∣
∣
∣
∣
∣

Ex



 ∏
u∈{0,1}k

µ(x|φ(yu1
1 , . . . ,yuk

k ))g(x|φ(yu1
1 , . . . ,yuk

k ))





∣
∣
∣
∣
∣
∣



 , (2)

for everyφ .
Our analysis makes extensive use of the following notation.

Definition 3.3. Let S = (S1, . . . ,Sz) be a multiset of m-element subsets of[n]. Let therange ofS,
denoted by

⋃
S, be the set of indices from[n] that appear in at least one set inS. Let theboundary

of S, denoted by∂S, be the set of indices from[n] that appear in exactly one set in the collectionS.
For u∈ {0,1}k, define Su = Su(y0,y1,φ) = φ(yu1

1 , . . . ,yuk
k ). LetS = S(y0,y1,φ) be the multiset

(Su : u∈ {0,1}k). We define thenumber of conflicts inS to be q(S) := m·2k−|⋃S|.

Intuitively, |⋃S| measures the range ofS, while m2k is the maximum possible value for this
range. We use the following three lemmas to complete our proof. The first Lemma3.4deals with
the case where the multisetS has few conflicts. In this case, we argue that one of the setsSu ∈ S

has a very small intersection with the rest of the other sets,which allows us to apply Property (ii)
of g andµ to obtain the stated bound. A variant of Lemma3.4appears in [CA08].

Lemma 3.4. For everyy0,y1 andφ , if q(S(y0,y1,φ)) < γ ·√m·2k/2, then

Ex



 ∏
u∈{0,1}k

µ(x|Su(y
0,y1,φ))g(x|Su(y

0,y1,φ))



= 0.

Lemma3.5 gives a bound in terms of the number of conflicts inS which only uses the fact
that µ is a probability distribution. A slightly weaker version ofthis lemma appeared originally
in [CA08]. Independently of our work, Chattopadhyay and Ada have subsequently also derived
the stronger statement we give below.
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Lemma 3.5. For everyy0,y1 andφ :

Ex



 ∏
u∈{0,1}k

µ(x|Su(y
0,y1,φ))



≤ 2q(S(y0,y1,φ))

2m·2k .

Lemma3.6 is the key place where we exploit the fact thatφ is chosen at random to obtain an
upper bound on the probability of having a given number of conflicts in S.

Lemma 3.6. For every q> 0 and uniformly choseny0,y1,φ :

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q] ≤
(

m3 ·22k

q ·n

)q

.

Before proving these Lemmas, we complete the proof of our main theorem. We have the
following derivation. For a uniformly chosenφ :

Eφ [Corλ (Lift (g,φ),Πc)]2
k ≤ Eφ

[

Corλ (Lift (g,φ),Πc)2k
]

≤ 2(c+m)2k ·Ey0,y1,φ





∣
∣
∣
∣
∣
∣

Ex



 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)





∣
∣
∣
∣
∣
∣



 (by Equation (2))

= 2(c+m)2k · ∑
q≥0

Pr
y0,y1,φ

[q(S) = q] ·Ey0,y1,φ





∣
∣
∣
∣
∣
∣

Ex



 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)





∣
∣
∣
∣
∣
∣

∣
∣q(S) = q





≤ 2(c+m)2k · ∑
q≥γ

√
m2k/2

Pr
y0,y1,φ

[q(S) = q] ·Ey0,y1,φ





∣
∣
∣
∣
∣
∣

Ex



 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)





∣
∣
∣
∣
∣
∣

∣
∣q(S) = q





(by Lemma3.4)

≤ 2(c+m)2k · ∑
q≥γ

√
m2k/2

Pr
y0,y1,φ

[q(S) = q] ·Ey0,y1,φ





∣
∣
∣
∣
∣
∣

Ex



 ∏
u∈{0,1}k

µ(x|Su)





∣
∣
∣
∣
∣
∣

∣
∣q(S) = q





(because|g| = 1)

