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Abstract

We exhibit an explicit functionf : {0,1}" — {0,1} that can be computed by a nonde-
terministic number-on-forehead protocol communicat®{gpgn) bits, but that requirea®?
bits of communication for randomized number-on-foreheadqeols withk = & -logn players,
for any fixedd < 1. Recent breakthrough results for the Set-Disjointnesstion (Sherstov,
STOC'08; Lee Shraibman, CCC '08; Chattopadhyay Ada, EC@Titply such a separation
but only when the number of playerskis< log logn.

We also show that for anlg = Aloglogn the above functiorf is computable by a small
circuit whose depth is constant whenexyes a (possibly large) constant. Recent results again
give such functions but only when the number of playets<slog logn.

*Computer Science Department, University of Toronfomt ei , t oni }@s. t or ont 0. edu. Supported by
NSERC.

TComputer Science Department, Columbia Universifyol a@s. col unbi a. edu. Supported by grants NSF
award CCF-0347282 and NSF award CCF-0523664.



1 Introduction

Number-on-forehead communication protocols are a fasongpanodel of computation where
collaborating players are trying to evaluate a functfan{0, 1}”)k — {0,1}. The players are all-
powerful, but the input td is partitioned intd pieces of bits eachxy, ..., x € {0,1}", andyx; is
placed, metaphorically, on the forehead of playdthus, each player only se@s— 1)n of thek-n
input bits. In order to computé, the players communicate by writing bits on a shared blaakiho
and the complexity of the protocol is the number of bits that@mmunicated (i.e., written on the
board). This model was introduced IBFL83 and has found applications in a surprising variety
of areas, including circuit complexityHG91, NW93], pseudorandomnes8INS94, and proof
complexity BPSO07.

In this model, a protocol is said to ledficientif it has complexity lo§™™ n. Correspondingly,
PEC, RPES, BPPC and NP are the number-on-forehead communication complexitycaysabf
the standard complexity classeBHS86, see also KN97]. For example RP/C is the class of
functions having efficient one-sided-error randomized @amication protocols. One of the most
fundamental questions in NOF communication complexityl Hre main question addressed in
this paper, is to separate these classesBDHWO07, Beame et al. give an exponential separation
between randomized and deterministic protocolskfer n°1) players (in particularRP # PE°
for k < n°®). The breakthrough work by Sherstad8He07 She08asparked a flurry of exciting
results in communication complexitZha07 LS08 CA08] which gave an exponential separation
between nondeterministic and randomized protocolk fotoglogn players (in particulafP;¢ ¢
BPPC for k < loglogn). Our main result is to improve the latter separation todarglues ok.

Theorem 1.1 (Main Theorem;NPg° ¢ BPPLC for k = dlogn players) For every fixedd < 1,
sufficiently large n and k= & - logn, there is an explicit function £({0, 1}”)" — {0,1} such that:
f can be computed by k-player nondeterministic protocolmroanicating @logn) bits, but f
cannot be computed by k-player randomized protocols coriwatimg rPY) bits.

We note that the number of playdes= & - logn in the above Theorerh. 1lis state-of-the-art: it
is @ major open problem in number-on-forehead communicatonplexity to determine if every
explicit function onn bits can be computed = log, n players communicatin@(logn) bits. We
also note that Theoreh1in particular implies an exponential separation betweerdetermin-
istic and deterministic protocols (hendéR;® ¢ PL¢ for k = dlogn players). Similar separations
follow from [BDPWO7, but only for non-explicit functions.

We also address the challenge of exhibiting functions cdaipe by small (unbounded fan-in)
constant-depth circuits that require high communicatmrkfplayer protocols, which is relevant
to separating various circuit classes (see, etlG91, RW93). Previous resultsGha07 LS08,
CAO0g] give such functions fok < loglogn. We offer a slight improvement and achieke-=
Aloglognfor any (possibly large) constaAf where the depth of the circuit computing the function
depends o\

Theorem 1.2(Constant-depth circuits require high communicatiorkferAloglogn players) For
every constant A 1there is a constant B such that for sufficiently large n and Rloglogn there
is a function f: ({0, 1}”)k — {0,1} which satisfies the following: f can be computed by circuits o
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size ¥ and depth B, but f cannot be computed by k-player randomizedgnls communicating
n°d) bits.

1.1 Techniques

In this section we discuss the technical challenges preddmt our theorems and how we have
overcome them, building on previous work. An exposition ofyious works and of some of
the ideas in this paper also appears in the survey by ShqiSha08l. For concreteness, in our
discussion we focus on separating nondeterministic frai@rdenistic (as opposed to randomized)
protocols, a goal which involves all the main difficulties.

Until very recently, it was far from clear how to obtain commization lower bounds in the
number-on-forehead model for any explicit functibrwith efficient nondeterministic protocols.
The difficulty can be described as follows. The standard otetbr obtaining number-on-forehead
lower bounds is what can be called the “correlation meth@&K$92 CT93 Raz0Q VWO07].1
This method goes by showing th&thasexponentially smaI(Z*”Qm) correlation with efficient
(deterministic) protocols, and this immediately implieattf does not have efficient protocols (the
correlation is w.r.t. some probability distribution whichgeneral is not uniform). The drawback of
this method is that, although for the conclusion thalbes not have efficient protocols it is clearly
enough to show that the correlation biwith such protocols is strictly less than one, the method
actually proves the stronger exponentially small corretebound. This is problematic in our set-
ting because it is not hard to see that every function thaaihafficient nondeterministic protocol

also hasoticeable(> 2~ log®Y M correlation with an efficient (deterministic) protocohdathus
this method does not seem useful for separating nondetistraiftom deterministic protocols.

