Restricted Stack Implementations
Matei David, Alex Brodsky, Faith Ellen Fich

Department of Computer Science, University of Toronto

Contact

Matei David

Department of Computer Science, University of Toronto
3302—10 King’'s College Road,

Toronto, Canada

M5S 3G4

matei@cs.toronto.edu

+1-416-946-3924

Brief Abstract

We give single-valued Stack (Queue) implementations from Registers and usual con-
sensus number 2 objects, such as Fetch&Add. We also give a Stack implementation for
two pushers and any number of poppers. We introduce the BH object type, which cap-
tures the computational power of a system of commutative and overwriting consensus
number 2 objects, and might prove a useful tool in developing impossibility results.

To be considered for regular track.

Eligible for best student paper award.

Restricted Stack Implementations

Matei David, Alex Brodsky, Faith Ellen Fich

Department of Computer Science, University of Toronto,
10 King’s College Road,
Toronto, Canada
mateilabrodsky|fich@cs.toronto.edu

Abstract. This paper shows that Stacks (and Queues) shared by any number of
processes, but, in which, all stored elements are the same, can be implemented
using only commutative and overwriting objects. These include Registers and
simple objects of consensus number 2, such as Fetch&Add. It also shows the
same result for Stacks that can contain arbitrary values and which support any
number of poppers, but at most two pushers.

For these implementations, a new object, BH, is introduced. We prove that a sys-
tem with one BH object and single-writer Registers has the same computational
power as a system with countably many commutative and overwriting objects.
This provides a simple characterization of the class of objects that can be imple-
mented from commutative and overwriting objects, and creates a potential tool
for proving impossibility results.

1 Introduction

Even though Stacks and Queues are important and well studied data structures, they
are not usually available in the hardware and, to use them, one has to implement them
from the available basic types. We know Stacks and Queues have consensus number
2 [Her91], so if the distributed system provides object types with consensus namber
(Compare&Swap, LL/SC), wait-free Stack and Queue implementations exist, regard-
less of the number of processes in the system.

In this paper, we consider the question of implementing wait-free Stacks and Queues
in systems where only common consensus number 2 types (Fetch&Add, Swap) are
available. By Herlihy’s universality results [Her91], Stack and Queue implementations
exist in systems with two processes, from any consensus number 2 type. In contrast, no
such implementations are known when the number of processes is at least 3 and, in fact,
itis conjectured that they do not exist [Li01,Dav04b]. Proving this negative result would
also solve Herlihy’s long-standing open question regarding the ability of Fetch&Add
objects to implement every other consensus number 2 type. Working towards settling
the conjecture, we give several restricted Stack and Queue implementations.

Since modern distributed systems do provide more powerful types, our results are
mainly of theoretical interest. Their relevance stems from the fact that they are dealing
with questions at the foundations of our understanding of shared memory distributed
computing.

Two operationscommutef the order in which they are applied does not change the
resulting state of the object. One operatowerwritesanother if applying this operation
results in the same object state whether or not the other operation is applied immedi-
ately before it. Commutative and overwriting objects are those for which every pair of
operations performed by different processes either commute or one overwrites the other.
Many such objects, including Test&Set objects, Fetch&Increment objects, Fetch&Add
objects, Swap objects and Registers are provided in real systems. All of them have
consensus number at most 2 [Her91]. The class of all commutative and overwriting
read-modify-write objects with consensus number 2 is called Common2.

Using Herlihy's universal construction [Her91], any object of consensus number 2
shared by two processes can be implemented from Registers and Common2 objects.
Afek, Weisberger, Weisman [AWW93] prove that any Common2 object shared by any
number of processes can be implemented from Registers and any type of objects of
consensus number 2. Hence, if a Queue or Stack can be implemented from Registrers
and Commonz2 objects, it can be implemented from Registers and any type of objects of
consensus number 2. However, it is conjectured that this is impossible [Li01,Dav04b].
This negative result would imply that the characterization of an object as having con-
sensus number 2 is not sufficient to describe its computational power in systems of more
than 2 processes.

Attempts to prove this conjecture for Queues have resulted in the development of
a number of restricted implementations of Queues from commutative and overwriting
objects (such as Fetch&Add objects, Swap objects, and Registers). Specifically, there
are wait-free implementations of Queues shared by one or two dequeuers and any num-
ber of enqueuers [HW90,Li01] and wait-free implementations of Queues shared by one
enqueuer and any number of dequeuers [Dav04a].