≤ 2(c+m)2k · ∑
q≥γ

√
m2k/2

Pr
y0,y1,φ

[q(S) = q] · 2q

2m2k = 2c·2k · ∑
q≥γ

√
m2k/2

Pr
y0,y1,φ

[q(S) = q] ·2q

(by Lemma3.5)

≤ 2c·2k · ∑
q≥γ

√
m2k/2

(
m3 ·22k

q ·n

)q

·2q = 2c·2k · ∑
q≥γ

√
m2k/2

(
2 ·m3 ·22k

q ·n

)q

(by Lemma3.6)

≤ 2c·2k · ∑
q≥γ

√
m2k/2

(
1
2

)q

≤ 2c·2k+1−γ
√

m2k/2 ≤ 22k(c−nΩ(1))

(usingq≥ γ
√

m2k/2, k = δ logn whereδ < 1, and takingm= nε for a sufficiently smallε)

9



Therefore, whenc is a sufficiently small power ofn we have thatEφ [Corλ (Lift (g,φ),Πc)] ≤ 1/6.
Combining this with Equation (1) we obtain:

Eφ [Corλ (Lift (OR,φ),Πc)] ≤ 1/6+1/6 = 1/3.

It is left to prove the lemmas. For this, the reader may want torecall Definition3.3.

Proof of Lemma3.4. We writeSu for Su(y0,y1,φ) andS for S(y0,y1,φ). Let r(S) = |⋃S| be the
size of the range ofS, and letb(S) = |∂S| be the size of the boundary ofS. Note thatr(S)−b(S)≤
q(S) because everyj ∈ ∪S \ ∂S occurs in at least 2 sets inS, thus contributes at least 1 toq(S).
Furthermore,r(S)+q(S) = m2k. Then,∑u∈{0,1}k |Su∩∂S| = b(S)≥ r(S)−q(S) = m2k−2q(S) >

(m− γ
√

m)2k. By the pigeonhole principle, there existsv such that|Sv∩∂S| > m− γ
√

m. We can
write

Ex



 ∏
u∈{0,1}k

µ(x|Su)g(x|Su)



= Ex|Sv



µ(x|Sv)g(x|Sv)Ex|[n]\Sv



 ∏
u∈{0,1}k,u6=v

µ(x|Su)g(x|Su)







 .

Let T = Sv\∂S. So|T| ≤ γ
√

m. Let h = Ex|[n]\Sv

[

∏u6=v µ(x|Su)g(x|Su)
]
. Note thath is a function

that depends only onx|T. Then, by the property (ii) ofg andµ, Ex|Sv
[µ(x|Sv)g(x|Sv)h(x|T)] =

0.

Proof of Lemma3.5. We writeSu for Su(y0,y1,φ) andS for S(y0,y1,φ). We see that

Ex



 ∏
u∈{0,1}k

µ(x|Su)



= Ex|⋃S



 ∏
u∈{0,1}k

µ(x|Su)



 ,

as eachµ(x|Su) only depends on the bits ofx in
⋃

S. For 0≤ j ≤ 2k − 1, let S j be the sub-
multiset ofS consisting of the sets up to and includingSj , S j = (S0, . . . ,Sj). We haveS = S2k−1

and defineS−1 = /0. For 0≤ j ≤ 2k−1, let G j = Ex|⋃S j
[∏ j

i=0 µ(x|Si)] and letH j(x|Sj \ ∂S j) :=
Ex|Sj∩∂S j

[µ(x|Sj)], which note is a quantity that depends on the bits ofx in Sj \∂S j , i.e. onx|(Sj \
∂S j). LettingG−1 := 1, observe that, for 0≤ j ≤ 2k−1,

G j = Ex|⋃S j−1

[(
j−1

∏
i=0

µ(x|Si)

)

H j(x|Sj \∂S j)

]

≤ G j−1 · max
x|(Sj\∂S j )

(H j).