In recent work, these difficulties were overcome to obtaiargising lower bound for a func-
tion with an efficient nondeterministic protocol: the Sasjpintness functionl[S08 CAQ08]. The
starting point is the work by Shersto$le08awho applies the correlation method in a more
general way for the 2-player model in order to overcome trevaltlifficulties. Thisgeneralized
correlation method is then adapted to handle more plajers 2) in [LS08 CAO08]. The high-
level idea of the method is as follows. Suppose that we wanitdee that some specific functidn
does not have efficient protocols. The idea is to come up wiidttheer functionf’ and a distribution
A such that: (1)f and f’ have constant correlation, s&yand f’ disagree on at most/10 mass of

the inputs with respect td, and (2)f’ has exponentially small (2‘Q<1)) correlation with efficient
protocols with respect td. The combination of (1) and (2) easily implies tHaalso has correla-

tion at most Y10+ 277" < 1 with efficient protocols, which gives the desired lower hador
f. This method is useful because firwe can use the correlation method, and on the other hand
the correlation off with efficient protocols is1\ot shown to be exponentially small, only bounded
away from 1 by a constant. Thus it is conceivable thats efficient nondeterministic protocols,
and in fact this is the case ih$08 CA08] and in this work.

Although a framework similar to the above is already proplaegrevious papers, e.qRfz87
Raz03, it is the work by Sherstov§he08athat finds a way to successfully apply it to functions

1This method is sometimes called the “discrepancy methode’ balieve that lower bound proofs are easier to
understand when presented in terms of correlation ratl@rdiscrepancy, cfW07].
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f with efficient nondeterministic protocols. For thiSHe08uses two main ideas, generalized to
apply to the number-on-forehead setting@hp07 LS08 CAQ8]. The first is to consider a special
class of functiond := Lift (OR, @) with efficient nondeterministic protocols. These are oledi
by combining the “base” function OR am bits with a “selection” functionp as described next.
It is convenient to think off = Lift (OR, ¢) as a function orik+ 1)n bits distributed among+ 1
players as follows: Player O receives aibit vectorx, while Playeri, for 1 <i <k, gets an
n-bit vectory;. The selection functiomp takes as inpuyy, ..., Yk and outputs am-bit subset of
{1,...,n}. We viewg as selectingnbits of Player O’s inpux, denoted|@(y1, . .., k). Lift (OR @)
outputs the value of OR on thosebits of x:

Lift (OR, @)(X,Y1,...,¥k) := OR(X|@(Y1,...,¥k))-

The second idea is to apply to such a function= Lift (OR, ¢) a certain orthogonality prin-
ciple to produce a functior’ that satisfies the points (1) and (2) above. The structure of
Lift (OR, @) (X, Y1, - - .,Y«) is crucially exploited to argue thdt satisfies (2), and it is here that pre-
vious works requird < loglogn [Cha07 LS08 CA08g].

So far we have rephrased previous arguments. We now dislcessdin new ideas in this
paper.

Ideas for the proof of Theorem1.1. To prove Theorenmi.1lwe start by noting that regardless of
what functiong is chosen, LiftOR, @) has an efficient nondeterministic protocol: Player 0 simply
guesses an indeithat is one of the indices chosen Ipy(she can do so because she knows the
input tog) and then any of the other players can easily verify whethaotx; is 1 in that position.
In previous work £S08 CAO08], ¢ is the bitwise AND function, and this makes Li®R, ) the
Set-Disjointness function. By contrast,this work we choose the functignuniformly at random
and we argue that, for almost afi, Lift (OR, ¢) does not have efficient randomized protocols,
whenevek is at mostd logn for a fixedd < 1.

The above argument giveshan-explicitseparation, due to the random choicepofTo make
it explicit, we derandomize the choice @f Specifically, we note that the above argument goes
through as long a® is 2-wise independent, i.e. as long @scomes from a distribution such
that for every ¥ fixed inputsy‘f,...,yzk € ({0, 1}”)k the valueszp(yi),...,qo()?k) are uniform and
independent (over the choice @j. Known constructions of such distributionaB186, CG89
only require aboun - 2K = n°®Y random bits, which can be given as part of the input. Two thing
should perhaps be stressed. The first is that giving a déscripf ¢ as part of the input does not
affect the lower bound in the previous paragraph which tacrigo hold even against protocols that
depend orp. The second is that, actually, usinfy®ise independence seems to add the constraint
k < 1/2(logn); to achievek = dlogn for everyd < 1 we use a distribution o that isalmost
2%-wise independentyN93).

Ideas for the proof of Theorem 1.2 To prove Theoreni.2 we show how to implement the
function given by Theorem.1 by small constant-depth circuits whé&ns Aloglogn for a fixed,
possibly large, constart. In light of the above discussion, this only requires corimmuf -
wise independent function by small constant-depth cisgaifproblem which is studied iGN 04,
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HVO06]. Specifically, dividing upg in blocks it turns out that it is enough to computevise
independent functiong: {0,1}' — {0,1}! wheret is also about ® Whenk = Aloglogn, g is a
(2% = log" n)-wise independent function on IBg bits, and HV06] shows how to compute it with
circuits of sizen® and deptiB whereB depends o only — and this dependence Bn A is tight
even for almost 2-wise independence. This gives Thedréntinally, we note thatfiVO6] gives
explicit (a.k.a. uniform) circuits, and that we are not agvaf an alternative toHV06] even for
non-explicit circuits.

Subsequent Work. Subsequent to our workBHNOS] extend our main results (Theorem 1.1
and Theorem 1.2) by proving the separation in Theorem 1.Emth@ stronger requirement that
the functionf is computable by explicit (unbounded fan-in) circuits optle5.