Another natural restriction is to consider Stacks and Queues with domain size 1,
i.e. where all the elements stored in the Stack or Queue are the same. Note that single-
valued Stacks and Queues behave identically. Push and Enqueue increase the number
of stored elements by one. Pop and Dequeue decrease the number of stored elements
by one, if there was at least one, and return whether or not this was the case. We prove
that a single-valued Stack shared by any number of pushers and poppers can be im-
plemented from commutative and overwriting objects. This means that the difficulty of
implementing a general stack is not simply coordinating pushers and poppers so that
they can all complete their operations, but must involve poppers determining the order
in which the steps of different pushers are linearized.

We obtain our implementation by first constructing an implementation of a Stack
with arbitrary domain shared by one pusher and any number of poppers. Then we show
how to transform it to obtain an implementation of a single-valued Stack shared by any
number of pushers and poppers. We also show how to extend the number of pushers
from one to two when the domain is arbitrary. In contrast, it is not known how to im-
plement a Queue shared by two or more enqueuers and any number of dequeuers from
commutative and overwriting objects.

The implementations in this paper do not directly use Common2 objects. Instead,
we introduce a new object, BH, with a single operation, Sign, and we show that, for
any number of processes, the BH object can be implemented from a single Fetch&Add

object. Then we implement our Stacks from a single BH object and one single-writer
Register per pusher. The form of our implementations is very simple: To perform a
Push, a process appends its current state to its single-writer Register, and performs
one or two Sign operations (depending on the implementation). To perform a Pop, a
process may perform an Append, followed by two Sign operations and then it collects
the single-writer Registers of all pushers.

We also show that any countably infinite collection of Fetch&Add objects and
single-writer Registers can be simulated using one BH object and one single-writer
Register per process. In this case, a process can perform any operation by appending the
operation and its arguments to its single-writer Register, applying one Sign operation to
the BH object, and then reading the single-writer Registers of all other processes. Thus,
a system with one BH object and one single-writer Register per process and a system
with Common2 objects and Registers arally powerful In particular, to show that
an object cannot be implemented from Registers and objects in Commonz2, it suffices to
prove that it has no implementation from one BH object and one single-writer Register
per process. Moreover, it suffices to prove the lower bound for a restricted class of im-
plementations in which each operation is simulated by an algorithm with a fixed, very
simple form. This restriction enables us to better understand the flow of information
between processes and to analyze the interaction between them.

Although the BH object is not an object one would want to implement in hard-
ware or use in an efficient implementation, we believe it is a very useful theoretical
tool for studying the computational power of consensus number 2 objects that can be
implemented from Registers and objects in Common2, as it provides a simple charac-
terization of the information a process can obtain from such objects during the course
of a computation. It has certainly helped us understand why Stacks and Queues are
difficult to implement.

2 The BH object type

2.1 BH type definition

Consider an object with only one operation, in which a process appends its own id to
a shared log. We refer to an occurrence of a process id in the logignaure We
assume process ids are positive integers, so a list of signatures is a finite sequence of
positive integers. The object keeps, by means of its internal state, a complete ordered
list of signatures. As a process signs the log, that process receives in response the entire
list of signatures, including the one being applied by its current operation. It is not hard
to see that such an object has consensus numpss it does not represent the limited
power of a system with Registers and Common2 objects.

Informally, a BH object, short foBlurred History, works much like the object de-
scribed above, but it is restricted so that it can be implemented from Registers and
Common?2 objects. As before, the object has one operation, Sign, and the state of the
BH object is the complete list of signatures applied so far. However, the respgnse
gets from Sign is not the exact statef the BH object, but instead, a set of sequences
indistinguishabldin the sense defined below) B from o.

Two sequences of integersa’ area-indistinguishablef there existh # ¢, both dif-
ferent froma, such that = 01 - bc- 62, 6’ = g1 - cb- 62 and neitheb norc appears imw,.
In other wordsg’ is exactly the same ag except for the last consecutive occurences of
two different elements other thanwhich are swapped. Two sequences’ are alsa-
indistinguishable if there is a sequer@ewhich isa-indistinguishable from both. Thus,
a-indistinghuishability is transitively closed. We use the teaxiadistinguishable and
indistinguishable td>, to refer to the same realtion.

To provide further intuition, we also give a direct, yet equivalent, defintion for the
notion of indistinguishability. We can view a stateas encapsulating two types of
information:

— thenumber of signaturely every process, and
— atotal orderon these signatures (i.e. for each signature, which signatures precede
it and which signatures follow it).

Let o be the state of the BH object immediately after a SigriPhyConsider the loca-
tions within o of the last signatures by every process other fRarn response to its
signing operationP; will retrieve the following information fronwo:

— the number of signatures by every process, and

— the relative position in the total order of any two signatures, at least one of which
is not the last signature by a process other tRafi.e. for each signature, except
for the last signatures of other processes, which signatures precede it and which
signatures follow it).

