
A Single-Enqueuer Wait-Free Queue

Implementation

Matei David

Department of Computer Science, University of Toronto
matei@cs.toronto.edu

Abstract. We study wait-free linearizable Queue implementations in
asynchronous shared-memory systems from other consensus number 2
objects, such as Fetch&Add and Swap. The best previously known im-
plementation allows at most two processes to perform Dequeue opera-
tions. We provide a new implementation, when only one process performs
Enqueue operations and any number of processes perform Dequeue op-
erations. A nice feature of this implementation is the fact that both
Enqueue and Dequeue operations take constant time.

1 Introduction

An asynchronous shared-memory distributed system provides the user with a
collection of shared objects. Different systems might provide different types of
shared objects, hence an algorithm written for one system might have to be
completely rewritten to work in another system. A general way to make all
algorithms written for a source system work in a target system is to use the
objects of the target system in simulating every object of the source system.
An implementation of an object consists of a set of procedures simulating the
primitive operations of the implemented object, written using the objects in the
target system.

The main tool determining whether objects of one type T ′ can be imple-
mented from objects of another type T is the consesnsus hierarchy, introduced
by Herlihy in [Her91] and refined by Jayanti in [Jay93]. If k is the consensus
number of T , then it can be used to implement any other type in a system of
at most k processes. Furthermore, if k′ is the consensus number of type T ′ and
k < k′, then there are objects of type T ′ which cannot be implemented from
type T in a system of more than k processes.

There are some questions that the consensus hierarchy does not answer. If
two types are on the same level k, it is not clear whether one type can implement
the other in a system of more than k processes. Even for level 2, [Her91] leaves
as an open problem whether Fetch&Add objects can be used to implement any
other object whose type has consensus number 2 in a system of three or more
processes.

The Queue is an important and well studied shared object type, used in many
distributed algorithms. However, distributed systems usually provide lower-level



types, such as Register, Fetch&Add and Compare&Swap, so, in general, one
has to implement a Queue object from the available base types. We know that
the Queue type has consensus number 2, and from Herlihy’s results in [Her91],
we know that wait-free Queue implementations exist for any number of pro-
cesses in systems providing consensus number ∞ types, such as Compare&Swap.
But some (old) systems only provide types with consensus number 2, such as
Test&Set, Fetch&Add and Swap. To this date, it is an open problem whether
any of these types can be used to implement a wait-free Queue in a system with
three or more processes.

In [AWW93], Afek, Weisberger and Weisman consider the class Common2

of commutative and overwriting read-modify-write types of consensus number
2, which includes most familiar types such as Test&Set, Fetch&Add and Swap.
They show that any type in Common2 can be implemented in a wait-free manner
from any consensus number 2 type in a system with any number of processes.
By transitivity of wait-free implementations, their result implies that a wait-
free Queue implementation exists from Common2 types if and only if such an
implementation exists from any consensus number 2 type.

Let Basic2 denote the set of types of consensus number 2 that can be imple-
mented from types in Common2 in a system with any number of processes. The
results of [AWW93] imply that using only Basic2 types in an algorithm carries
with it the guarantee that the algorithm can be ported to any system providing
types of consensus number 2. It is not known whether Queue is in Basic2.

However, some restricted Queue implementations exist. Herlihy and Wing
present in [HW90] a non-blocking implementation of a Limited-Queue object
shared by n processes from Fetch&Add and Swap objects. The Limited-Queue
object type is similar to the Queue object type with the exception that Dequeue
operations are not defined when the queue is in the empty state. Li gives a
regular, unlimited, non-blocking Queue implementation in [Li01] and observes
that the implementation in [HW90] is in fact a single-dequeuer wait-free Queue
implementation. That is, if only one process is allowed to perform Dequeue
operations, the implementation becomes wait-free, and the Queue is no longer
limited.