To obtain a bound on max(H j), consider an arbitrary partition of[m] into two setsE,F. Let ν be a
distribution on[m], and letρ(x|E) = Ex|F [ν(x)]. Then,ρ(x|E) = ∑x|F 2−|F|ν(x) = 2−|F|∑x|F ν(x)≤
2−|F| = 2|E|−m, simply using the fact thatν is a probability distribution. Thus, maxx|(Sj\∂S j )(H j)≤
2|Sj\∂S j |−m. Inductively,

Ex

[
2k−1

∏
i=0

µ(x|Si)

]

= G2k−1 ≤
2∑2k−1

j=0 |Sj\∂S j |

2m2k .
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Consider some indexz∈ ⋃S. Suppose this index appears inl setsSj1, . . . ,Sj l from S, with j1 <

· · ·< j l . Then, this index contributes exactlyl −1 to the expression∑2k−1
j=0 |Sj \∂S j |, once for every

j = j2, . . . , j l (for j = j1, z∈ ∂S j because no set beforeSj containsz). Since this holds for every

indexz, we see that∑2k−1
j=0 |Sj \∂S j | = q(S) and thereforeEx[∏u∈{0,1}k µ(x|Su)] ≤ 2q(S)−m2k

.

Proof sketch of Lemma3.6. The multisetS is given by the setsSu = φ(yu1
1 , . . . ,yuk

k ) for u∈ {0,1}k.
The probability over the choice of they’s that for somei, y0

i = y1
i , is at mostk/2n. When this event

does not occur, the 2k points at whichφ gets evaluated are all distinct. Sinceφ is chosen at random,
the 2k outputs ofφ are 2k uniformly and independently randomm-element subsets of[n]. We now
upper bound the probability of havingq conflicts in this case.

We write Q for q(S). Let Si = (S1, . . . ,Si) and letS0 = /0. Let Qi be the number of conflicts
obtained while pickingSi , after having pickedSi−1, and letRi be the range ofSi . Formally,Qi =

|Si ∩ (∪Si−1)| andRi = | ∪Si |. It is easy to see thatQ = ∑2k

i=1Qi . Then,

Pr[Q = q] = ∑
q1+···+q2k=q

Pr[∀i,Qi = qi ] = ∑
q1+···+q2k=q

∏
i

Pr[Qi = qi|∀ j < i,Q j = q j ].

By the nature of the experiment, the probability of obtaining qi conflicts while pickingSi depends
only on the range of the sets picked before, thus Pr[Qi = qi |∀ j < i,Q j = q j ] = Pr[Qi = qi |Ri−1 =
(i − 1)m−∑ j<i q j ]. Let C(q, r) denote the probability that, when picking anm-element subset
of [n] we obtain exactlyq conflicts, conditioned on the fact that the range of elementspicked so
far is exactlyr. By standard calculations, one can show that, as long as 2km3 ≤ n (which holds

for sufficiently smallm= nε ), C(q, r) ≤
(m2k

q

)
(4m/n)q. Plugging this into the expression above,

Pr[Q = q] ≤
(
4em222k/qn

)q
.

Taking into account the probability that the 2k stringsyu1
1 , . . . ,yuk

k are all distinct, we obtain

Pr
y0,y1,φ

[q(S) = q] ≤ k
2n +

(
4 ·e·m2 ·22k

q ·n

)q

≤
(

m3 ·22k

q ·n

)q

,

where the last inequality is a loose bound which is sufficientfor our purposes. The bound holds
because we can assume thatq≤m·2k (otherwise the probability is 0) and note thatm·2k = n1−Ω(1),
for a sufficiently smallm = nε , and therefore the second summand in the left-hand side of the
inequality above is greater than the first.