Organization. The organization of the paper is as follows. In Section 2 we gecessary defini-
tions and background. We present the proof of our main ré@sidoreml.1in two stages. First, in
Section 3 we present a non-explicit separation obtaine@legsngg at random. Then, in Section
4 we derandomize the choice @fin order to give an explicit separation and prove Theofein
Finally, in Section 5 we prove our results about constaptfdeircuits, Theorem..2

2 Preliminaries

Correlation. Let f,g: X — R be two functions, and lett be a distribution orX. We define
the correlation between f and g undgrto be Coy,(f,9) := Ex.u[f(X)9(X)]. Let G be a class of
functionsg : X — R (e.g. efficient communication protocols). We define tberelation between

f and G underu to be Cof,(f,5) := maxycg Cory(f,g). Note that, wheneve§ is closed under
complements, which will always be the case in this papes,dbirelation is non-negative. When-
ever we omit to mention a specific distribution when compithre correlation, an expected value
or a probability, it is to be assumed that we are referringh uniform distribution, which we
denote byl.

Communication Complexity. Inthe number-on-forehead (NOF) multiparty communicatom-
plexity model CFL83, k players are trying to collaborate to compute a functioX; x ... x Xk —
{—1,1}. For each, playeri knows the values of all of the inpufg,...,Xx) € X1 X ... X Xk ex-
cept forx; (which conceptually is thought of as being placed on Plagdorehead). The players
exchange bits according to an agreed-upon protocol, byngrihem on a public blackboard. A
protocol specifies what each player writes as a function of the blaaldboontent and the inputs
seen by that player, and whether the protocol is over, in lvbase the last bit written is taken as
the output of the protocol. Theostof a protocol is the maximum number of bits written on the
blackboard.

In adeterministic protocqlthe blackboard is initially empty. Aandomized protocadk a dis-
tribution on deterministic protocols such that for everguha protocol selected at random from
the distribution errs with probability at most 1/3. Imandeterministic protocokn initial guess



string is written on the blackboard at the beginning of th&geol (and counted towards commu-
nication) and the players are trying to verify that the otigputhe function is—1 (representing
true) in the usual sense: There exists a guess string where tpataiftthe protocol is-1 if and
only if the output of the function is-1. Thecommunication complexityf a functionf under one

of the above types of protocols is the minimum cost of a prtotthat type computing. In line
with [BFS84, a k-player protocol computing : ({0, 1}”)k — {—1,1} is considered to befficient

if its cost is at most poly-logarithmic, I&%Y n. Equipped with the notion of efficiency, one has the
NOF communication complexity classB®P;® andNP° that are analogues of the corresponding
complexity classes.

Definition 2.1. We denote by1k¢ the class of all deterministic k-player NOF communication
protocols of cost at most c.

The following immediate fact allows us to derive lower bosrmh the randomized communi-
cation complexity off from upper bounds on the correlation betwdeand the clas§1%¢ [KN97,
Theorem 3.20].

Fact 2.2. If there exists a distributionu such thatCory (f,M%¢) < 1/3 then every randomized
protocol (with errorl/3) for f must communicate at least c bits.

In order to obtain upper bounds on the correlation betweand the clas§1%¢, we use the
following result, which is also standard. Historically,wias first proved by Babai, Nisan and
Szegedy BNS97 using the notion ofdiscrepancyof a function. It has since been rewritten in
many ways CT93 Raz0Q FG05 VWO07]. The formulation we use appears MJV07], except that
in [VWO07] one also takes two copies gf it is easy to modify the proof infWQ07] to obtain the
following lemma.

Lemma 2.3(The standard BNS argument)et f: X xY; x --- x Yy — R. Then,

k ok
Cony (f,MkH16)2" < o¢2 Ego e | [Bxex | [T FOOV %)
(y%,...,y&)ele---xYk UE{O,l}k

We later writey for (y1,...,Yk)-

Degree. The g-approximate degree of ik the smallest for which there exists a multivariate
real-valued polynomiad of degreed such that may f (x) — g(x)| < €. We will use the following
result of Nisan and Szegedy; s&&af92 for a result that applies to more functions.

Lemma 2.4 ([NS94). There exists a universal constapt> 0 such that thg5/6)-approximate
degree of th®©R function on m bits is at least: ,/m.

The following key result shows that if a functidnhase-approximate degree then there is
another functiory and a distributioru such thagy is orthogonal to degreé-polynomials andj has
correlatione with f. Sherstov $he08agives references in the mathematics literature and points
out a short proof by duality.



Lemma 2.5 (Orthogonality Lemma)If f : {0,1}™ — {—1,1} is a function withe-approximate
degree d, there exist a function ¢0,1}™ — {—1,1} and a distributionu on {0,1}™ such that:

(i) Cory(g,f)>¢;and
(ii) for every TC [m] with |T| < d and every function h{0,1}/T — R, Ey_,,[g(x)-h(x|T)] =0,

where XT denotes the m bits of x indexed by T.

3 Non-explicit Separation

In this section we prove aon-explicitseparation between nondeterministic and randomized pro-
tocols. As mentioned in the introduction, we restrict oteation to analyzing the communication
complexity of certain functions constructed fronbasefunction f : {0,1}™ — {—1,1}, and a
selectionfunction @. The base function we will work with is the OR function, whitkes on the
value -1 if and only if any of its input bits is 1.

We now give the definition of the function we prove the loweubd for, and then the statement
of the lower bound.

