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Abstract

We solve some fundamental problems in the number-on-forehead (NOF) k-player communication

model. We show that there exists a function which has at most logarithmic communication complexity

for randomized protocols with a one-sided error probability of 1/3 but which has linear communication

complexity for deterministic protocols. The result is true for k = nO(1) players, where n is the number

of bits on each players’ forehead. This separates the analogues of RP and P in the NOF communication

model. We also show that there exists a function which has constant randomized complexity for public

coin protocols but at least logarithmic complexity for private coin protocols. No larger gap between

private and public coin protocols is possible. Our lower bounds are existential and we do not know of

any explicit function which allows such separations. However, for the 3-player case we exhibit an explicit

function which has Ω(log logn) randomized complexity for private coins but only constant complexity

for public coins.

It follows from our existential result that any function that is complete for the class of functions with

polylogarithmic nondeterministic k-player communication complexity does not have polylogarithmic

deterministic complexity. We show that the set intersection function, which is complete in the number-

in-hand model, is not complete in the NOF model under cylindrical reductions.
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1 Introduction

The question of how much communication is necessary in order to compute a function f : X1×· · ·×Xk →
O when its input is distributed between k computationally unbounded players was first introduced in [Yao79]

and it has since been shown to have many diverse applications in complexity theory. The case of k = 2
players has been studied extensively [KN97]. For two or more players, we are interested in the ”number-on-

forehead” model (NOF), first introduced by Chandra, Furst and Lipton in [CFL83]. In this model, the input

is partitioned into k parts, so that player i can see all parts except for the ith part (since it is ‘written on his

forehead’).

The number-on-forehead communication model is a fascinating and complex model that is not well un-

derstood when k ≥ 3. The complexity of the situation arises from the fact that every part of the input is seen

by multiple players. As the number of players increases, the sharing becomes increasingly generous. During

the execution of a protocol, the set of inputs consistent with a particular message sequence is described by a

so-called cylinder intersection. Cylinder intersections appear difficult to understand combinatorially.

Lower bounds for multiparty complexity in the number-on-forehead model are connected to a major

open problem in complexity theory: it has been established that superlogarithmic communication complex-

ity lower bounds in the NOF model for any explicit function with polylogarithmically many players would

imply explicit lower bounds for ACC
0 [BT91, HG91]. The best lower bound obtained so far is Ω(n/2k),

which breaks down when the number of players is greater than logarithmic [BNS92, CT93, Raz00, FG06].

Lower bounds in this model have many other important applications as well, including: constructions of

pseudorandom generators for space bounded computation, constructions of universal traversal sequences,

time-space tradeoffs [BNS92], circuit complexity bounds [HG91, NW93, Nis93], and proof complexity

bounds [BPS05].

The motivation for our work is to pursue a broader understanding of the NOF complexity model. In

particular, we would like to answer some of the basic questions that are still open for this model, but have

well-known solutions in the 2-player model. For k ≥ 3, we consider the three usual versions of communica-

tion complexity: deterministic, randomized and nondeterministic complexity. Are there functions separating

these three different complexity measures? Surprisingly, the relationships between these complexity mea-

sures have not been resolved previously, even for k = 3.

Our main result is that for any k that is nO(1) there is a function with n bits on each players’ forehead

that is computable with a logarithmic communication by a randomized k-player communication protocol

with 1-sided error but which requires linear complexity for deterministic protocols. We obtain this result

nonconstructively by showing that deterministic protocols for a certain class of simple functions have a

nice normal form and then establishing a lower bound for such function via a counting argument over

protocols in normal form. We thus separate the randomized 1-sided error and deterministic k-player NOF

communication complexity classes RP
cc
k and P

cc
k . As a corollary of our lower bounds, we also establish an

optimal separation between the public and private coin randomized NOF models.

These bounds are nonconstructive but, for k at most logarithmic in the input size, we can also give

explicit families of simple functions with Ω(log n) deterministic k-player complexity in the NOF model.

(We believe that they have superpolylogarithmic deterministic complexity.) The best previous lower bound

for any explicitly defined simple function is the Ω(log log n) lower bound from [BGG06] for the Exact-

T function (originally investigated in [CFL83]) in the special case of k = 3 players. As a corollary of

our bound we obtain that our function families have Ω(log log n) complexity for randomized private coin

protocols (with constant error probability) but only O(1) complexity for public coin protocols.

The problem of separating deterministic from nondeterministic NOF complexity is particularly inter-
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esting because of its connection to proof complexity. In recent work [BPS05], it has been shown that for

k = 3, (log n)ω(1) lower bounds on the randomized NOF complexity of set intersection, which has nonde-

terministic NOF complexity O(log n), implies lower bounds for polynomial threshold proof systems, such

as the Lovász-Schrijver proof systems, as well as the Chvátal cutting planes proof system. Recent work of

Chattopadhyay and Ada , Lee and Shraibman, and Beame and Huynh-Ngoc [?, ?, ?] give lower bounds on

the randomized complexity of the set disjointness function for up to (log n)1/3 players, thus separating the

NOF communication complexity analogs of RP and NP. David, Pitassi and Viola [?] improve this separation

by exhibiting a (different) function that is in NP but not in RP for up to k = ǫ log n players for any ǫ < 1.

See the excellent survey article by Sherstov [?] for more details on this line of work.