4 Explicit Separation

In this section we prove our main Theorem1.1. We proceed as follows. First, we prove a deran-
domized version of Theorem3.2 from the previous section. This derandomized version is such
that the distribution onφ can be generated using onlyn random bitsr. Then, we observe how
including the random bitsr as part of the input gives an explicit function for the separation, thus
proving Theorem1.1. As we mentioned in the introduction, the idea is that the only property of the
distribution overφ that the previous construction was using is that such a distribution is 2k-wise
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independent. That is, the evaluations ofφ at any 2k points, fixed and distinct, are jointly uniformly
distributed, over the choice ofφ (cf. the proof of Lemma3.6). The most straightforward way to
obtain explicit constructions from our previous results isthus to replace a randomφ with a 2k-wise
independent distribution, and then include a description of φ as part of the input. However, this
raises some technicalities, one being that the range of ourφ was a size-msubset of[n], and it is not
immediate how to give constructions with such a range. We findit more simple to use a slightly
different block-wise approach as we describe next.

We think of our universe ofn bits as divided inm := nε blocksof b := n1−ε bits each, where
as beforeε is a sufficiently small constant. We consider functionsφ(y1, . . . ,yk) whose output is
a subset of[n] that contains exactly one bit per block. That is,φ(y1, . . . ,yk) ∈ [b]m. The building
block of our distribution is the following result about almost t-wise independent functions. We say
that two distributionsX andY on the same support areε-close in statistical distanceif for every
eventE we have|Pr[E(X)]−Pr[E(Y)]| ≤ ε.

Lemma 4.1(almostt-wise independence; [NN93]). There is a universal constant a> 0 such that
for every t,b (where b is a power of2) there is a polynomial-time computable map

h : {0,1}t ×{0,1}a·t·logb → [b]

such that for every t distinct x1, . . . ,xt ∈ {0,1}t, the distribution(h(x1; r), . . . ,h(xt ; r)) ∈ [b]t, over
the choice of r∈ {0,1}a·t·logb, is (1/b)t-close in statistical distance to the uniform distributionover
[b]t.

Proof. Naor and Naor [NN93, Section 4] give an explicit construction ofN random variables
over{0,1} such that anyk of them areδ -close to uniform (over{0,1}k) and the construction uses
O(logN+k+ log(1/δ )) random bits.2 We identify[b] with {0,1}logb and use their construction for
N := 2t · logb,k := t · logb, andδ := (1/b)t. We consider theN random variables as divided up in 2t

blocks of logb bits each. On inputx∈ {0,1}t, our functionh will output the logb random variables
from thex-th block, which, again, we are going to identify with an element in [b]. Since we set
k = t · logb, and for distinctx1, . . . ,xt the distribution of(h(x1; r), . . . ,h(xt ; r)) is the distribution
of t · logb distinct random variables in{0,1}, we have by the result in [NN93] mentioned above
that (h(x1; r), . . . ,h(xt ; r)) is (δ = (1/b)t)-close to the uniform distribution on[b]t. To conclude,
we only need to verify the amount of randomness required. Indeed, as we mentioned above,
the construction in [NN93] usesO(logN + k+ log(1/δ )) random bits, which by our choice of
parameters isO(t + loglogb+ t · logb+ t · logb) = O(t · logb).

We now define our derandomized distribution onφ . This is the concatenation ofm of the
above functions using independent random bits, a function per block. Specifically, for each of the
mblocks ofb bits, we are going to use the above functionh wheret := k ·2k · (1+ logb). Jumping
ahead, the large input lengtht is also chosen so that the probability (over the choice of they’s)
that we do not obtain 2k distinct inputs drops down exponentially with 2k, which is needed in the
analysis. On inputy1, . . . ,yk and randomnessr, we break up eachyi in m blocks and alsor in m

2They in fact achieve in [NN93, Lemma 4.2] a doubly-logarithmic dependence onN, but this improvement, which
arises from combining the above bound with a construction from [CG89, ABI86], is irrelevant to this work.
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blocks. The value ofφ in the j-th block depends only on thej-th blocks of theyi ’s and on thej-th
block of r.