Definition 3.1 (Lift). Let @ be a function that takes as input k strings.y.,ykx and outputs an
m-element subset @f]. Let f be a function on m bits. We construdifeed function Lift(f, @) as
follows. On input(x € {0,1}"y1,...,Yk), Lift (f, @) evaluatesp on the latter k inputs to select a
set of m bits in x and returns the value of f on those m bits. Bty

Lift (f, @) (X, y1,-- -, ¥) = F(X@(Y1, ..., YK)),

where for a set & {i1,...,im} C [n], X|S denotes the substring x - x;,, of x indexed by the ele-
mentsin S,whergkir < ... <im.

The inputs td.ift (f, @) are partitioned among k- 1 players as follows: Player O is given x
and, for all1 <i <Kk, Playeriis given y

The following is the main theorem proved in this section.

Theorem 3.2. For everyd < 1 there are constants, a > 0 such that for sufficiently large n, for
k = 0 -logn, and for m= n#, the following holds. There is a distributignsuch that if we choose
a random selection functiop: ({0,1}"¥ — (IV), we have:

E[Cor (Lift (OR, @), kL") < 1/3,

3.1 Overview of the Proof

We obtain our lower bound on the randomized communicatiomatexity of Lift(OR, ¢) using an
analysis that followsCAOQ8]. In their paper, Chattopadhyay and Ada analyze the SgbiDisess
function, and for that reason, their selection funct@must be the AND function. In our case,



we allow ¢ to be a random function. While our results no longer apply éb[Sisjointness, we
still obtain a separation between randomized and nondetistic communication BPPL® and
NP9 because, no matter what selection function is used(QR ¢) always has an efficient
nondeterministic protocol.

At a more technical level, the results &A08] requirek < loglogn because of the relationship
betweem (the size of player 0’s input) armd (the number of bits the base function OR gets applied
to.) For their analysis to go through, they need 22 - m°®. In our casen = 2€. mPW is
sufficient, and this allows our results to be non-trivial ko< dlogn for anyd < 1.

As mentioned earlier, we will start with the base function @Rninput bits,m= n® < n. We
lift the base function OR in order to obtain the lifted furctiLift(OR, ¢). Recall that Liff OR, @)
is a function onk+ 1)ninputs with small nondeterministic complexity, and is abéa by applying
the base function (in this case the OR function) to the sedklits of Player O’s inpuk. We want
to prove that for a random, Lift (OR, ¢) has high randomized communication complexity.

We start with a result of Nisan and Szege#{sP4 who prove a lower bound on the approx-
imate degree of the OR function. By Lemrf& this implies that there exists a functign(also
onm bits) and a distributiom such that the functiongand OR are highly correlated ovgrand,
furthermore,g is orthogonal to low-degree polynomials. Now we lift the ¢tion g in order to
get the function Liftg, @), and we definel to be a distribution over allk + 1)n-bit inputs that
chooses thg’s uniformly at random and also uniformly at random except on the bits indexed by
o(y1,...,Yx) which are selected according o Sinceg and OR are highly correlated with respect
to u, it is not hard to see that the lifted functions Lifft ¢) and Lift(g, ¢)are also highly correlated
with respect toA. Therefore, to prove that Liff, ¢) has low correlation witke-bit protocols it
suffices to prove that Lifg, ¢) has. To prove this, we use the correlation method. This W@l
bounding the average value of L(ift ¢) on certairk-dimensional cubes (cf. Lemn2a3). For this,
we need to analyze the distribution of thes®ts that arise from evaluatingon the ¥ points of
the cube. Specifically, we are interested in how much théset? are “spread out,” as measured
by the size of their union. If the sets are not spread out, veeiud emma3.4 the fact thatg is
orthogonal to low-degree polynomials to bound the averadgevof Lift(g, ¢) on the cubes. This
step is similar to $he07 Cha07 LS08 CAO08]. The main novelty in our analysis is that since we
choosep at random, we can prove good upper bounds (Ler8r@eon the probability that the sets
are spread out.

3.2 Proof of Theorem3.2

Let m:= n® for a smalle > 0 to be determined later. Combining Lemd and2.5, we see that
there exists a functiog and a distributiornu such that:

(i) Cory(g9,0OR) >5/6; and

(ii) for everyT C [m], |T| < yy/mand every functiot : {0,1}Tl — R, Ey_,[g(x)h(X|T)] = 0.

Define the distributiod on {0,1}(<*1" as follows. Foi,ys,...,yk € {0,1}", let

X\ Q(YL, ...,
)\(X’y]-?"'ayk) = u( |2qzlEZ]i)n—myk))7




in words we selecy, ..., Yk uniformly at random and then we select the bitsxahdexed by
®(y1,...,Yk) according tqu and the others uniformly.

It can be easily verified that CpfLift (g, ), Lift (OR, ¢)) = Cor,(g,0R) > 5/6. Consequently,
for everyg andc,

Cor, (Lift (OR, @), M°) < Cory (Lift (g, @), N°) + 2- I;\’r[Lift (OR, ) +# Lift (g, 9)]
< Cory (Lift(g,9),N%) +1/6, (1)
where in the last inequality we use that ¢@rift (OR, @), Lift (g, ¢)) = E, [Lift (OR, ¢) - Lift (g, ¢)] >

5/6. Therefore, we only have to upper bound Quaift (g, ¢),N°), and this is addressed next. We
have, by the definition ok and then Lemma&.3.

. k ok k
Cory (Lift (g, 9),M%)? = 2™ Cong (L(X @(Y1,- - -, Yk))IX| @Y1, - - -, Vi), TT1)?

+m)2¢
< 2(0 m) Eyoyl |:

Ex|: [ IJ(XfP(yT,---,YE"))g(Xw(yil,---,yﬂk))] } 2)
ue{0,1}k

for every .
Our analysis makes extensive use of the following notation.