Hence,P, won't be able to tell theelative orderof the last signatures by other pro-
cesses, when those signatures are consecutive. For example, if the BH object is in state
123 and P, applies Sign, the response will §8231 1321}, which we can write as
1{23}1. As a more elaborate example, if the BH object is in the st8@4451671718

andPy applies SignPy will get the responsé{23}4{45}1671{178}9. Notice that in

this example Py can derive the exact location of the last (and only) signatur®sby
because it knows the position of the two surrounding signatures (the secéhidchy

the first byPy).

When two sequences o’ area-indistinguishable, one is a permutation of the other,
and the set of locations of last signatures by processes othdrilimthe same in both.
From the response to a Sign operatiBp.can compute the response of any previous
Sign operation by some other proc@sexcept possibly for the last operationBy To
see this, note th&, has the position of any signature®fexcept possibly the last, and
furthermore, later steps (B3, and by other processes) can only add information about
the exact state at the end Bf's operation. For example, B, receives the response
124{24}353151to a Sign operation, it can see that the respdtiggot to its first Sign
operation isl24{234}5. In this exampleP; has the position of the first signature By
but it can see tha®; couldn’t have had that information from the response to its first
Sign.

2.2 Implementing a BH object

In this section, we informally explain how to implement a BH object from one Fetch&Add
object. A more formal description of this implementation appears in [Dav04b]. The

initial state of the BH object is an empty sequence, and the initial value held by the
Fetch&Add object in our implementation is 0.

We can view the valu¥ stored in the Fetch&Add object as an infinite sequence
of bits, bgb; Let N denote the number of processes in the systemVLet.,Vy be
N infinite subsequences of bits dfwhich are mutually disjoint. For example, allocate
the bits ofV in Round-Robin fashion, 9&, consists of b;|(j modN) +1=a}. At any
point in time,V, encodes a finite sequence of non-negative integers in such a way that
any value can be appended at the end of the sequence by only changing certain bits of
V, from 0 to 1 (e.guy, Uy, uz can be encoded d$*+11011t42011+4%00..).

We implement every Sign operation Byusing one Fetch&Add operation dhthat
appends a number to the sequence encodeg BinceP; is the only process changing
V,, it can keepV, in a local register,. WhenevelP, needs to append a number to the
sequence encodedV, it can inspect/, to decide which bits o¥; have to be set from
0 to 1.P, can then set those bits by a Fetch&Add operatiotvonith an appropriate
argument. For example, \f; stores2,0,3, encoded a§11010111100, andP, needs
to append the value 1 to this sequence, it has to set the 11-th and 12-th\@jtkarh
0 to 1.P; can achieve this by performing a Fetch&Add operation/owith argument
2a—1+llN +2a—1+12N_

In our BH implementation, every proceBs has, in addition to/,, a second local
registerw,. The latter is used to store the last value recieve@®ffyom a Fetch&Add
operation orV/. A high-level Sign is implemented as follows:

— P, computes, using, andw,, a valuex such that performing a Fetch&Add opera-
tion onV with argumeni has the effect of appending, to the sequence encoded
in Va;

— P, performs Fetch&Add o with argument;

— P, stores inw, the value received as response to its Fetch&Add operation;

— P, updates/, to again mirroiVy;

— P, computes fronw, the response to the high-level Sign operation.

We have already argued that the computatiorx &f possible, so all we have left to
explain is how to compute the return value for the high-level Sign.

From the value retrieved as response to its Fetch&Add operd@ioran compute
the number of previous signatures by some other progess simply the number of
elements in the sequence encodedijnLet up; be thei-th number in the sequence
encoded inv,. Thenuy; is the value retrieved biy, as response to its Fetch&Add oper-
ation during iti — 1)-st high-level Sign operation. Hend®, can compute fromy, ; the
relative position in the total order of th{e— 1)-st signature by,. The only information
about the signature log thB; might not be able to compute is the relative order of the
last sighatures by some other processes, when those signatures are consecutive. This is
precisely the information needed to construct the class of states indistinguishBgle to
from the signature log.

2.3 The power of a BH object

In this section, we show that a system with of one BH object and one single-writer
Register per process can be used to simulate a system with infinitely many Com-
mon2 objects and Registers. To do that, we implement a countably infinite collection

of Fetch&Add objects and SW Registers using one BH object and one SW Register
per process. Our claim follows from the fact that any Register can be implemented
from SW Registers [HW90], and that any Common2 object can be implemented from
Fetch&Add objects and Registers [AWW93].