Definition 4.2(Derandomized distribution onφ , given parametersn, m= nε , b= n1−ε , k= δ · logn;
anda universal constant from Lemma4.1). Let l := 2k · (1+ logb), t := l ·k. Let

φ : {0,1}m·t ×{0,1}m·a·t·logb → [b]m

be defined as follows. On input(y1, . . . ,yk) ∈ {0,1}m·t and randomness r∈ {0,1}m·a·t·logb, think
of each yi ∈ {0,1}m·l as divided in m blocks of l bits each, i.e.(yi = (yi)1 ◦ · · · ◦ (yi)m), and r as
divided in m blocks of a· t · logb bits each, i.e.(r = r1◦ · · · ◦ rm). The j-th output ofφ in [b] is then

φ(y1, . . . ,yk; r) j := h((y1) j , . . . ,(yk) j
︸ ︷︷ ︸

l ·k=t bits

; r j
︸︷︷︸

a·t·logb bits

) ∈ [b].

Thedistribution onφ is the distribution obtained by selecting a uniform r∈ {0,1}m·a·t·logb and
then considering the map

y1, . . . ,yk → φ(y1, . . . ,yk; r) ∈ [b]m.

Note that, in the above definition, the input length of eachyi is m· l which up to polylogarithmic
factors isnε ·2k = n1−Ω(1), for a sufficiently smallε depending onδ .

Theorem 4.3. For everyδ < 1 there are constantsε,α > 0 such that for sufficiently large n,
k := δ · logn, and m= nε , the following holds.

There is a distributionλ such that ifφ : {0,1}m·t → [b]m is distributed according to Definition
4.2we have:

Eφ [Corλ (Lift (OR,φ),Πk+1,nα
)] ≤ 1/3.

Proof. The proof follows very closely that of Theorem3.2. A minor difference is that now the
yi ’s are overm· l bits as opposed ton in Theorem3.2, but the definition of the distributionλ in
Theorem3.2immediately translates to the new setting –λ just selects theyi ’s at random. The only
other place where the proofs differ is in Lemma3.6, which is where the properties ofφ are used.
Thus we only need to verify the following Lemma.

Lemma 4.4. For every q> 0 andφ distributed as in Definition (4.2):

Pr
y0,y1,φ

[q(S(y0,y1,φ)) = q] ≤
(

m2 ·22k

q ·b

)q

=

(
m3 ·22k

q ·n

)q

.

Proof. For the multisetS = S(y0,y1,φ) define thenumber of conflicts in the j-th block, denoted
q(S) j , as 2k minus the number of distinct elements in thej-th block – thusq(S) = ∑ j q(S) j . If
q(S) = q then there must existq1, . . . ,qm summing up toq such that for everyj, q(S) j = q j . As
by construction the distribution(q(S)1, . . . ,q(S)m) (over the choice of they’s andφ ) is a product
distribution, we have:

Pr
y0,y1,φ

[q(S) = q] = ∑
q1,...,qm:
∑ j q j=q

∏
j≤m

Pr
y0,y1,φ

[q(S) j = q j ]. (3)
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We now bound Pry0,y1,φ [q(S) j = q j ] for any fixed j. Thus we are interested in the size of
⋃

u∈{0,1}k

{φ(yu1
1 , . . . ,yuk

k ; r) j} ⊆ [b].

By construction, this depends only on thej-th blocks (ofl = 2k(1+ logb) bits) of they’s and on
the j-th block ofr. Specifically,

⋃

u∈{0,1}k

{φ(yu1
1 , . . . ,yuk

k ; r) j} =
⋃

u∈{0,1}k

{h((yu1
1 ) j , . . . ,(y

uk
k ) j ; r j)} ⊆ [b].