This brings us to our second question: is there a ‘complete’ problem for the class of problems with ef-

ficient NOF nondeterministic algorithms under a suitable notion of reduction? Given our separation result,

such a function would automatically be hard for deterministic protocols. Following [BFS86], it is not hard

to see that set intersection is complete under communication-free reductions for the number-in-hand (NIH)

model and in [BPS05] it had been assumed that the same holds for the number-on-forehead (NOF) model.

(The number-in-hand model is an alternative generalization of the 2-player model in which each player gets

his part of the input in his hand, and thus each player sees only his own part.) However, we prove that under

communication-free reductions, set intersection is not complete in the NOF model.

2 Definitions and Preliminaries

In the NOF multiparty communication complexity model of computation [CFL83] there are k players, num-

bered 1 to k, that are trying to collaborate to compute a function fk,n : X1 × . . .×Xk → {0, 1} where each

Xi = {0, 1}n. In general, we allow k to be a function of n. The kn input bits are partitioned into k sets,

each of size n. For (x1, . . . , xk) ∈ {0, 1}kn, and for each i, player i knows the values of all of the inputs

except for xi (which conceptually is thought of as being placed on player i’s forehead).

The players exchange bits according to an agreed-upon protocol, by writing them on a public blackboard.

A protocol specifies, for every possible blackboard contents, whether or not the communication is over, the

output if over and the next player to speak if not. A protocol also specifies what each player writes as a

function of the blackboard contents and of the inputs seen by that player. The cost of a protocol is the

maximum number of bits written on the blackboard.

In a deterministic protocol, the blackboard is initially empty. A public-coin randomized protocol of

cost c is simply a probability distribution over deterministic protocols of cost c, which can be viewed as a

protocol in which the players have access to a shared random string. A private-coin randomized protocol

is a protocol in which each player has access to a private random string. A nondeterministic protocol is a

randomized private coin protocol with 1-sided error (only false negatives) and an error probability less than

1.

The deterministic communication complexity of fk,n, written Dk(fk,n), is the minimum cost of a deter-

ministic protocol for fk,n that always outputs the correct answer. For 0 ≤ ǫ < 1/2, let R
pub
k,ǫ (fk,n) denote

the minimum cost of a public-coin randomized protocol for fk,n which, for every input, makes an error with

probability at most ǫ (over the choice of the deterministic protocols). The public-coin randomized commu-

nication complexity of fk,n is R
pub
k (fk,n) = R

pub

k,1/3(fk,n). Let Rk,ǫ(fk,n) denote the minimum cost of a

private-coin randomized protocol for fk,n which, for every input, makes an error with probability at most ǫ
(over the choice of the private random strings). The private-coin randomized communication complexity of

fk,n is Rk(fk,n) = Rk,1/3(fk,n). For both public-coin and private-coin complexities we add a superscript

1 if we require that the protocol makes error only on 1-inputs (i.e., false-negatives), and superscript 0 if we
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require that the protocol makes error only on 0-inputs (i.e., false-positives). For example, R0,pub
k,ǫ (fk,n) is the

minimum cost of a k-player public-coin protocol for fk,n which is always correct on 1-inputs and makes

error at most ǫ on 0-inputs. The nondeterministic communication complexity of fk,n, written Nk(fk,n), is

the minimum cost of a nondeterministic protocol for fk,n.

For a function k = k(n), for a function family f = (fk(n),n)n∈N, and for any complexity measure C
defined above, we write Ck(f) for the function (Ck(f))(n) = Ck(n)(fk(n),n).

Since the general model laid out above is very powerful, we are also interested in communication re-

strictions. A player is oblivious in a certain protocol if the message he writes on the board is a function of

the inputs he sees, but not a function of the messages sent by other players. Since we are interested in the

best protocol, we may safely assume that all oblivious players write first, and then non-oblivious players

continue to communicate using the information written by the former. A protocol in which all players are

oblivious is called simultaneous. The simultaneous multiparty model was studied in [BGKL04], who proved

new lower bounds, as well as surprising upper bounds in this model.

Since any function fk,n can be computed using only n bits of communication, following [BFS86], for

sequences of functions f = (fk,n)n∈N, communication protocols are considered “efficient” or “polynomial”

if only polylogarithmically many bits are exchanged. Accordingly, let P
cc
k denote the class of function fami-

lies f for which Dk(f) is (log n)O(1), let NP
cc
k denote the class of function families f with nondeterministic

complexity (log n)O(1), and let RP
cc
k denote the class of function families f for which R1

k(fn) is (log n)O(1).

The classes BPP
cc
k , coRP

cc
k and coNP

cc
k can be defined similarly to their computational complexity counter-

parts.

The following are some important function families.

DEFINITION 2.1. The equality function family, written EQ = (EQk,n)n∈N, is defined by EQ(x1, . . . , xk) =
1 if and only if x1 = · · · = xk. The inequality function family is INEQ = (INEQk,n)n∈N, with INEQk,n =
1 − EQk,n.

The set intersection function family, written INT = (INTk,n)n∈N, is defined by INTk,n(x1, . . . , xk) = 1
if and only if there exists some i ∈ [n] such that x1,i = · · · = xk,i = 1. The set disjointness function family

is DISJ = (DISJk,n)n∈N, with DISJk,n = 1 − INTk,n.

Multiparty communication complexity lower bounds are proven by analyzing properties of functions on

cylinder intersections.