In [Her91], Herlihy showed that in a system of n processes, any object can be
implemented from Consensus objects shared by all n processes. Using ideas from
Herlihy’s universal construction, Li modifies the implementation in [HW90] and
obtains in [Li01] a two-dequeuer wait-free Queue implementation from Common2
types. Furthermore, Li conjectures that there is no Queue implementation from
Common2 types which would allow three processes to perform both Enqueue
and Dequeue operations. In an attempt to narrow down the difficulty involved
in implementing one such object, Li proposes a stronger conjecture: there is no
three-dequeuer Queue implementation from Common2 types.

In both wait-free implementations, the code for the Enqueue procedures is
very simple. However, the number of accesses to shared objects during Dequeue
procedures is not bounded by any constant, i.e. it is wait-free but not bounded
wait-free.



In this paper, we present a new wait-free Queue implementation from Com-
mon2 types, for one enqueuer process and any number of dequeuer processes.
This disproves the stronger of Li’s conjectures. In our single-enqueuer Queue
implementation, the conceptually difficult part of the computation is done by
the Enqueue procedure, and the Dequeue procedures are very simple. Unlike Li’s
implementations, our implementation is very time efficient, using at most three
accesses to shared objects for both Enqueue and Dequeue procedures. Although
the algorithm is simple, proving its correctness is complicated.

This paper is organized as follows. In Sect. 2, we briefly talk about our model
of computation. In Sect. 3, we present our new single-enqueuer Queue implemen-
tation from Common2 objects. The main ideas for the proof of correctness are
presented in Sect. 4. Section 5 contains a discussion of possible extensions of
our algorithm. In particular, we give a scheme which would reduce the space re-
quirements of our algorithm, and we talk about why our single-enqueuer Queue
implementation cannot be extended to allow for two enqueuer processes in a
manner similar to that in which Li extends the single-dequeuer Queue imple-
mentation in [HW90] to a two-dequeuer Queue implementation.

2 System Model

The system we consider is an asynchronous shared-memory distributed system.
It consists of a number of processes and a collection of shared objects. Pro-
cesses start from their initial state, execute deterministic sequential programs
and communicate by accessing shared objects. During an atomic step, a process
performs an operation on a certain shared object and receives a response from
that object. In this setting, the crash failure of a process can be simulated by con-
sidering executions in which that process is no longer taking any steps. Between
steps, processes can perform an arbitrary amount of local computation. This
assumption captures the fact that process P cannot get any information about
the computation of process P ′ except for what is conveyed by the operations P ′

performs on shared objects.
Each shared object has a type, an initial state and a set of rules specifying

what operations on this object are available to each process in the system. The
type of an object contains its sequential specification, which defines how that
object reacts as operations are sequentially applied on it. In this paper, the
Queue type supports only Enqueue and Dequeue operations, and the Queue
object we are implementing allows every process to apply either Enqueue or
Dequeue operations, but not both. Afek et al. show that no generality is lost in
assuming that for every Common2 object O used in our implementation, every
processes can perform on O every operation specified by O’s type [AWW93].

The Queue implementation consists of one Enqueue procedure E :Enqueue(x)
for the enqueuer process E, and one Dequeue procedure D : Dequeue for every
dequeuer process D. The Enqueue procedure always returns the special value
OK . The Dequeue procedure returns either a value retrieved from the Queue,
or the special value ε in case the Queue is empty.



In a run R of the implementation, each process P starts from its initial state
and sequentially executes access procedures of the form P : OP , completing
one before starting the next. Given a run R, one can partition the subsequence
of steps taken by any process P into contiguous blocks, such that each block
contains the steps that P is taking while executing some access procedure. We
define a procedure instance to be the set of steps in one such block. We say
that a procedure instance by process P is complete if, after P executes the last
step of this instance appearing in R, the access procedure contains only local
computation before returning a result.

The only correctness condition we consider is linearizability [HW90], which
states that, no matter how the steps in the execution of the access procedure
P :OP are interleaved with the steps in the executions of other access procedures
by other processes, P :OP has to appear to be atomic, occurring at some moment
between its first and last steps, in a way that respects the sequential specification
of the implemented object. Our Queue implementation is linearizable.