Consider a system of countably infinitely many Fetch&Add objects and SW Regis-
ters. Assume the objects in this system are indexed by positive integers. A process may
perform three types of operations: Fetch&AK), if k is the index of a Fetch&Add
object; Reatk) and Writdk,x), if k is the index of a Register. In a system with one
BH object and one SW Register per process, we implement each of the three types of
operations as follows:

— P, appends the current high-level operation to its Register;
— P, signs the BH object;

— P, collects the Registers of all processes;

— Py locally computes the result of the implemented operation.

Throughout the implementation, the value heldPifs Register is a complete ordered

list of all the high-level operations started By. We linearize a high-level operation at

the moment the process executing it signs the BH object. Thus, given the respgnses
gets to its Sign and Read operatioRg can compute all the high-level operations that
have occured so far. It can also compute the linearization of these operations, except for
what is blurred in the response it got from the BH object. This information is enough
for P; to compute the result of its high-level operation:

— If the high-level operation is a Write, its response is simply OK.

— Ifthe high-level operation is Re&kl), we know that only one proceBs might have
written to that object (recall that we are considering SW Registers). In thisRase,
returns as result the argument of the last Write operatioRpbinearized before
this Read.

— If the high-level operation is Fetch&AdH, x), P, needs to compute the sum of
the arguments of all the Fetch&Add operations on this object linearized before the
current one. Note thd, does not need to know the order in which these opeartions
are linearized, since addition is commutative.

Something stronger can be said about a system with one BH object and one SW
Register per process.

Theorem 1. Let $1 be a system with countably infinitely many Common2 objects and
Registers. Lefs; be a system with one BH object and one SW Register per process.
If there exists an implementation of some obf@dn i1, then there exists an imple-
mentation ofO in $,. Furthermore, the implementation of a high-level operatiorGn

by a procesd>; begins withP, appending this operation to its SW Register and then
alternately performing Sign and Reads of all Registers.

Corollary 1. If every process can apply only one type of high-level operatio®on
(with no parameters), there exists an implementatio® éddom Common2 objects and
Registers if and only if there exists an implementatio® éfom one BH object.

Although we do not include formal proofs in this extended abstract, we give the two
main ideas needed to establish these results. On the one hand, in a deterministic im-
plementation, the next access to a shared obje&; iy completely determined by the
interaction betweei, and the shared memory, and by the high-level operations that
P, is applying. On the other hand, as pointed out in Section2,tan compute the
response obtained by, to any previous Sign operation, except possibly for the last
operation byR,. These two facts allow a process to anticipate most of the values written
to Registers by other processes.

3 Stack Implementations from a BH object

3.1 Asingle-pusher Stack implementation

In this section, we give a single-pusher many-popper Stack implementation from one
BH objectB and an unbounded arr&yof SW Registers, all written by the pusher, and
each capable of holding one element in the Stack P.éte the (single) pusher, and let

P, be the poppers, fax > 1. The state oB is initially the empty sequence.

The pusheP; holds a local variabléast, initialized to 0, which is used to store the
index of the last slot of/ to which P; wrote. To push an elemerton the StackPy
incrementdast and writesx into V[last]. P; then applies a Sign operation & We
refer to signatures d?; in B as push steps.

To pop an element off the Stack, first applies two Sign operations @ From
the result of its second operation, which is an equivalence claasnaofistinguishable
sequenced?; selects any representatige P, then computes the functiohon o. The
value obtained from this computation is either O, in which daseeports an empty
Stack, or a positive integer, which is the indexjrof the valueP; outputs as result of
its Pop. We refer to signatures by a popPgm B as pop steps. The signature produced
by the first Sign within a Pop operation is a first pop step, and the one produced by the
second Sign is a second pop step.

The heart of this implementation is the functibpwhich takes as input a BH state
0, and decides what value the process executing it should pop from the Stack. Inside the
function, we consider each Push operatstarting with the latest, and try to match
it with the earliest completed Pop operatiorihat starts after the push step@flf no
sucha exists, we eras@ from o and continue. On the other handgifexists, we erase
botha andgfrom o and continue. Ifx turns out to be the Pop operation that invoked
on g, which is the case if the second pop stema$ the last signature ia, we decide
thata should output the value pushed on the Stackpby

For the purposes of proving the correctness of this implementation, it will be conve-
nient to assume th#& is pushing the valuek 2,3, .. ., thus identifying the value stored
in a cell ofV with the index of that cell.