Definition 3.3. Let S = (Sy,...,S,) be a multiset of m-element subsetsrof Let therange ofS,
denoted by JS, be the set of indices frofn| that appear in at least one set & Let theboundary
of 8, denoted by'S, be the set of indices from| that appear in exactly one set in the collecti®n

For u € {0,1}K, define §=Su(Y°, ¥, @) = @(¥, ..., ¥i¥). Lets = 8(Y°, V%, @) be the multiset
(Su:ue {0,1}X). We define thaumber of conflicts ir§ to be ¢S) := m-2¢—|US$|.

Intuitively, | US| measures the range 8f while m2* is the maximum possible value for this
range. We use the following three lemmas to complete ourfpiidee first Lemma3.4 deals with
the case where the multisgthas few conflicts. In this case, we argue that one of theSetss
has a very small intersection with the rest of the other sdtg;h allows us to apply Property (i)
of g andyu to obtain the stated bound. A variant of Lem®d appears inCAO0§].

Lemma 3.4. For everyy®,y* and ¢, if q(S(Y°,y%, @)) < y-/m-2%/2, then

Ex| [ KXY 0)aXSu(YP.v49)| =0.

uc{0,1}k

Lemma3.5 gives a bound in terms of the number of conflictsSinvhich only uses the fact
that i is a probability distribution. A slightly weaker version tfis lemma appeared originally
in [CA08]. Independently of our work, Chattopadhyay and Ada havessgbently also derived
the stronger statement we give below.



Lemma 3.5. For everyy?, y! and ¢:

2A(SP5-9)
Ex| [1 XSOV 0)| < ——F—
uc{0,1}k ?

Lemma3.6is the key place where we exploit the fact tlgaits chosen at random to obtain an
upper bound on the probability of having a given number oflétis in 8.

Lemma 3.6. For every o> 0 and uniformly choseg®, y?, ¢:
ms . 22k q
(8. ¥ 9) =d < < ) :
voy fp g-n

Before proving these Lemmas, we complete the proof of ounrtaorem. We have the
following derivation. For a uniformly chosep

Ep [Con (Lift (g, ¢), M%) < E, | Con (Lt (9. ¢).N% |

< olcrm2¢ m ey { (by Equation 2))

E[ M HXS)IKS)
uc{0,1}k

k
= 2WZL S Pr(a)=d-Epg, |[Bx| [T HXS)IXNS)||]as)
=0y’ y"@ ue{0,1}k
k
< lerm2t, yoglr(p[q<5):q]-1@yoyl@ Ex | [1 HKS)IXIS) | ||als) }
qzyy/m2</27 5 || |ue{o1}k
(by Lemma3.4)
k
< plerm2<, >mwzyoglr(p[q(S)ZQ]-EyoWP Fix Ql}k H(xIS0) | ||acs) ]
q=y I ue{o,
(becauseg| = 1)
K 24 oK
< oletm2 yOplr [q(g>:q].ﬁzzcz . yOPlr [q(8) =q]-21
> yy/mik/2Y V0 qzyy/mk/2Y V¢
(by Lemma3.5)
o o <m3~22k)q2 s (2~m3~22")q
N ayvmzs2 N 40 q>yy/m2</2 q-n
(by Lemma3.6)
K 1\ ko1 k K(e_nQ(1)
< 20-2 ) <_) S2c-2 +1-y,/m2 /2§22 (c—n*\H)
q=yy/m2¢/2 2

(usingq > y\/mz"/z, k= dlogn whered < 1, and takingn= n® for a sufficiently smalk)
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Therefore, wher is a sufficiently small power afi we have thai£,[Cor, (Lift (g, ),M°)] < 1/6.
Combining this with Equationl) we obtain:

Eg[Cory (Lift (OR, ),M°)] <1/6+1/6 =1/3.
It is left to prove the lemmas. For this, the reader may wanetall Definition3.3.

Proof of Lemma8.4. We write S, for S,(Y°, V%, @) and$ for 8(y°,¥%, @). Letr(8) =|US$| be the
size of the range &8, and leth(8) = |d§| be the size of the boundary 8f Note thatr () — b(8) <
q(8) because every € US\ d$ occurs in at least 2 sets 8) thus contributes at least 1 9S).
Furthermorer (8) 4 q(8) = m2*. Then,3 . 1)k |SuN 38| = b(8) > (8) —q(8) = m2*—2q(8) >
(m— yy/m)2%. By the pigeonhole principle, there existsuch thatS,Nds| > m— y,/m. We can
write

Ex[ I_l “(X|S\J)9(X|SJ> :EX|S, .

ue{0,1}K

H(XS/)Q(XS/)Ex[n]\sJ{ |_L KX Su)g(X|S)
NRLNITY

ue{0

LetT =S,\d8. So|T| < yy/m. Leth=Eyms, [Musv H(XISu)9(XISy)]. Note thath is a function
that depends only orR[T. Then, by the property (ii) of and p, Eys, [1(X|S)9(X|S)N(X|T)] =
0. O

Proof of Lemma8.5. We write S, for S,(Y°,¥*, @) and$ for $(y°, %, @). We see that

Y

IExUS|: I_l H(X|SJ)

Ex { [T HXS)
ue{0,1}k ue{0,1}k

as eachu(x|S,) only depends on the bits ofin |JS. For 0< j < 2¢—1, let §; be the sub-
multiset of§ consisting of the sets up to and includig 8; = (S, ...,Sj). We haveS = 8x_4
and defineS_; = 0. For 0< j <21, letGj = EX‘USj[ﬂijzou(x\S)] and letH;(x|Sj \ 98;) :=
Exs,nos; [H(X|Sj)], which note is a quantity that depends on the bits iof Sj \ 9§, i.e. onx|(S; \
08j). LettingG_1 := 1, observe that, for & j < k1,