An implementation is wait-free [Her91] if every process will complete the
execution of every access procedure within finitely many steps, regardless of the
steps performed by other processes in the system and, in particular, regardless of
whether other processes have crashed. An implementation is b-bounded wait-free

if no access procedure requires more than b steps. Notice that bounded wait-
freedom is a stronger condition than wait-freedom. Our Queue implementation
is 3-bounded wait-free.

3 Algorithm

The first attempt to implement a Queue object for one enqueuer E and n de-
queuers D1, . . .Dn would probably be to use an array of Register objects to store
the values in the Queue, together with a pair of head and tail pointers. E would
add items in the array at the location indicated by the tail pointer, while dequeue
processes would retrieve values from the location indicated by the head pointer.
This does not work because several dequeue processes may try to read the same
location, and there is no easy way for them to agree which one should return
that value. A slightly more elaborate approach would be to use a Fetch&Add
object for the head pointer, and have each dequeue procedure reserve a unique
cell to read by a simple Fetch&Add(1) operation. This does not work because
dequeue procedures might end up reading a cell before the enqueuer process has
a chance to write something there. Afterward, if the enqueuer puts an element
in that location, it might happen that no dequeue procedure will ever read the
cell again, causing the enqueued element to simply vanish. We have been able to
fix this situation by using Swap objects instead of Registers as the array cells,
a design which allows the enqueuer process to detect and adapt to the situation
in which a dequeuer has overtaken it.

The algorithm in Fig. 1 is our Queue implementation from Common2 objects
and Registers, for one enqueuer process E and n dequeuer processes D1, . . . , Dn.
We are using a one-dimensional array HEAD of Fetch&Increment objects, each



initialized to 0, a two-dimensional array ITEMS of Swap objects, each initialized
to ⊥, and one Register ROW initialized to 0. The set of values that may be held
by a cell of ITEMS is V ∪ {⊥,⊤}, where V is the set of values that may be
enqueued. The two variables tail and enq row are two persistent local variables
of E, initialized to 0. Elements enqueued by E are written in consecutive cells
on the row ROW of ITEMS. When E detects that it has been overtaken by a
dequeue process, it starts using a fresh row. Dequeue processes read the active
row of ITEMS from ROW and order themselves on a given row using HEAD.
Both arrays HEAD and ITEMS are infinite. Since in any run, any enqueue
or dequeue instance has at most three steps, the implementation is clearly 3-
bounded wait-free. The main ideas for the proof of correctness are given in
Sect. 4.

Access procedure E :Enqueue(x), for all x ∈ V :

1. (step 1) val ←− Swap(ITEMS[enq row, tail], x)

2. if val = ⊤

then

3. increment(enq row)

4. tail ←− 0

5. (step 2) Swap(ITEMS[enq row, tail], x)

6. (step 3) Write(ROW, enq row)

end if

7. increment(tail)

8. return OK

Access procedure Di :Dequeue, for all 1 ≤ i ≤ n:

1. (step 1) deq row ←− Read(ROW)

2. (step 2) head ←− Fetch&Increment(HEAD[deq row])

3. (step 3) val ←− Swap(ITEMS[deq row, head], ⊤)

4. if val = ⊥

then

5. return ε

else

6. return val

end if

Fig. 1. Main Algorithm

Informally, the algorithm works as follows. The cells in the two dimensional
array ITEMS are initialized to a default value, ⊥ /∈ V . Whenever they are
accessed during an Enqueue procedure, their value is updated to contain the
element to be enqueued. Whenever they are accessed by a Dequeue procedure,



their value is updated to contain ⊤ /∈ V . By design, each cell in the array
ITEMS will be used at most once by an Enqueue operation, and at most once
by a Dequeue operation.