DEFINITION 2.2. An i-cylinder Ci inX1×. . .×Xk is a set such that for all x1 ∈ X1, . . . , xk ∈ Xk, x
′
i ∈ Xi

we have (x1, . . . , xi, . . . , xk) ∈ Ci if and only if (x1, . . . , x
′
i, . . . , xk) ∈ Ci. A cylinder intersection is a set

of the form
⋂k

i=1 Ci where each Ci is an i-cylinder in X1 × · · · ×Xk.

3 Separating P
cc
k from RP

cc
k

3.1 Oblivious Players, Simple Functions, and a Normal Form

We will be interested in a special type of Boolean functions for which we can show that, without loss of

generality, one of the players is oblivious. For sets X1, . . . ,Xk a function f : X1 × · · · ×Xk → {0, 1} is

simple for player i if for all (x1, . . . , xi−1, xi+1, . . . xk) ∈ X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xk there exists

at most one x∗i ∈ Xi such that f(x1, . . . , xi−1, x
∗
i , xi+1, . . . , xk) = 1.

If f is simple for player i then it is reducible with no communication to 2-player n-bit equality EQ.

Player i can compute the unique value for the input on its forehead for which the output could be 1 (if it

exists), and any other player sees that input. All the players have to do is to decide whether these strings
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are equal. We know that R0
2,1/n(EQ) is O(log n) and R0,pub

2 (EQ) is O(1) [KN97]. Therefore we get the

following.

Lemma 3.1. For all k and all simple functions f on kn bits, R0
k,1/n(f) is O(log n) and R0,pub

k (f) is O(1).

In particular, f ∈ coRP
cc
k .

The following theorem shows that if a function is simple for one player then this player can act oblivi-

ously with only a small increase in the deterministic communication complexity.

Theorem 3.2. Let f : X1 ×· · ·×Xk → {0, 1} be a function that is simple for player i and has Dk(f) = d.

Then there is a protocol P ′ for f in which player i first sends d bits and then all players j ∈ {1, . . . , k}−{i}
simultaneously send exactly one bit bj such that f(x1, . . . , xk) = 1 if and only if all bits bj = 1.

Proof. Let f be simple for player 1. Let P be a protocol for f with complexity d. We describe protocol

P ′ on input (x1, . . . , xk). Assume that player 1, call her Alice, sees the partial input (x2, . . . , xk) on the

other players’ foreheads. Let x∗1 be the input in X1 such that f(x∗1, x2 . . . , xk) = 1, if it exists. If such

an input does not exist, then let x∗1 be an arbitrary input in X1. Alice “simulates” protocol P for the input

(x∗1, x2, . . . , xk), i.e., she writes on the blackboard exactly the string I∗ that would have been written by

players 1, . . . , k if protocol P were executed for the input. Then each player r, 2 ≤ r ≤ k, verifies that I∗ is

consistent with what that player would have sent in protocol P if it had seen (x1, . . . , xr−1, xr+1, . . . , xk)
on the other players’ foreheads. More precisely, the player (say Bob) reads the bits I∗1 , I

∗
2 , . . . , of I∗, until

he has read a partial message I∗1 . . . I
∗
j upon which, in protocol P , it would be Bob’s turn to write the next

bit. Then Bob checks whether the bit he would write does in fact coincide with I∗j+1. This is repeated until

Bob has read all bits from I∗. In addition the player checks whether the output of protocol P is 1, if I∗ is

the blackboard contents. If Bob does not find an error (and the output of P is 1 for blackboard contents I∗),

then he accepts, i.e. sends bit br = 1. Otherwise he rejects, i.e. sends br = 0.

Consider an input (x1, . . . , xk), and let I∗ be the message sent by Alice for that input. If there is no

x∗1 such that f(x∗1, x2 . . . , xk) = 1, then the blackboard contents I∗ would imply an output of 0 in protocol

P . Hence, the other players all reject, which is correct because obviously f(x1, . . . , xk) = 0 in this case.

Now assume that there is a (unique) x∗1 such that f(x∗1, x2 . . . , xk) = 1, and hence I∗ is the blackboard

contents for protocol P on the input (x∗1, x2 . . . , xk). If x1 = x∗1, then clearly all players 2, . . . , k accept.

Hence, P ′ correctly computes a 1. Next, assume that x1 6= x∗1, and hence f(x1, . . . , xk) = 0. Let I be

the blackboard contents in protocol P on input (x1, . . . , xk). Since f(x1, . . . , xk) 6= f(x∗1, x2, . . . , xk),
obviously I 6= I∗. Let j be the index of the first bit in I that is different from I∗. Note that, at any time

before the jth bit is written to the blackboard, the information Alice obtains from the blackboard and the

other players’ foreheads is the same for the inputs (x1, . . . , xk) and (x∗1, x2, . . . , xk). Therefore, Alice does

not write the j-th bit in protocol P . Hence, there must be some other player r > 1 whose messages in P
on input (x1, . . . , xk) differ from I∗. This player sends br = 0 in the protocol P ′, and thus protocol P ′ is

correct for this input.