<Gj_1- max (Hj).
X|(Sj\98;)

j—1
Gj = Exys;, [(_[LH(X\S)> H;j(x[Sj\ 98)

To obtain a bound on maki;), consider an arbitrary partition ¢f] into two setsE, F. Letv be a
distribution onjm], and letp (X|E) = Eyr [v(X)]. Then,p(X|E) = Txr 2 Flv(x) =27 Fl g, r v(x) <
2-IFl = 2[EI=m, simply using the fact that is a probability distribution. Thus, mays\ss,)(H;) <
2/Si\98il=m Inductively,

k_
230" 15\98]

Ex ok

= szfl S

k1
EL H(XS)
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Consider some indexc (J8. Suppose this index appearslisetsS,, ..., S, from §, with j; <

.-+ < 1. Then, this index contributes exactly 1 to the expressiogjzkgol ISj \ d§j|, once for every
j=1J2,..., )i (for j = 1, z€ 8 because no set befoB containsz). Since this holds for every

indexz, we see thazjzkgo1 1S\ 88| = q(8) and therefordix ([, o.1x H(X/Su)] < 20(8)-m2

Proof sketch of Lemm@6. The multiset is given by the set§, = (Y, ...,y for ue {0,1}X.
The probability over the choice of thés that for soma, y,0 = yil, is at mosk/2". When this event
does not occur, thédoints at whichp gets evaluated are all distinct. Sinpés chosen at random,
the X outputs ofg are X uniformly and independently random-element subsets dfi]. We now
upper bound the probability of havirggconflicts in this case.

We write Q for q(S). Let§; = (S1,...,S) and letSg = 0. LetQ; be the number of conflicts
obtained while pickindy, after having picked;_1, and letR; be the range 0$;. Formally,Q; =

SN (USi—1)| andR; = |US;|. Itis easy to see th& = ZizilQi- Then,

PiQ=d = > PWVi,Q=q]= > []PIQ=alvi<iQj=qjl
Qi+--F0k=0q it FOk=0q i

By the nature of the experiment, the probability of obtagninconflicts while pickingS depends
only on the range of the sets picked before, thy®P# qi|Vj <i,Qj =q;] = PriQi = qi|R_1 =
(i—=1)m—73y;.qj]. LetC(q,r) denote the probability that, when picking amelement subset
of [n] we obtain exactlyg conflicts, conditioned on the fact that the range of elempitised so
far is exactlyr. By standard calculations, one can show that, as lond‘@é 2 n (which holds
for sufficiently smallm = nf), C(q,r) < (”q'zk) (4m/n)9. Plugging this into the expression above,
PQ = q] < (4enf2*/qn)".

Taking into account the probability that théélringsyll‘l, . ,yﬁ" are all distinct, we obtain

o g < K, (Ao 2 T (P2
[a( )—CI]_?"‘(T) _< qn ) ;

Pr
Y.yle

where the last inequality is a loose bound which is sufficfenbur purposes. The bound holds
because we can assume tjat m- 2K (otherwise the probability is 0) and note that2X = n1~2(1)

for a sufficiently smallm = né, and therefore the second summand in the left-hand sideeof th
inequality above is greater than the first. O

4 Explicit Separation

In this section we prove our main Theordiml. We proceed as follows. First, we prove a deran-
domized version of Theorerd.2 from the previous section. This derandomized version i$ suc
that the distribution orp can be generated using onyrandom bitsr. Then, we observe how
including the random bits as part of the input gives an explicit function for the separa thus
proving Theoreni.l As we mentioned in the introduction, the idea is that thg pnbperty of the
distribution overg that the previous construction was using is that such aildlision is Z-wise
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independent. That is, the evaluationggdt any ¥ points, fixed and distinct, are jointly uniformly
distributed, over the choice @ (cf. the proof of Lemm&.6). The most straightforward way to
obtain explicit constructions from our previous resultiss to replace a randogwith a X-wise
independent distribution, and then include a descriptiop as part of the input. However, this
raises some technicalities, one being that the range apaas a sizen subset ofn|, and it is not
immediate how to give constructions with such a range. Weifintbre simple to use a slightly
different block-wise approach as we describe next.

We think of our universe o bits as divided irm := nf blocksof b := n'~¢ bits each, where
as beforee is a sufficiently small constant. We consider functigny, . ..,yx) whose output is
a subset ofn] that contains exactly one bit per block. Thatggys,...,yk) € [b]™ The building
block of our distribution is the following result about alstb-wise independent functions. We say
that two distributions< andY on the same support ageclose in statistical distanci for every
eventE we have| PrlE(X)] — PHE(Y)]| < e.

Lemma 4.1(almostt-wise independencelNN93]). There is a universal constanta0 such that
for every tb (where b is a power &) there is a polynomial-time computable map

h: {0,1}! x {0,1}31095 _, [h]

such that for every t distinctx...,x € {0,1}!, the distribution(h(xy;r),...,h(x;r)) € [b]t, over
the choice of k= {0,1}2109P s (1/b)-close in statistical distance to the uniform distributiover
[o]".