In order to perform a Dequeue operation, process Di reads from ROW the
value of the active row in the two-dimensional array ITEMS. This is the row
which was last used to enqueue a value by an Enqueue procedure which has
already finished. Having obtained the value of this row in its local variable
deq row , process Di selects the column head of a cell to query on this row
using the Fetch&Increment object HEAD[deq row ]. It then proceeds to query
the Swap object ITEMS[deq row , head ] and update its value to ⊤. If the value
retrieved is not ⊥, then some value to be enqueued was written in this location
and the process dequeues that value. Otherwise, this location was never used
by an Enqueue operation, and in this case the dequeuer process finds an empty
queue.

The process E performing Enqueue operations has two local persistent vari-
ables, enq row and tail . They are persistent in the sense that their values are
not lost from one invocation of the enqueue procedure to the next. The value of
the variable enq row mirrors the value of the shared register ROW, while tail

contains the smallest index of a Swap object not already used by an Enqueue
procedure on row enq row of ITEMS.

In order to perform an Enqueue operation, process E writes the value to be
enqueued in the array location ITEMS[enq row , tail ] and retrieves the latter’s
value. If this value was ⊤, then some Dequeue operation has already accessed
this cell before E had a chance to write to it. In this case, the Enqueue procedure
will abandon the current row and start using the next row for storing the values
in the Queue. Notice that no dequeuer could have used the new row that the
enqueuer writes to in its second step (line 5), because the index of that row
appears in ROW only after the third step by the enqueuer. Hence, the result
obtained by the enqueuer to its second step is always ⊥.

The access procedures above consist of local computation and accesses to
shared objects, that is, steps. A complete execution of the Enqueue procedure
can consist of at most three steps, in lines 1, 5 and 6. A complete execution of
the Dequeue procedure always consists of three steps, in its first three lines.

For example, Fig. 2 presents a possible state of the shared variables in this
implementation. Exactly two Enqueue procedures with arguments 1 and 2 were
started, both were completed, and neither of them executed the body of the if

statement in lines 3 through 6. Exactly four Dequeue procedures were started
and executed at least their first two steps. All four of them obtained the re-
sult 0 in their first step, and they obtained the results 0, 1, 2, 3 in their sec-
ond steps, respectively. The Dequeue procedures with (deq row = 0, head = 0)
and (deq row = 0, head = 2) were completed and output the values 1 and
ε, respectively. The Dequeue procedures with (deq row = 0, head = 1) and
(deq row = 0, head = 3) only executed their first two steps, and if either was
allowed to take another step, they would output 2 and ε, respectively.



0

0

2

HEAD ITEMS

ROW

tail4

0

0

2

Fig. 2. A possible state of the shared variables in this implementation

In Fig. 3, a new Enqueue procedure with argument 3 is started and com-
pleted. This procedure applied a Swap operation with argument 3 to the cell
ITEMS[0, 2], obtained the result ⊤ for that step, and it then executed the body
of the if statement. This is the situation in which a dequeuer accesses a cell of
ITEMS before the enqueuer.

0

0

2

HEAD ITEMS

ROW

tail4

0

3

3 0

1

Fig. 3. The state after another Enqueue procedure is started and completed

The state in Fig. 4 is the result of a possible execution extending the one
which led to the state in Fig. 3. Three more Enqueue procedures with arguments
4, 5, 6 were started, and all of them were completed. None of these Enqueue
procedures executed the body of the if statement. One more Dequeue procedure
was started and executed its first two steps, obtaining (deq row = 1, head = 0).
This Dequeue procedure was completed, and it output 3. Furthermore, one of
the two incomplete Dequeue procedures from the state in Fig. 2 was completed,
the one with (deq row = 0, head = 3), and it output ε.



1 0

1

0

3

4 5 6

2

HEAD ITEMS

ROW

tail

4

4

Fig. 4. Yet another possible state, extending the previous one

4 Proof of Linearizability

Due to space constraints, we only give the key ideas needed to prove that our
algorithm is linearizable. More specifically, we explain how to assign linearization
points for access procedures in an arbitrary run R of this implementation. A
formal proof of linearizability is presented in [Dav04].