The probability over the choice of they’s that the 2k strings (given by the 2k choices ofu∈ {0,1}k)

((yu1
1 ) j , . . . ,(y

uk
k ) j) ∈ {0,1}t

are not all distinct is at most, by a union bound,k/2l = 2logk−2k(logb+1) ≤ (1/b)2k
. When this

happens, the 2k elements
Xu := h((yu1

1 ) j , . . . ,(y
uk
k ) j ; r j) ∈ [b]

(given by the 2k choices ofu ∈ {0,1}k) are by Lemma4.1 (1/b)t-close to being uniform and
independent in[b] (over the choice ofr), where recallt ≥ 2k. If the Xu’s were exactly uniform
and independent over[b] then it is not hard to see that the probability (overr) that q(S) j = q j

would be at most
(2k

q j

)
(2k/b)q j , a bound which can be obtained by noting that ifq(S) j = q j then

there must existq j distinct i ∈ {0,1}k such thatXi ∈ {X1, . . . ,Xi−1}. Since theXu’s are((1/b)t ≤
(1/b)2k

)-close to being uniform and independent, the probability (overr) thatq(S) j = q j is at most

(1/b)2k
+
(2k

q j

)
(2k/b)q j . Overall,

Pr
y0,y1,φ

[q(S) j = q j ] ≤ (1/b)2k
+(1/b)2k

+

(
2k

q j

)

(2k/b)q j ≤
(

2k

q j

)

(3 ·2k/b)q j ,

where the last inequality holds whenq j > 0 – which is the case to which we are going to restrict –
also using the fact thatq j ≤ 2k – otherwise the probability is 0.

Therefore, combining the above bound with Equation (3) we obtain

Pr
y0,y1,φ

[q(S) = q] ≤ ∑
q1,...,qm:
∑ j q j=q

∏
j≤m

Pr
y0,y1,φ

[q(S) j = q j ]

≤ ∑
q1,...,qm:
∑ j q j=q

∏
j≤m:0<q j≤2k

(
2k

q j

)

(3 ·2k/b)q j

= (3 ·2k/b)q ∑
q1,...,qm:
∑ j q j=q

∏
j≤m:0<q j≤2k

(
2k

q j

)

= (3 ·2k/b)q
(

m·2k

q

)

≤
(

3 ·2k

b
· e·m·2k

q

)q

≤
(

m2 ·22·k

b ·q

)q

.
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We can now prove the main theorem of this work.

Theorem 1.1(Main Theorem;NP
cc
k 6⊂ BPP

cc
k for k = δ logn players). (Restated.)For every fixed

δ < 1, sufficiently large n and k= δ · logn, there is an explicit function f: ({0,1}n)k →{0,1} such
that: f can be computed by k-player nondeterministic protocols communicating O(logn) bits, but
f cannot be computed by k-player randomized protocols communicating no(1) bits.

Proof. Let f (x,(y1, r),y2, . . . ,yk) := OR(x|φ(y1, . . . ,yk; r)), whereφ is as in Definition4.2. We
partition an input(x,(y1, r),y2, . . . ,yk) as follows: Player 0 getsx, Player 1 gets the pair(y1, r),
wherer is to be thought of as selecting whichφ to use, and playeri > 1 getsyi . Let p be the dis-
tribution obtained by choosingr uniformly at random, and independently(x,y1, . . . ,yk) according
to the distributionλ in Theorem4.3.

It is not hard to see thatf has a nondeterministic protocol communicatingO(logn) bits: We
can guess a bit positioni and then the player that sees(y1, r),y2, . . . ,yk can verify that the position
i belongs toφ(y1, . . . ,yk; r), and finally another player can verify thatxi = 1.

To see the second item observe that:

Corp( f ,Πk+1,nα
) = max

π∈Πk+1,nα
Er [E(x,y)∼λ [OR(x|φ(y; r)) ·π(x,y, r)]]

≤ Er [ max
π∈Πk+1,nα

E(x,y)∼λ [OR(x|φ(y; r)) ·π(x,y, r)]]≤ 1/3,

where the last inequality follows by Theorem4.3. Again, the claim about randomized communi-
cation follows by standard techniques, cf. Fact2.2.