Proof. Naor and Naor IN93, Section 4] give an explicit construction &f random variables
over{0, 1} such that ank of them ared-close to uniform (ovef0,1}%) and the construction uses
O(logN +k+log(1/8)) random bits> We identify[b] with {0, 1}'°9° and use their construction for
N:=2'logh,k:=t-logbh, andd := (1/b)'. We consider th& random variables as divided up ih 2
blocks of logb bits each. On input € {0,1}!, our functionh will output the logo random variables
from thex-th block, which, again, we are going to identify with an etarhin [b]. Since we set
k =t-logb, and for distinctxy, ...,x the distribution of(h(xs;r),...,h(x;r)) is the distribution
of t - logb distinct random variables i§i0, 1}, we have by the result ifN93] mentioned above
that (h(x3;r),...,h(x;r)) is (& = (1/b)!)-close to the uniform distribution ofo]'. To conclude,
we only need to verify the amount of randomness required.eddd as we mentioned above,
the construction inNIN93] usesO(logN + k+log(1/d)) random bits, which by our choice of
parameters i©(t +loglogb+t-logbh+t-logh) = O(t - logb). O

We now define our derandomized distribution @n This is the concatenation @h of the
above functions using independent random bits, a functerbfock. Specifically, for each of the
m blocks ofb bits, we are going to use the above functiowheret := k- 2. (1+logb). Jumping
ahead, the large input lengths also chosen so that the probability (over the choice ofyte
that we do not obtain*2distinct inputs drops down exponentially with, 2vhich is needed in the
analysis. On inpuya,...,Yx and randomness we break up eaclt in m blocks and als@ in m

2They in fact achieve inNIN93, Lemma 4.2] a doubly-logarithmic dependence\yrbut this improvement, which
arises from combining the above bound with a constructiomffCG89 ABI86], is irrelevant to this work.
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blocks. The value of in the j-th block depends only on thieth blocks of they;’s and on thej-th
block ofr.

Definition 4.2 (Derandomized distribution op, given parametens m=n¢, b=n'"¢ k= 3-logn;
anda universal constant from Lemnal). Let|:= 2X. (14logb),t:=1-k. Let

@:{0,1}™ x {0,1}™a109° — [p|m

be defined as follows. On inp(ys,...,yk) € {0,1}™! and randomness € {0, 1}™at109b " think
of each ye {0,1}™ as divided in m blocks of | bits each, i = (yi)10---0(¥i)m), and r as
divided in m blocks of & - logb bits each, i.e(r =r10---orp). The j-th output ofpin [b] is then

oY1, Yl =h((yr)j,-..,(%)j:  rj ) elb].
—————
|-k=t bits at-logb bits

Thedistribution ong is the distribution obtained by selecting a uniforra {0, 1} ™at109b gng
then considering the map

Vi, Yk — qo(yl,...,yk;r) c [b]m

Note that, in the above definition, the input length of egab m-1 which up to polylogarithmic
factors isn¢ - 2K = n1=2) for a sufficiently smalk depending or.

Theorem 4.3. For everyd < 1 there are constants,a > 0 such that for sufficiently large n,
k:= d-logn, and m= n¢, the following holds.
There is a distributiorA such that if : {0,1}™! — [b]™is distributed according to Definition
4.2we have:
E,[Cory (Lift (OR, @), 1%*+M)] < 1/3.

Proof. The proof follows very closely that of Theore®2 A minor difference is that now the
yi's are overm-| bits as opposed to in Theorem3.2, but the definition of the distributioA in
Theorem3.2immediately translates to the new setting just selects thg;’'s at random. The only
other place where the proofs differ is in Lemi3#&, which is where the properties gfare used.
Thus we only need to verify the following Lemma. 0J

Lemma 4.4. For every g> 0 and ¢ distributed as in Definition4.2):

VO!;lr,fp[q(S(Vo,VlafP)) =q| < <m:'.§2k>q _ (m:.‘ffk)q‘

Proof. For the multises = $(Y°,y*, ) define thenumber of conflicts in the j-th blocklenoted
q(8)j, as ¥ minus the number of distinct elements in th¢h block — thusq(8) = Y;aS);. If

q(8) = g then there must exisl, . ..,gm summing up tay such that for every, q(8); = q;j. As

by construction the distributiofq(8)1,...,q(8)m) (over the choice of thg's and ¢) is a product
distribution, we have:

ool Jas) =d qZIqu ,—Dm oot Jas) = 3)
jgi=q
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We now bound Py57717¢[q(8),- = qj] for any fixedj. Thus we are interested in the size of

U {o04h ...y} € [bl.

ue{0,1}K

By construction, this depends only on th¢h blocks (ofl = 2¢(1+logb) bits) of they’s and on
the j-th block ofr. Specifically,

U {o0i-snit= U D 095r)} € [b).

ue{0,1}k ue{0,1}k
The probability over the choice of thyés that the # strings (given by the'2choices ofu € {0,1})
(M5, (%)) € {0, 1}

are not all distinct is at most, by a union bourkg2' = 2109k-2logb+1) < (1/p)2*. When this
happens, the*2lements
Xa:=h((y1"), - (5iry) € [0]

(given by the ¥ choices ofu € {0,1}¥) are by Lemma4.1 (1/b)!-close to being uniform and
independent irfb] (over the choice of), where recalt > 2X. If the X,’s were exactly uniform
and independent ovegb] then it is not hard to see that the probability (ovgthatq(S); = q;

would be at mos(é?)(zk/b)qi, a bound which can be obtained by noting thag(8); = q; then
there must exisy;j distincti € {0,1}* such thatX; € {X,...,X_1}. Since theX,’s are((1/b)! <

(1/b)2k)-close to being uniform and independent, the probabilie(o) thatq(S); = q; is at most
(1/b)% + (2 (2*/b)%. Overall,

k k
Pr [a(); =] < (B + (/0 (] ) @0 < (2 ) @200,
.y qj qj
where the last inequality holds whep> 0 — which is the case to which we are going to restrict —
also using the fact thayf; < 2X — otherwise the probability is 0.
Therefore, combining the above bound with Equati@ne obtain

Pr [q(8)=q] < Pr [q(8)j = qj]
y07y17(p qzlq,ina ]Dm YpS/ly(p . .
J A=
< 1 (%)a%mw
T4
2k
~ @32y (2)
‘%qzi"a iém:(!]qjgzk di
14—
_ (3.2 m- 24 _ (3.2 em2\T_/mP.22\T
B q /) \b q ~\ bqg /)
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We can now prove the main theorem of this work.