First, we introduce some notation. For π an enqueue instance in R, let
enq rowπ and tailπ denote the values of the local variables enq row and tail ,
respectively, at the beginning of the execution of π. Let valπ denote the result
of the first step of π (line 1). For φ a dequeue instance in R, let deq rowφ denote
the result of the first step of φ (line 1). If φ has at least two steps, let headφ

denote the result of its second step (line 2). If φ is complete, that is, if it contains
three steps, let valφ denote the result of its third step (line 3).

Enqueue Instances. We consider two kinds of enqueue instances. We say that
an enqueue instance π is a regular enqueue instance if valπ 6= ⊤, so E does
not execute the body of the if statement during π. A complete regular enqueue
instance consists of only one step. We say that π is a jump enqueue instance
if valπ = ⊤, referring to the fact that it “jumps” to the next row of the array
ITEMS. A complete jump enqueue instance consists of three steps.

Since all enqueue instances in R are executed sequentially by the same process
E, no two enqueue instances are concurrent. Furthermore, only the last enqueue
instance in R can be incomplete, because in a run R, a process must finish
the execution of an access procedure before starting the next one. If the value of
ROW is r, then there was exactly one jump enqueue instance π with enq rowπ =
i, for every i = 0, . . . , r − 1.

An Association between Enqueue Instances and Dequeue Instances.

We also need to classify dequeue instances. To do that, we need a method which
associates a dequeue instance φ with the enqueue instance π which enqueued
the value that φ is dequeuing.



For a dequeue instance φ with at least two steps, we say that φ reserves

the cell at row deq rowφ and column headφ of ITEMS. This is the only cell of
ITEMS that φ will access. Conversely, no dequeue instance other than φ will
access that cell. We establish a relation between dequeue instances and enqueue
instances as follows. Let φ be a dequeue instance with at least two steps. If there
exists an enqueue instance π such that:

– π accesses the cell in ITEMS reserved by φ, and
– if φ has three steps, then π accesses that cell before φ (in its third step),

then we define ρ(φ) = π. It can be shown that if π exists, then π is unique, so the
definition is sound. If no such enqueue instance exists, we leave ρ(φ) undefined.
The following correlation between a complete dequeue instance φ and ρ(φ) exists:
if φ returns ε, then ρ(φ) is not defined; if φ returns a value other than ε, then
that value was enqueued by ρ(φ).

Dequeue Instances. We consider three types of dequeue instances.
A dequeue instance φ consisting of at least two steps is a type I dequeue

instance if ρ(φ) = π is defined and the step in which π accesses the cell reserved
by φ occurs after step 2 of φ. By definition of ρ, the step in which π accesses
that cell has to precede the third step of φ, should the latter exist in R. It can
be shown that π is a regular enqueue instance. Informally, a complete type I
dequeue instance φ will return a value other than ε, but when φ reserves a cell
(in step 2), the value is not yet in the cell.

A dequeue instance φ consisting of at least two steps is a type II dequeue in-
stance if there exists a complete jump enqueue instance π′ such that enq rowπ′ =
deq rowφ and the third step of π′ precedes the second step of φ. It can be shown
that π′ is unique and that ρ(φ) is undefined, i.e. no enqueue instance is associated
with φ. Hence, φ cannot also be a type I dequeue instance. Informally, between
step 1 and step 2 of a type II dequeue instance, a jump enqueue instance has
incremented ROW. If complete, φ will return ε.

A dequeue instance φ consisting of at least two steps is a type III dequeue
instance if it is neither type I nor type II. A type III dequeue instance may or
may not return ε.

Linearization Points. To show that our algorithm is linearizable, we assign
linearization points for all complete enqueue instances and all dequeue instances
which perform at least two steps in R. We argue that the linearization point of
any procedure instance α occurs during the execution of α, i.e. at or after the
first step of α and, if α is complete, at or before the last step of α.

– A complete regular enqueue instance is linearized at its first (and only) step,
in line 1.