A crucial fact in proving the correctness of this algorithm is given in Lemma 5,
where we show that the choice of a representative made in line 4 does not affect the
output of a Pop operation. In order to establish this result, we prove several Lemmas
saying that, under certain conditions, swapping two consecutive stepsiaes not
change the result of. We never try to move the last pop stepoinas that is the second
pop step of the Pop operation invokirfig

Procedurd®; :Push(x)

1
2.
3.

increment(last)
Write(V[last], x)
Sign(B, 1)

Procedurd’y:Pop, ford > 1

©xo~N> O

10.

Sign(B, d)
C — Sign(B, d)
o < any sequence in C
| — f(O)
if1=0
return €
else
return Read(V[I])
endif

Functionf(o)

11.
12.
13.

14.
15.
16.
17.
18.

19.

20.

i<}

while there exist push steps in (o]
i «—— location of last push step in a
A« {(j j): jand j are the indices of the first
and second steps of a pop operation and
if Ais not empty
(k K) «— par with mininum j" in A
if K is the last location in o
return number of push steps in a
endif
delete locations i, kand K from o
else
delete location i from o
endif
endwhile
return 0

Fig. 1. A Single-Pusher Implementation

Let 0 = 01-ab- 0, ando’ = 03 - ba- 03, such thata # b and 0, is not empty.
Lemmas 1, 2 and 3 describe situations in whi¢ly) = f(d’).

Lemma 1. Swapping two consecutive pop steps by different processes, of which at least
one is a first pop step, does not affect the result.dformally, if a is a first pop step
andbis a pop step, thefi(a) = f(d’).

Proof. During every iteration of thavhile loop, membership irA is determined in

line 13 by the order between push steps and first pop steps, and the selection of a pop
operation in line 15 is determined by the order between second pop steps. Hence, the
computations of ono ando’ take exactly the same decision during every iteration of
thewhile loop.

The same argument can be used to show:

Lemma 2. Swapping a consecutive push step and second pop step does not affect the
result of f. Formally, ifais a push step anllis a second pop stefi(o) = f(d).

Lemma 3. Swapping two consecutive second pop steps does not affect the refsult of
Formally, if botha andb are second pop step§(o) = f(d’).

Proof. We use induction on the number of executions ofwhée loop to show that
f(o) = f(d').

It is not hard to see that the only difference in the computation @fi o ando’
might come in an iteration in which both pop operations involved in the swap are in the
setA, one of them is selected if(g) and the other is selected fi{o’). Let T andt’ be
the sequences at the beginning of that iteration, respectively. Without loss of generality,
we must have

T="T1,1,T2,81,13,01,14,82,02,T5

/
T =11,1,12,a1,13,b1, 74,00, 8, T5.

Here, the 1 followingr; is the last step by the push@r, hencet,, 13,14, Ts contain no
1s. The stepg; anday are the first and second steps of a pop operatioR,bandb;
andb, are the first and second steps of a pop operatio®,biotice that in this case;
cannot contain pop steps By becausé#>, has a pending operation.

In this scenariol,a;,a; are deleted irf () and1, by, b, are deleted irf (o’). Let

T=T1,T2,T3,01,T4,02,T5

=/
T =T,T2,a1,13,Tg, a2, Ts.

Sof(o) = f(T) andf(o’) = f(T'). The computation of is not affected by what popper

is performing a particular Pop operation, only by the indices of those pop steps. Hence,
f(T) = ("), wheret” = 11,12, 13, a1, 14, 32, Ts. Sincets contains no push steps or pop
steps byP,, T can be transformed infid’ by a series of swaps of consecutive pop steps,
of which one is the first pop stem. By Lemma 1,f(T') = f(T").

Lemma 4. Removing the first step of an incomplete Pop does not affect the regult of

Proof. The first step of an incomplete pop operation is never considered when building
the setA, nor when selecting a pop operation outAfso removing it will cause no
change in the computation &f

Lemma 5. Leto be the BH state at the end of a pop operation by some prégeset
o’ be a sequence indistinguishableRpfroma. Thenf (o) = f(0').

Proof. By properties of the BH object, there is a sequence of stafes, ..., o0y with

0 = 0p ando, = ¢’ such that any two consecutive statgso,, 1 can be obtained from
one another by swapping two consecutive last steps by some processes otliggr than
We have three possibilities:

— One of these steps is a first pop step. Since it is the last step by that process, it
must be part of an incomplete pop operation. By Lemma 4, removing it will not
affect the result off. But removing it erases the difference betwerrando, 1,
so f(0a) = f(Oar1).

— Both steps are second pop steps. By Lemm&(8;) = f(0a+1).

— One is a push step, the other is a second pop step. By Lemfa,= f(0at1).

Inductively, f (o) = f(d’).