3.2 Representing Simple Functions by Colorings and Cylinder Intersections

Most lower bound proofs forDk(f) use the fact shown in [BNS92] that any k-player protocol with complex-

ity d for a function f yields a partitioning of the input into O(2d) disjoint cylinder intersections on which f
is constant. For k ≥ 3 players, the known techniques for proving lower bounds on the number of cylinder

intersections needed for such a partitioning are discrepancy-based and inherently yield lower bounds even

for randomized protocols. Therefore, these techniques are not suitable for proving good lower bounds for

functions with low randomized communication complexity.
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For simple functions we obtain different, although related, structures. These structures seem to be better

suited for lower bound proofs for functions in RP
cc
k , as they will allow us to separate this class from P

cc
k and

to prove Ω(log n) lower bounds for explicit functions.

Throughout this section, f : X1 × · · · ×Xk → {0, 1} is simple for player 1. For any natural number D
and a set S, a D-coloring of S is a mapping c : S → [D]. Since f is simple for player 1 (Alice), there exists

a function g : X2×· · ·×Xk → X1∪{⊥}, where g(x2, . . . , xk) = ⊥ if f(x1, . . . , xk) = 0 for all x1 ∈ X1,

and otherwise g(x2, . . . , xk) = x∗1, where x∗1 is the the unique element in X1 with f(x∗1, x2, . . . , xk) = 1.

In fact, any such mapping g uniquely defines the simple function f .

Assume that f can be computed by a d-bit protocol P . The special protocol P ′ for f , derived in

Theorem 3.2, can be characterized by a coloring ofX2×· · ·×Xk and cylinder intersections inX2×· · ·×Xk,

as follows. Let c be the 2d-coloring ofX2×· · ·×Xk, where c(x2, . . . , xk) is the message Alice sends in P ′ if

she sees (x2, . . . , xk). Consider a fixed message m from Alice and a fixed value a ∈ X1 on Alice’s forehead.

The subset of points in X2 × · · · ×Xk for which all other players accept if they see a on Alice’s forehead

and receive message m is a cylinder intersection Im,a. Note, each such cylinder intersection Im,a may also

contain points that are not colored m. However, it is not possible that a point p = (x2, . . . , xk) ∈ Im,a has

color m but g(p) 6= a because then Alice would send message m if she saw p and the other players would all

accept if they saw a on Alice’s forehead. Hence, (a, x2, . . . , xk) would be accepted by P ′, a contradiction.

We obtain the following.

Lemma 3.3. Every function f that is simple for player 1 and has k-player communication complexity d
can be uniquely represented by cylinder intersections Im,a ∈ X2 × · · · ×Xk, for m ∈ [2d], a ∈ X1, and a

2d-coloring c of X2 × · · · ×Xk, such that ∀a ∈ X1, y ∈ X2 × · · · ×Xk: f(a, y) = 1 ⇔ y ∈ Ic(y),a. In

particular, Im,a contains all points y ∈ X2 × · · · ×Xk with color c(y) = m and f(a, y) = 1, but no point

y′ with color c(y′) = m and f(a, y′) = 0.

Proof. We have already seen how to obtain c and the cylinder intersections Im,a from the function f . This

representation is unique because for any input (a, p) with a ∈ X1 and p ∈ X2 × · · · ×Xk we can retrieve

the function value f(a, p) by checking whether p ∈ Ic(p),a.

3.3 The Lower Bound

In the following we consider a family of functions which have logarithmic communication complexity

for private-coin randomized protocols with one-sided error and error probability bounded by 1/3. Using

Lemma 3.3 we give an upper bound on the number of different deterministic protocols for the functions in

that class in order to show that at least one such function requires at least linear deterministic communication

complexity.

For positive integers n, m and t, let Gt,n,m be the set of all mappings g : {0, 1}n·t → {0, 1}m. For

any function g ∈ Gk−1,n,m, define fg : {0, 1}m × {0, 1}n·(k−1) by fg(x1, . . . , xk) = 1 if and only if

g(x2, . . . , xk) = x1. By Lemma 3.1, for all g ∈ Gk,n,n/2, fg ∈ coRP
cc
k .

Theorem 3.4. There exists g ∈ Gk−1,n,n/2 such that Dk(fg) is Ω(n− log k). In particular, fg /∈ P
cc
k .

Corollary 3.5. P
cc
k 6= RP

cc
k for any k that is nO(1).

Proof of Theorem 3.4. Any function g ∈ Gk−1,n,m has a domain of size 2(k−1)n and a range of size 2m.

Therefore, it is not possible to encode every such function g with less than m · 2(k−1)n bits. Note that if two

functions g, g′ are different, then fg and fg′ are different, too.

7



Clearly, for all g ∈ Gk−1,n,m, fg is simple for Alice. Assume that for all g, fg has Dk(fg) ≤ d. Then by

Lemma 3.3, every such function fg can be uniquely represented by a 2d-coloring of
(

{0, 1}n
)k−1

and 2m ·2d

cylinder intersections in
(

{0, 1}n
)k−1

. The 2d-coloring of
(

{0, 1}n
)k−1

can be encoded with d · 2(k−1)n

bits. The number of i-cylinders in X1 × · · · × Xt is 2Πj 6=i|Xj |. Hence, (k − 1) · 2(k−2)n bits suffice for a

unique encoding of any cylinder intersection in
(

{0, 1}n
)k−1

. Thus, the total number of bits in which any

function fg, g ∈ Gk−1,n,m, can be encoded is bounded above by

d · 2(k−1)n + 2d+m · (k − 1) · 2(k−2)n = d · 2(k−1)n + (k − 1) · 2d+m+(k−2)n

As we have seen above, the number of bits needed to describe a function fg for g ∈ Gk−1,n,m is at least

m · 2(k−1)n. Therefore, if for all fg a protocol with complexity d exists, then

d · 2(k−1)n + (k − 1) · 2d+m+(k−2)n ≥ m · 2(k−1)n.