– A complete jump enqueue instance is linearized at its third (and last) step,
in line 6.



– A type I dequeue instance φ is linearized at the first step (line 1) of π =
ρ(φ), immediately after π. We know in this case that π is a regular enqueue
instance, so by definition of a type I dequeue instance, the second step of φ
precedes the first step of π. Furthermore, if φ is complete, then its third step
occurs after the first step of π. Hence, the linearization point of φ occurs at
some point during its execution.

– For a type II dequeue instance φ, let π′ be the unique complete jump enqueue
instance such that enq rowπ′ = deq rowφ and the third step of π′ occurs
before the second step of φ. We linearize φ at the third step (line 6) of π′,
immediately before π′. Clearly, the first step of φ precedes the third step of
π′, for otherwise deq rowφ 6= enq rowπ′ .
It turns out that many type II dequeue instances may be linearized at the
same third step of some jump enqueue instance π′. In this case, we order these
dequeue instances arbitrarily. Informally, this does not cause any problem
because the queue is empty at that point and they all output ε.

– A type III dequeue instance is linearized at its second step, in line 2.

Responses of Incomplete Dequeue Instances. The linearization points we
have defined provide us with a total order on the sequence of operations that are
performed on the Queue object during a run of our implementation. To prove
linearizability, we have to define responses for the incomplete instances we have
chosen to linearize. In our case, the only incomplete instances we linearize are
dequeue instances which perform at least two steps. Let φ be such a dequeue
instance. If ρ(φ) = π is defined, let the response of φ to be the value enqueued
by π. If ρ(φ) is undefined, let the response of φ be ε.

Completing the Proof of Linearizability. By defining linearization points
and responses of incomplete linearized dequeue instances in a run R, we have
generated a sequence σ(R) of operations and responses on the implemented
Queue object. To complete the proof of linearizability, we have to show that
there exists a sequence of states of the Queue object, that starts with the empty
state, and is consistent with σ(R). This is formally done in [Dav04] by defining a
Queue state based on the states of the shared objects in the system, followed by
a somewhat tedious case analysis of how various steps of enqueue and dequeue
procedures modify the states of the shared objects and, thus, the state of the
Queue object.

5 Conclusions

The results in this paper, together with the ones in [Li01], establish that there
exist wait-free linearizable Queue implementations from Common2 objects when
there is either only one enqueuer or at most two dequeuers. The question whether
there exists a wait-free linearizable fully-accessible Queue implementation from
Common2 objects for three processes (or more) remains open, as is Herlihy’s



question about whether Fetch&Add objects can be used to implement every
consensus number 2 type in a system of three (or more) processes.

Our implementation uses a one dimensional array HEAD and a two dimen-
sional array ITEMS. Both arrays are assumed to be infinite. However, the array
HEAD and one dimension (the number of rows) of ITEMS can both be made
finite, with O(n) rows, where n is the number of dequeuers. The idea is to reuse
rows of ITEMS when it is safe to do so. We cannot reuse a row until we are
sure that no dequeuer has reserved a cell on that row but not yet accessed it.
To this end, every dequeuer will start by reading ROW, announcing the value
retrieved in a single-writer Register, and then reading ROW again. If ROW
changes between the two reads, the dequeuer outputs ε. Otherwise, it continues
as before, with its Fetch&Increment and Swap operations. This way, whenever
the enqueuer has to jump to the next row, it can read what row each dequeuer
is operating on, and then select an unused row. This takes O(n) steps, plus the
time to reinitialize the cells of ITEMS on the selected row to ⊥. Since any num-
ber of cells may have been previously used on that row, going through them all
would be wait-free but not bounded wait-free. We can avoid this and maintain
bounded wait-freedom by having the enqueuer increment a sequence number and
storing it with a row index in the shared variable ROW . Every cell of ITEMS
would then have a time-stamp of its own, and every time a process retrieves a
value with an old time-stamp, it should treat that cell as being fresh (that is,
containing ⊥). The implementation will then be O(n)-bounded wait-free. We
have not incorporated this scheme into the algorithm because the emphasis in
this paper is on the existence of an algorithm rather than its efficiency.