Next, we assign linearization points for Push operations and for completed Pop op-
erations. We are not linearizing any incomplete Pop operations (which only apply one
Sign). Push operations are linearized when their single Sign operation is performed.
Leta be a complete Pop operation anddebe the BH state whea is completed. By
Lemma 5, we may assume thigio) is computed as part @f. We define the lineariza-
tion point ofa as follows:

— If there are Push operations deleted unmatched (i.e. in line 19) during the computa-
tion of f on g, let @ be the earliest such Push operation. We lineaxizd the only
step ofp, beforegitself. Multiple Pop operations linearized at the only stepafe
ordered by the locations of their second steps. Note that the only stefoldws
the first step ofx, for otherwisen itself would be matched witlp.

— Otherwiseq is linearized at its second step.

Given o, we defineh(o) to be the Stack history associated withcontaining the se-
quence of operations in the order they are linearized, together with their return values.
For exampleh(11216854241266) is the sequence (Push, OK), (Push, OK), (Pop (by

P2)1 2)! (PUShv OK)! (Pop (b?ﬁ)v 3)1 (Pop (byP4)1 1)= (POp (byP2)1 E), (PUSh= OK),
(Pop (byPs), 4).

Theorem 2. For every states, the Stack historir(o) is legal.

Proof. We use induction on the number of push steps.in

First, leto be a history with no push steps. Any Pop operation which is completed
duringo will output €, henceh(o) is legal.

Now letk > 0 and assume that for all sequencgsvith at mostk push stepsh(a’)
is legal. Leto be a history withk 4 1 push steps. Lep denote the last Push operation.

First, consider the case whegecontains no completed Pop operation that starts
after the last push step. Let us wrdeasTp, 1,11, wheret; contains no push steps.

We claim thath(o) ends withg. To see this, notice how the linearization points for
Pop operations can be either at a second pop step, or at a push step. A Pop operation
linearized at a push step occurs before the Push operation. Furthermore, a Pop operation
cannot be linearized at a second pop step frgnfior it would have to have started after
the last push step ia, a situation ruled out by the case under consideration.

Now consider the historg’ = 19, T1. We claim thath(g) = h(d’), (PushOK). The
only operations whose linearization point could be differentiand ino’ are Pop
operations started iy, finished inty1, and linearized iro at the last push step. Notice,
however, that theiorder is exactly the same ia and ing’, namely the one determined
by their second steps.

To establish our claim, we now have to argue that every Pop operation outputs the
same result im and ino’. The only non-trivial situation is when the second pop step of
a occurs inty. In the case under consideration, the first pop step miust occur irg.
Then, during the first iteration of thehile loop in f, the last push step is unmatched
and deleted in line 19. This erases the only difference between the histagiedo’,
and henceg outputs the same result in both. Therefdr@r) = h(a’), (PushOK).

By the induction hypothesi&(d’) is legal. Thus, so ig(a).

Now consider the case whegecontains at least one completed Pop operation that
starts after the last push step. We wigt@astg, 1,11, ds1, T2, d2, T3, Whered; andd, are
the two steps of the first Pop operatiarwhich starts after the last push step and is
completed. Informally, we show that the linearization pointiaiimmediately follows
that of the last Push operation. We then argue that removing both of these operations
will not cause any output values to change. By the induction hypothesis, the Stack
history obtained after removing the last Push operation is legal. Adding two consecutive
operations, a Push immediately followed by a matching Pop will preserve legality.

First we claim that the linearization point afimmediately follows that ofp. The
reasons is that if some Pop operawnwere linearized at a step n or 1, that step
would have to be the second stepodf anda’ would have to have started after the last
push step. This would contradict our choiceoof

Let o’ = 1g,T1,T2,T3. We want to show that the order between any two operations
other thanpanda is the same i and inag’. We classify Pop operations as follows:

— Type | Pop operations are those with their second step.ifTheir linearization
points are the same im and ing’ because they do not see the difference between
the two.

— Type Il Pop operations have their second step in eith@r 12, and are linearized
at the last push step im. By choice ofa, any type Il Pop operation must have its
first step intp.

— Type lll Pop operations have their second step in either 12, but they are lin-
earized at some earlier push steirBy choice ofa, any type Ill Pop operation
must have its first step ing. Their linearization points are the samednand o’
because the same Push operations which are unmatcbediihbe unmatched in
0.

— Type IV Pop operations have their second steganTheir linearization points
are the same i and ino’, becausep anda are matched and deleted in the first
iteration of f when called by any such Pop operation.