This is equivalent to 2d ≥ 2n−m · (m− d)/(k− 1). Hence, d ≥ min{m− 1, n−m− log(k− 1)}, which

for m =
⌊

(n− log k)/2
⌋

is at least (n − log k)/2 −O(1).

3.4 Separating Public from Private Coins

We now consider the difference between public-coin and private-coin randomized protocols. Trivially, any

private-coin protocol can be simulated by tossing the coins in public, so for all f and k, Rpub
k (f) ≤ Rk(f).

In the other direction, Newman [New91, KN97] provides a simulation of a public-coin protocol by a private-

coin protocol. (Although it is stated for the special case of 2 players, the proof works for any number of

players.)

Proposition 3.6 ([New91]). There is a c > 0 such that for every k ≥ 2 and function f : {0, 1}kn → {0, 1},

Rk(f) ≤ Rpub

k (f) + c⌈log2 n⌉.

We see that the maximum gap between the public-coin and private-coin randomized complexities of f
is Θ(log n), and it is achieved when Rpub

k (f) is O(1) and Rk(f) is Θ(log n). The natural question arises, is

there a function that achieves this gap? Our results allow us to answer this question affirmatively.

In order to obtain lower bounds, we need the following extension of Lemma 3.8 in [KN97] to k players.

Lemma 3.7. If k1/δ < Dk(f) for some δ < 1, then Rk(f) is Ω(logDk(f)).

Proof. We first claim the following holds:

Dk(f) ≤ (k − 1) · 2Rk,ǫ(f) ·

(

1 + log(k − 1) + log

(

1

2
− ǫ

)−1

+Rk,ǫ(f)

)

Provided we prove the above statement, assume that Rk(f) ≤ (1 − δ)/2 · log(Dk(f)). Then,

Dk(f) = O
(

Dk(f)δ ·Dk(f)(1−δ)/2 · (δ · log(Dk(f)) + (1 − δ)/2 · log(Dk(f)))
)

= O
(

Dk(f)(1+δ)/2 · log(Dk(f))
)

Since δ < 1, this is a contradiction. Hence, Rk(f) = Ω(logDk(f)).
The proof of our initial claim follows the same idea as the proof of Lemma 3.8 in [KN97]. Let c =

Rk,ǫ(f) and consider the ǫ-error randomized protocol P that achieves c. Let t = 1+log(k−1)− log(1/2−
ǫ) + c. We construct a deterministic protocol P ′ for f , of cost (k − 1) · 2c · t as follows.
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For every player i and every leaf l of the randomized protocol P , let pi(l) denote the probability player

i responds according to the path leading to l (over their own private random strings). Player i (for 1 ≤ i ≤
k − 1) computes, for every leaf l, the real number pi(l) and publishes p∗i (l), a t-bit approximation of pi(l).
This introduces an error of at most φ = 2−t for every such value.

Player k now computes, for every l, the value
(

∏k−1
i=1 p

∗
i (l)
)

·pk(l). Since p∗i (l) ∈ {pi(l)−φ, pi(l)+φ}

and since pi(l) ≤ 1, we get

(

k−1
∏

i=1

p∗i (l)

)

· pk(l) ∈ {
k
∏

i=1

pi(l) − ((1 + φ)k−1 − 1),

k
∏

i=1

pi(l) + ((1 + φ)k−1 − 1)}.

Each leaf of the randomized protocol is associated with an output (0 or 1). Player k now estimates the

probability of an output in the randomized protocol by summing over the estimates of the probabilities

for each leaf corresponding to that output. Finally, player k decides to output in P ′ the value that has a

probability higher than 1/2.

In the original protocol P , an error is made with probability at most ǫ. For the deterministic simulation

to work, we need to make sure that the extra error introduced by the rounding process is less than 1/2 − ǫ.
Since each estimate has error at most (1 + φ)k−1 − 1 and there are at most 2c leaves, we need to make sure

that 2c · ((1 + φ)k−1 − 1) < (1/2 − ǫ). Equivalently, we need (1 + φ)k−1 < 1 + (1/2 − ǫ)/2c.

We choose t = 1 + log(k − 1) − log(1/2 − ǫ) + c, so φ = 2−t = 1/2−ǫ
2·(k−1)·2c . We know that, for

0 ≤ x < 1/2, we have (1+x/(k−1))k−1 ≤ ex ≤ 1+2 ·x. Moreover, (1/2− ǫ)/(2 ·2c) < 1/2. Therefore,

(1 + φ)k−1 < 1 + 2 ·
1/2 − ǫ

2 · 2c
= 1 + (1/2 − ǫ)/2c.

This completes the argument that the deterministic protocol P ′ works and, thus, the proof of the Lemma.

Corollary 3.8. Let δ < 1. For all k such that k < nδ, there exists a kn-bit function f such that Rpub

k (f) is

O(1) and Rk(f) is Θ(log n).

Proof. By Theorem 3.4 there is a function f that is simple for player 1 such that Dk(f) is Ω(n). By

Lemma 3.7, Rk(f) is Ω(log n). By Lemma 3.1, Rk(f) is O(log n) and R
pub
k (f) is O(1).