Theorem 1.1(Main TheoremNP{¢ ¢ BPPLC for k = dlogn players) (Restated.Jor every fixed
0 < 1, sufficiently large n and & & -logn, there is an explicit function :f({0, 1}”)k — {0,1} such
that: f can be computed by k-player nondeterministic profcommunicating @ogn) bits, but
f cannot be computed by k-player randomized protocols cariwating PV bits.

Proof. Let (X, (y1,r),Y2,...,Y¥k) := OR(X|@(y1,--.,Yk;r)), whereg is as in Definition4.2 We
partition an input(x, (y1,r),y2,...,Yk) as follows: Player O gets, Player 1 gets the pailys,r),
wherer is to be thought of as selecting whighto use, and playdr> 1 getsy;. Let p be the dis-
tribution obtained by choosinguniformly at random, and independentb; yi, .. .,Y«) according
to the distributiom in Theoren4.3.

It is not hard to see thatt has a nondeterministic protocol communicat®gogn) bits: We
can guess a bit positidrand then the player that se@g,r),y», ..., Yk can verify that the position
i belongs top(y,. .., Yk r), and finally another player can verify that= 1.

To see the second item observe that:

Corp(f,N* ) = max  E([Eyy)2 [ORX Q1)) - 71(x,5,r)]]

renk+1nd
SB[ max By 2 [ORXQW:)) mxy,n)]] < 1/3
n€|-|k+l,n
where the last inequality follows by TheorefiB. Again, the claim about randomized communi-
cation follows by standard techniques, cf. FA&

To conclude, we need to verify that we can afford to gias part of the input without affecting
the bounds. Specifically, we need to verify thgt;,r)| < n. Indeed,|(y1,r)| <m-1+O(m-t-
logb) = m-2¢(1+logb) +O(m- 2X(1+logb)k-logb) which is less tham whenk = dlogn for a
fixed & < 1, m= n® for a sufficiently small, andn is sufficiently large (recalb-m=n, and in
particularb <n.) O

As is apparent from the proofs, and similarly to previous kgdiShe08M, our lower bound
Theorems3.2 and4.3 hold more generally for any function of the form Lift ¢) for an arbitrary
base functionf. The communication bound is then expressed in terms of theajnate degree
of f. In our paper, we focused oh= OR for concreteness. However, also note that the choice
of f = OR is essential in Theoreh1 in order for Lift(f, @) to have a cheap nondeterministic
protocol.

4.1 Communication bounds for constant-depth circuits

In this section we point out how Theorem3 from the previous section gives us some new
communication bounds for functions computable by consti@pth circuits. Specifically, the
next theorem, which was also stated in the introductionegisommunication bounds for up to
k = A-loglogn players for functions computable by constant-depth cdisc(whose parameters
depend orh), whereas previous result€ha07 LS08 CA08] requirek < loglogn.
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Theorem 1.2 (Constant-depth circuits require high communicationKet Aloglogn players)
(Restated.Jor every constant A- 1 there is a constant B such that for sufficiently large n and
k := Aloglogn there is a function f ({0, 1}”)k — {0, 1} which satisfies the following: f can be
computed by circuits of sizérand depth B, but f cannot be computed by k-player randomized
protocols communicating®® bits.

Proof. Use the function from the proof of Theoreinl This only requires computing2k =
log” n)-wise independent functions on [0’ n bits. (As mentioned before, although Theorérd
uses the notion ailmost twise independence, for small valueskp$uch as those of interest in the
current proof, we can afford to usxact twise independence, i.e. set the distance from uniform
distribution to 0). Such functions can be computed by cteooi sizen® and depttB, for a constant

B that depends oA only. To see this, one can use the standard constructioesl lnasarithmetic
over finite fields CG89 ABI86] and then the results fromH\V06, Corollary 6]. Equivalently,
“scale down” HV06, Theorem 14] as described iHY06, Section 3]. O

It is not clear to us how to prove a similar result for= w(loglogn). This is because our ap-
proach would require computing almdgk = log®(Y n)-wise independent functions on g n
bits by n®%)-size circuits of constant depth, which cannot be done (émealmost 2-wise inde-
pendence). The fact that this cannot be done follows fromebelts in MNT90] or known results
on the noise sensitivity of constant-depth circuitMiN93, Bop97).

We point out that Theorem.2 can be strengthened to give a function that has correlation
210 With protocols communicating®? bits. This can be achieved using the Minsky-Papert
function instead of OR (cf.3he07 Cha07).

Finally, Troy Lee (personal communication, May 2008) haseal out to us that the analogous
of our Theorend.2for deterministigorotocols can be easily obtained from the known lower bound
for generalized inner product (GIFBINS93. This is because itis not hard to see that for every con-
stantc there is a circuit of deptB = B(c) and sizen® that has correlation at least éxm/log®n)
with GIP — just compute the parity in GIP by brute-force ondii® of size logn — but on the
other hand low-communicatiock-party protocols have correlation at most éx@(n/4%)) with
GIP [BNS9J. However, this idea does not seem to give a bound for ranziesnprotocols or a
correlation bound, whereas our results do.
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