So the only operations whose linearization point might change are type 1l Pop opera-
tions. These are operations which are linearized at the last push step the order

of their second steps; and at their second steps.i@learly, the ordering between any

such two Pop operations remains the same. To see that the order between two Pop op-
erationsa’ anda”, exactly one of which (say’) is type Il, remains unchanged, it is
enough to point out that the linearization step6thanges from the last push step to

its second step im; or T,, while the linearization step af” is either intg (types I, llI

or IV) orin 13 (type IV).

Next, we claim that any Pop operation outputs the same resaltaind ino’. For
type | Pop operations, this is obvious, for they cannot tell the difference betwvard
a.

For a type Il or Ill Pop operatiom’, by Lemma 5,f is run on the appropriate
prefixeso|y ando’|q. But then,@ is unmatched and deleted in the first iteration of
f(o|q’). The only difference between|, without the last push step aral|y is an
eventual first step afi, but this can be eliminated by Lemma 4. Hengeputputs the
same value iw anda’.

For a type IV Pop operatioa’, again by Lemma 5f is on the appropriate prefixes
0| andd’|y . In the first iteration off (0|4), @ anda are matched and deleted, erasing
the difference betweem anda’. Hence o’ outputs the same value jmandao’.

Last but not least, we note thatoutputs the value pushed lgy By Lemma 5,a
runs f on the sequncey, 1,11,d1,T2,d2. By choice ofa, ¢ will be matched witha in
the first iteration of thavhile loop.

We have now established tHgio) is exactly equal tdn(o’) with an inserted pair of
consecutive operations, the Pughnd the associated Pop By properties of a Stack
object, ifth(d’) is legal, therh(o) is legal.

3.2 Asingle-valued Stack implementation

The single-popper Stack implementation is based on the observation that the number of
times each pusher signs the BH object prior to a Pop is precisely the number of elements
that were pushed on the Stack prior to that Pop. If there is only one pusher, there is no
ambiguity about the order in which the Push operations occurred. Unfortunately, this is
not the case when there are many pushers. For example, suppose prBcessds

each pushed a value on the Stack by signing the BH object and then pPRagegsped

a value by signing the BH object twice. The resulting stE283 of the BH object is
indistinguishable td?; from 2133 the state that results whéh and P, perform their
operations in the opposite order. Consequently, it is not clear if the value puslied by

or P, is the one which should be popped. While we can overcome this problem for the
special case of exactly two pushers (see following section), the general solution remains
elusive. However, if all the values pushed on the Stack are the same, then the problem
of choosing which value to match with which Pop is obviated.

A process performing a Pop on a single-valued Stack only needs to determine
whether or not its Pop operation has some matching Push. It does not matter which
pusher performed the Push. This is essentially the problem that is solved by the single-
pusher Stack implementation (in the previous section).

To perform a Push, a process appends 1 to its single-writer Register and Signs the
BH object once. To perform a Pop, a process appends 22 to its single-writer Register,
Signs the BH object twice, and then reads the Registers of all other processes. Let
C denote the equivalence class of BH states returned as a result of the second Sign
operation in a Pop. As in line 6, we select any representatfvem C. However, before
we computef on g, we replace every push step inwith a push step by a virtual
processPy. A certain step by some proceRsis a push step if the corresponding value
in Py’s Register is a 1. Iff on the modified sequence returns 0, the Pop retayns
otherwise the Pop returns the single value in the domain.

The proof of correctness is, with a minor exception, identical to the proof for the
single-pusher Stack. We need one more lemma that deals with two Push operations
whose order can not be distinguished.

Lemma 6. Swapping two consecutive push steps does not affect the regult of

Proof. Since the selection of a push step is independent of its label, a swap of two
consecutive push steps simply corresponds to a relabeling of the Push operations. Con-
sequently, the only thing that changes is the label of a Push that is discarded or matched
with a Pop. Hence, inductively, the two computations, one on the original sequence and
one on the sequence with the swap, take exactly the same decision during every iteration
of thewhile loop.

3.3 A two-pusher Stack implementation

We will now extend the algorithm from the previous section to allow two pushers in-
stead of just one. Informallly, the basic idea is similar to the “helping” mechanism that
appears in Herlihy’s universal construction [Her91]: the completion of a Push operation
by one pusher might “help” linearize a pending Push operation by the other pusher.

Let P, andP; be the two pushers, and IB§ be the poppers, fat > 2. We assume
that in addition to a BH objed, we have two unbounded arrays V> of SW Registers,
with V; written by pusheP;. To push the valug, P, first writesx in the next avaliable
location infV,. P; then applieswo Sign operations oB. Recall that in the single-pusher
implementation, a Push operation consisted of only one Sign.