4 Lower Bounds for Explicit Simple Functions

The separations in Section 3.3 are nonconstructive. We conjecture that there also exist explicit families

of simple functions that give a linear or near linear separation between deterministic and one-sided error

randomized k-player NOF communication complexities. In this section, we give two constructions of ex-

plicit families of simple functions, thus in coRP
cc
k , that, we believe, might be outside P

cc
k for k ≥ 3. While

we are unable to prove the super-polylogarithmic ((log n)ω(1)) deterministic communication complexity

lower bounds required to place them outside P
cc
k , we are, however, able to prove much weaker logarithmic

(Ω(log n)) lower bounds. As a corollary, we obtain a separation between deterministic and public coin ran-

domized communication complexities for explicit families of simple functions, though this is much weaker

than our conjecture.

We begin in Section 4.1, by giving a family of simple functions for the case where we have only k = 3
players. This construction does not immediately generalize for k > 3 players, but we present it first because

it is both simple enough and illustrative of a certain “mixing” property (made precise later) that plays a

9



crucial role in our arguments. We then prove the lower bound Dk(f) = Ω(log n) for, in fact, any function

family f that satisfies this mixing property. In Section 4.2, we present a different family of simple functions,

that can be defined for any k ≥ 3, and we show that this family satisfies the same mixing property that we

use in Section 4.1, thus allowing us to obtain a similar lower bound.

4.1 A Function Family for k = 3 Players

In the case of k = 3 players, our construction is based on universal families of hash functions. We begin

with an informal description of our arguments.

Given a universal family H of hash functions from A to B, our three player function f is defined on

the set B ×H × A as follows. The second player holds a hash function h ∈ H , the third player holds an

input x ∈ A, and h(x) ∈ B is the unique value for the input of the first player that makes f evaluate to

1. The key “mixing” property that this construction satisfies is closely related to the Hash Mixing Lemma

from [MNT93], and says that, for every large rectangle R ⊆ H × A and every b ∈ B, if we visualize R
as a matrix where the entry at location (h, x) has value h(x), then the number of b-valued entries in R is

very close to uniform, that is, |R|/|B|. After making these definitions precise, we use the mixing property

combined with the characterization of a deterministic protocol for f from Lemma 3.3, to give some evidence

as to why we believe Dk(f) might be large. We subsequently prove in Theorem 4.4 that Dk(f) = Ω(log n)
for any function f that satisfies the mixing property.

Definition of the Family. We write Fq for the finite field of q elements when q is a prime power. Let n ≥ 4
be a positive integer, and let m = n1/2. For x ∈ {0, 1}n and a ∈ {0, 1}n+m−1, let a ◦ x be the m-bit string

z whose i-th bit is defined by zi =
∑n

j=1 xja(i−1)+j mod 2. For two m-bit strings z and b, let z ⊕ b be

the bitwise exclusive-or of the two strings. For (a, b) ∈ F2n+m−1 × F2n , let ha,b : F2n → F2m be defined by

ha,b(x) = (a ◦ x) ⊕ b. [MNT93] show that Hn,m = {ha,b | a ∈ F2n+m−1 , b ∈ F2n} is a universal family

of hash functions from F2n to F2m . We are now ready to define our family of simple functions for k = 3
players.

DEFINITION 4.1. Let f = (f3,N )N∈N be the family of functions defined as follows. For N large enough, let

n = N/3, let m = n1/2, and note that |Hn,m| ≤ 22n+m−1 ≤ 2N . Let f3,N : Fm ×Hn,m × Fn → {0, 1}
be defined by f3,N (y, h, x) = 1 if and only if y = h(x).

Clearly, f3,N is simple for player 1, so by Lemma 3.1, R0
3,1/N (f) = O(logN) and R0,pub

3 (f) = O(1).

Mixing Property. The following is a “mixing” property of f , that we will be use to prove lower bounds

on D3(f).

DEFINITION 4.2 (Mixing Property). Let f = (fk,N)N∈N be a family of functions simple for player 1. Let

m = log |X1|. Note that, in general, k = k(N) and m = m(N). Let Z = X2 × · · · ×Xk and let g : Z →
X1 ∪ {⊥} be the unique function such that fk,N(x1, x2, . . . , xk) = 1 if and only if x1 = g(x2, . . . , xk). We

say that the family f has a mixing property if the following holds. For large enough N , for every cylinder

intersection I ⊆ Z with |I| ≥ |Z| · 2−2m, and for every x1 ∈ X1, when (x2, . . . , xk) is drawn uniformly

from I ,

Pr[g(x2, . . . , xk) = x1] ≤ 2 ·
1

2m
= 2−m+1.
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Note. In the condition |I| ≥ |Z| · 2−2m, the choice of −2m as an exponent might seem arbitrary. As

it is, Definition 4.2 allows us to prove Theorem 4.4. But, in fact, for both the construction in this section,

and for the construction in Section 4.2, we could prove an even stronger mixing property, one that would

apply to even smaller rectangles: for every α, for large enough N (now a function of α), for every cylinder

intersection I with |I| ≥ |Z| ·2−αm, the same property as above would be required of I . However, we do not

know how to use this stronger mixing property to prove a larger lower bound than the one in Theorem 4.4.