Another interesting improvement, from a practical point of view, is to limit
the size of each row by, say, the maximum number of items present in the Queue
at any one time (should such a maximum exist). Even though we have been
unable to design such a scheme, perhaps one could do it by somehow having the
enqueuer jump to a new row when the current one becomes full. However, in
this situation, it is unclear how to dequeue elements from the old row.

Li obtains in [Li01] a two-dequeuer Queue implementation by modifying the
single-enqueuer implementation of [HW90], using ideas from Herlihy’s univer-
sal construction in [Her91]. Specifically, he develops a mechanism by which two
dequeuer processes agree on a total order on the Dequeue operations to be per-
formed, and subsequently perform those operations much like they would in the
original single-enqueuer case. We attempted to apply a similar mechanism in
order to obtain a two-enqueuer implementation from our single-enqueuer imple-
mentation, but without success. Informally, the problem appears to lie with the
interaction between the enqueuer and dequeuer processes: in the single-dequeuer
implementation considered in [Li01], the communication between enqueuer pro-
cesses and dequeuer processes is achieved exclusively through Register objects;
while in our single-enqueuer implementation, this communication is achieved
through both the Register object ROW, and the Swap objects in the array
ITEMS. Li obtains a two-dequeuer implementation by (i) having the two de-
queuer processes agree on a total order for the Dequeue operations; (ii) having



each dequeuer execute the steps of each of the Dequeue operations, including
those initiated by the other dequeuer process; and (iii) having the two dequeuer
processes agree on the result of each Dequeue operation. When trying to extend
our single-enqueuer implementation to allow two enqueuers, part (iii) is irrele-
vant (since all enqueue operations produce the same result, OK ) and part (i)
can be achieved by having the two enqueuer processes agree on a sequence of
Enqueue operations. The problem lies with part (ii), specifically with the fact
that we were unable to find any way in which two enqueuers can work together
while performing a single Enqueue operation. In Li’s extended implementation,
each of the Register objects used for communication between enqueuer and de-
queuer processes only influences the steps taken by the two dequeuer processes.
If we were to apply the same method to our implementation, accesses to the
shared Swap objects in the array ITEMS would influence not only the steps of
the two enqueuer processes, but also the steps of one dequeuer process. For ex-
ample, consider the situation in which enqueue processes E1 and E2 are working
together to perform some enqueue operation. Suppose E1 first applies its Swap
operation to the cell ITEMS[r, c], and then E2 applies its own Swap operation
to the same cell. At that moment, E2 cannot tell if some dequeue process ac-
cessed that cell before E1, so E2 cannot tell if E1 has to jump to the next row
of ITEMS or not. This is merely an informal argument of why Li’s method can-
not be straightforwardly applied. The existence of an implementation for two
enqueuers and three or more dequeuers remains open.

6 Acknowledgments

This work was supported by the Natural Sciences and Engineering Research
Council of Canada. I thank my supervisor, Faith Ellen Fich, for her helpful
advice, her constructive criticism and her relentless proofreading of my work.

References

[AWW93] Yehuda Afek, Eytan Weisberger, and Hanan Weisman. A completeness
theorem for a class of synchronization objects. In Proceedings of the 12th

ACM Symposium on Principles of Distributed Computing, pages 159–170,
1993.

[Dav04] Matei David. Wait-free linearizable queue implementations. Master’s thesis,
Univ. of Toronto, 2004.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Program-

ming Languages and Systems, 13(1):124–149, January 1991.
[HW90] Maurice Herlihy and Jeanette Wing. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12(3):495–504, January 1990.
[Jay93] Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings

of the 12th ACM Symposium on Principles of Distributed Computing, pages
145–158, 1993.

[Li01] Zongpeng Li. Non-blocking implementation of queues in asynchronous dis-
tributed shared-memory systems. Master’s thesis, Univ. of Toronto, 2001.