A Pop operation byPy begins by applying two Sign operations on the BH object.
The return value of the second operation is an equivalence class of states indistinguish-
able toPy from the real state oB. We then select any representativeas in line 6.
However, before we can apply functidnon o, we need to transforra from a two-
pusher, 2-step/Push history into a single-pusher, 1-step/Push history. This transforma-
tion is performed by a new functiog, described below.

The functiong takes as arguments a 2-pusher 2-step/Push histagd the arrays
V1,Vs. It constructs a single-pusher 1-step/Push histaapd an array/. The two his-
tories,o andt, contain exactly the same pop steps. The push steps&ydP, in o are

replaced int with push steps by a virtual proce$®, The idea is that a Push operation

@is linearized either at its second step, or at the second step of the first push operation
@ by the other pusher which was started and completed after the first steprbe
functiong performs the following:

— Find the earliest second push stewircall that push operatioq’;

— If there is a push operatiapwhich has a first step before the first push steg/of
delete bothp and¢, and insert two steps big, in T at the location of the second
push step ofp.

— If no suchgexists, deletgy and insert a step by in T at the location of the second
push step ofp.

— Whenever we delete theth Push operation b, appendvy|i] to V. In the first
case, when we deletgandq/, append the value correspondinggbefore the one
corresponding tep.

— Repeat until no push operationanhas two steps.

— Atthe end, delete the remaining first push steps.

For the purposes of proving correctness, we may assume thatithalue pushed by
P, and written invy[i], is the pair(a, i). For example, it = 11123361124133224314%
(where second push and pop steps are underlined), weghewé;,V») = (1,V) where
T =033006403®42406andV = (1,1), (1,2), (2,1), (1,3), (2,2), (2,3).

After computingg(o) = (1,V), a Pop operation computdgt). If the latter eval-
uates to 0, the Pop returmss otherwise the Pop returns the element at locafi¢r)
fromV, the array computed ig. For example, foo, 1,V from the previous example,
f(t)=2andV[f(1)] =(1,2).

The following two Lemmas are needed to prove the correctness of this extension.

Lemma 7. Let o be the state at the end of a Pop operationHy let ¢’ be a state
indistinguishable td&’y fromo. Letg(o) = (1,V) andg(d’) = (',V’). ThenV =V’ and
f(1) = ().

Lemma 8. Let o be a BH state. Let’ be any prefix ob. Letg(o) = (1,V) and let
g(d’) = (1,V'). Thent' is a prefix oft andV’ is a prefix oiV.

Finally, we argue that our algorithm is linearizable. Given a two-pusher 2-step/Push
historyo, letg(o) = (1,V). We define the linearization points for Push operations in
to be the corresponding steps where they appeanive define linearization points for
Pop operations iw the same way they are defined in the single-pusher histoBy
Lemma 8, all Pop operations completedarhave output the exact same values as if
they had occurred im. Since the single-pusher 1-step/Push histoig/linearizable, so
iso.

4 Conclusions

In this paper, we have showed that several restricted Stack and Queue implementations
exist from Registers and Common2 objects. Specifically, it is possible to implement

single-valued Stacks and Queues shared by any number of process, and general (multi-
valued) Stacks shared by one or two pushers and any number of poppers.

Queue implementations exist for any number of enqueuers and at most two de-
queuers [Li01], and for one enqueuer and any number of dequeuers [Dav04a]. In a
Stack implementation, only the poppers output relevant values. Informally, if there are
only two poppers, they would probably be able to agree on the sequence of values to
output. This suggests that Stack implamentations for any number of pushers and at
most two poppers might exist. However, we believe that implementing a Stack shared
by three pushers, three poppers, with domain size 2 is impossible to implement from
Registers and Common2 objects.

We also introduce the BH object type. Although unusable in practice, this type en-
capsulates the computational power of a system with Registers and Common2 objects,
and has the potential of helping in the development of negative results regarding wait-
free implementations in this system.

References

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness theorem for
a class of synchronization objects. Proceedings of the 12th ACM Symposium on
Principles of Distributed Computingpages 159-170, 1993.

[Dav04a] Matei David. A single-enqueuer wait-free queue implementatiofrdneedings of
DISC 2004 pages 132-143, 2004.

[Dav04b] Matei David. Wait-free linearizable queue implementations. Master'’s thesis, Univ. of
Toronto, 2004.

[Her91] Maurice Herlihy. Wait-free synchronizationACM Transactions on Programming
Languages and Systenis8(1):124-149, January 1991.

[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition for
concurrent objects.ACM Transactions on Programming Languages and Systems
12(3):495-504, January 1990.

[Li01] Zongpeng Li. Non-blocking implementation of queues in asynchronous distributed
shared-memory systems. Master’s thesis, Univ. of Toronto, 2001.