In the special case when f is the family from Definition 4.1, we have k = 3, so we can visualize

Z = Hn,m×F2n as a 2-dimensional matrix in which rows correspond to hash functions h ∈ Hn,m, columns

correspond to inputs x ∈ F2n , and the entry at row h and column x is Zh,x = h(x) ∈ F2m . Furthermore,

cylinder intersections in 2 dimensions are rectangles. With this interpretation, the mixing property says that

for every large rectangle R ⊆ Z , more precisely, when |R| ≥ |Z| · 2−m, the number of y-entries in R is at

most twice the expected number if R was filled at random with values from F2m . The fact that f has this

property follows directly from the Hash Mixing Lemma in [MNT93].

Lemma 4.3. The function family f = (f3,N )N∈N from Definition 4.1 has the mixing property from Defini-

tion 4.2.

Proof. Since Hn,m is a universal family of hash functions, by Lemma 13 in [MNT93], for every rectangle

R ⊆ Z and for every y ∈ F2m , when (h, x) are drawn uniformly from R, we have

Pr[h(x) = y] ≤
1

|F2m |
+

(

|Hn,m|

|R| · |F2m |

)1/2

= 2−m +

(

|Z|

|R|
· 2−n−m

)1/2

.

When |R| ≥ |Z| · 2−2m, as in Definition 4.2, we have Pr[h(x) = y] ≤ 2−m + 2−n/2+m/2. Since n/2 ≥
3m/2 for large enough n, we get Pr[h(x) = y] ≤ 2−m+1.

Evidence Towards a Conjecture. The following is not a precise argument, but we consider it evidence

towards why we believe that the deterministic communication complexity of f could have to be large. Let

d = D3(f). By Lemma 3.3, there exists a 2d-coloring c of Z and there are 2d+m rectangles Rℓ,y ⊆ M , for

ℓ ∈ [2d] and y ∈ Fm, such that

∀(y, h, x) ∈ Fm ×Hn,m × Fn : (h, x) ∈ Rc(h,x),y ⇔ h(x) = y.

In keeping with the matrix interpretation of Z , we say that (h, x) ∈ Z is an (ℓ, y)-entry in Z if and only if

c(h, x) = ℓ and h(x) = y. For a subset S ⊆ Z , let #(ℓ,y)(S) denote the number of (ℓ, y)-entries in S and

let ρ(ℓ,y)(S) = #(ℓ,y)(S)/|S| denote the density of (ℓ, y)-entries in S. We use the notation (ℓ, ·) and (·, y)

to refer to all entries with color ℓ and all entries with value y, respectively. For every (ℓ, y) ∈ [2d]×F2m , let

Bℓ,y = Rℓ,y \
⋃

y′ 6=y

Rℓ,y′ .

We call this set the boundary of the rectangle Rℓ,y. Note that, by definition of the coloring, all (ℓ, y)-entries

in Z are in Bℓ,y.

Now, let red be a color with ρ(red,·)(Z) ≥ 1/2d. When y is chosen uniformly at random from F2m ,

E[#(·,y)(Bred,y)] ≥ E[#(red,y)(Bred,y)] = E[#(red,y)(Z)] =
#(red,·)(Z)

2m
≥

|Z|

2m+d
.

11



Furthermore, for various y, the sets Bred,y are disjoint, so

E[|Bred,y|] ≤
|Z|

2m
.

If we fixed a y for which both quantities above are within constant factors of their expectations (this is

imprecise, but we believe it could be made precise), we would obtain a pair (red, y) such that ρ(·,y)(Bred,y) ≥

Ω(1/2d), whereas the mixing property in Definition 4.2 says that, if Rred,y is large enough, ρ(·,y)(Rred,y) ≤
O(1/2m). The smaller d is, the larger the gap between these numbers. The reason this situation does not

immediately translate into a lower bound for d in terms of m is that Bred,y is far from a rectangle, so its

density of (·, y)-entries could be much larger than that of the rectangle Rred,y. However, we also consider

this as evidence that d might have to be large.

A Weaker Lower Bound. In the following Theorem, we show that any family f = (fk,N)N∈N of simple

functions that satisfies the mixing property from Definition 4.2 has deterministic communication complexity

at least logarithmic in m = m(N), the size of the input of player 1.

We describe the proof idea for the case of k = 3 players, when we can view Z as a matrix, but the proof

itself works in general for k ≥ 3. Let d = D3(f) and consider the 2d-coloring c of the matrix Z given

by Lemma 3.3. The proof proceeds by inductively decreasing the number of colors available and shrinking

the matrix. During each step, we introduce a number of “holes” in the matrix (entries that are colored in the

original matrix with one of the removed colors). We show that eventually there are no colors left to use, but

the matrix still does not consist only of holes. Even if we were able to shrink the matrix by, say, a factor of

2 in order to remove every color, there are still 2d colors to remove, so at the end we would have shrunk the

matrix by a factor of 22d
. Since the matrix Z has size 2mO(1)

, this technique can only produce lower bounds

of the form d = Ω(logm).

Theorem 4.4. Let f = (fk,N)N∈N be a family of functions simple for player 1, with fk,N : X1×· · ·×Xk →
{0, 1}, that satisfies the mixing property in Definition 4.2. Let m = m(N) = log |X1| be the size of the

input of player 1. Then, Dk(f) = Ω(logm).