To conclude, we need to verify that we can afford to giver as part of the input without affecting
the bounds. Specifically, we need to verify that|(y1, r)| ≤ n. Indeed,|(y1, r)| ≤ m· l + O(m· t ·
logb) = m·2k(1+ logb)+O(m·2k(1+ logb)k · logb) which is less thann whenk = δ logn for a
fixed δ < 1, m= nε for a sufficiently smallε, andn is sufficiently large (recallb ·m= n, and in
particularb≤ n.)

As is apparent from the proofs, and similarly to previous works [She08b], our lower bound
Theorems3.2and4.3hold more generally for any function of the form Lift( f ,φ) for an arbitrary
base functionf . The communication bound is then expressed in terms of the approximate degree
of f . In our paper, we focused onf = OR for concreteness. However, also note that the choice
of f = OR is essential in Theorem1.1 in order for Lift( f ,φ) to have a cheap nondeterministic
protocol.

4.1 Communication bounds for constant-depth circuits

In this section we point out how Theorem4.3 from the previous section gives us some new
communication bounds for functions computable by constant-depth circuits. Specifically, the
next theorem, which was also stated in the introduction, gives communication bounds for up to
k = A · loglogn players for functions computable by constant-depth circuits (whose parameters
depend onA), whereas previous results [Cha07, LS08, CA08] requirek < log logn.
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Theorem 1.2 (Constant-depth circuits require high communication fork = Aloglogn players).
(Restated.)For every constant A> 1 there is a constant B such that for sufficiently large n and
k := Alog logn there is a function f: ({0,1}n)k → {0,1} which satisfies the following: f can be
computed by circuits of size nB and depth B, but f cannot be computed by k-player randomized
protocols communicating no(1) bits.

Proof. Use the function from the proof of Theorem1.1. This only requires computing(2k =
logAn)-wise independent functions on logO(A) n bits. (As mentioned before, although Theorem4.3
uses the notion ofalmost t-wise independence, for small values ofk, such as those of interest in the
current proof, we can afford to useexact t-wise independence, i.e. set the distance from uniform
distribution to 0). Such functions can be computed by circuits of sizenB and depthB, for a constant
B that depends onA only. To see this, one can use the standard constructions based on arithmetic
over finite fields [CG89, ABI86] and then the results from [HV06, Corollary 6]. Equivalently,
“scale down” [HV06, Theorem 14] as described in [HV06, Section 3].

It is not clear to us how to prove a similar result fork = ω(log logn). This is because our ap-
proach would require computing almost(2k = logω(1) n)-wise independent functions on logω(1) n
bits bynO(1)-size circuits of constant depth, which cannot be done (evenfor almost 2-wise inde-
pendence). The fact that this cannot be done follows from theresults in [MNT90] or known results
on the noise sensitivity of constant-depth circuits [LMN93, Bop97].

We point out that Theorem1.2 can be strengthened to give a function that has correlation
2−nΩ(1)

with protocols communicatingno(1) bits. This can be achieved using the Minsky-Papert
function instead of OR (cf. [She07, Cha07]).

Finally, Troy Lee (personal communication, May 2008) has pointed out to us that the analogous
of our Theorem1.2for deterministicprotocols can be easily obtained from the known lower bound
for generalized inner product (GIP) [BNS92]. This is because it is not hard to see that for every con-
stantc there is a circuit of depthB = B(c) and sizenB that has correlation at least exp(−n/ logcn)
with GIP – just compute the parity in GIP by brute-force on blocks of size logcn – but on the
other hand low-communicationk-party protocols have correlation at most exp(−Ω(n/4k)) with
GIP [BNS92]. However, this idea does not seem to give a bound for randomized protocols or a
correlation bound, whereas our results do.
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[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory (preliminary version). InFOCS, pages 337–347. IEEE, 1986.1, 5

[BHN08] Paul Beame and Dang-Trinh Huynh-Ngoc. Multiparty communication complexity
and threshold size ofAC0, 2008. Manuscript. Earlier version ECCC Technical Report
TR08-061.4
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