Proof. Let d = Dk(f). Let Z = X2 × · · · ×Xk and let g : Z → X1 ∪ {⊥} be the unique function such

that fk,N(y, x2, . . . , xk) = 1 if and only if y = g(x2, . . . , xk). By Lemma 3.3, there is a 2d-coloring c of Z
and there are 2d+m cylinder intersections Iℓ,y, for (ℓ, y) ∈ [2d] ×X1, such that

∀(y, x2, . . . , xk) ∈ X1 × Z, (x2, . . . , xk) ∈ Ic(x2,...,xk),y ⇔ g(x2, . . . , xk) = y.

We say that a point (x2, . . . , xk) has color c(x2, . . . , xk) and value g(x2, . . . , xk). For a set S ⊆ Z , let

#(ℓ,y)(S) denote the number of points (x2, . . . , xk) ∈ S with color ℓ and value y.

Assume there exists some ǫ < 1 such that for all m, d ≤ ǫ · logm. We will derive a contradiction.

For large enough m, we prove by induction that for all 0 ≤ i ≤ 2d, there exists a cylinder intersection

Ii ⊆ Z and a set of “holes” Hi ⊆ Ii such that:

• |Ii| ≥ |Z| · 2−i(d+2);

• |Hi| ≤ i · |Z| · 2−m+1; and

• the initial coloring induces a coloring of the points in Ii \Hi with 2d − i colors.
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Assuming we have established this inductive statement, letting i = 2d, we see that we must have I2d \H2d =
∅, for any points in this set would have been uncolored in the original coloring. For large enough m,

|I2d | ≥ |Z| · 2−2d(d+2) ≥ |Z| · 2−mǫ(ǫ·log m+2) > |Z| · 2−m+ǫ·log m+1 ≥ |Z| · 2−m+d+1.

Since |H2d | ≤ 2d · |Z| · 2−m+1, we get I2d \H2d 6= ∅, which is a contradiction.

We now prove the inductive statement. For i = 0, let I0 = Z and let H0 = ∅. Then, c is a coloring of

I0 \H0 with 2d colors. Now assume the inductive statement is true for some 0 ≤ i < 2d. We have

|Ii \Hi| ≥ |Z| ·
(

2−i(d+2) − i · 2−m+1
)

> |Z| ·
(

2−i(d+2) − 2−m+d+1
)

> |Z| · 2−i(d+2)−1,

where in the last inequality we used m− d− 1 > mǫ(ǫ · logm+ 2) > i(d + 2), for large enough m.

Let (ℓ, y) be the most popular color-value pair in Ii \Hi. There are at most 2m+d such pairs, so

#(ℓ,y)(Ii \Hi) ≥ |Ii \Hi| · 2
−m−d ≥ |Z| · 2−i(d+2)−1−m−d = |Z| · 2−(i+1)(d+2)−m+1 .

Let Ii+1 = Ii ∩ Iℓ,y, which is a cylinder intersection in Z because both Ii and Iℓ,y are. By the property of

the coloring c in Lemma 3.3, all points in Z with color-value (ℓ, y) are in Iℓ,y. Hence,

|Ii+1| ≥ #(ℓ,y)(Ii \Hi) ≥ |Z| · 2−(i+1)(d+2)−m+1.

Note that (i + 1)(d + 2) − 1 ≤ mǫ(ǫ logm + 2) − 1 < m, so |Ii+1| ≥ |Z| · 2−2m. Then, by the

mixing property in Definition 4.2, #(·,y)(Ii+1)/|Ii+1| ≤ 2−m+1, so |Ii+1| ≥ #(·,y)(Ii+1) · 2
−m+1. Also,

#(·,y)(Ii+1) ≥ #(ℓ,y)(Ii+1) ≥ #(ℓ,y)(Ii \Hi). Putting these together, we get

|Ii+1| ≥ #(ℓ,y)(Ii \Hi) · 2
m−1 ≥ |Z| · 2−(i+1)(d+2)−m+1 · 2m−1 = |Z| · 2−(i+1)(d+2),

establishing the first part of the inductive statement.

Let Hi+1 = Hi∪{(x2, . . . , xk) ∈ Ii+1 | c(x2, . . . , xk) = ℓ}. By induction hypothesis, points in Ii \Hi

are colored with at most 2d− i colors. Since ℓ is no longer available, we see that all points left in Ii+1 \Hi+1

must now be colored with at most 2d − i− 1 colors, establishing the third part of the inductive statement.

Finally, by the property of c in Lemma 3.3, all points in Iℓ,y that have color ℓ must have value y.

In the entire set Z , by the mixing property, there are at most |Z| · 2−m+1 points with value y. Then,

|Hi+1| ≤ |Hi| + |Z| · 2−m+1 ≤ (i + 1) · |Z| · 2−m+1, establishing the second part of the inductive

statement.

Corollary 4.5. The function family f = (f3,N )N∈N from Definition 4.1 satisfies D3(f) = Ω(logN).
Furthermore, f provides a separation between public-coin and private-coin communication complexity,

as Rpub
3 (f) = O(1) and R3(f) = Ω(log logN).

Proof. By Lemma 4.3, f has the mixing property. By Theorem 4.4, D3(f) = Ω(logm). By definition of

f , m = (N/3)1/2, so D3(f) = Ω(logN).

Since f3,N is simple for player 1, by Lemma 3.1, R
pub
3 (f) = O(1). Finally, by Lemma 3.7, R3(f) =

Ω(log logN).
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4.2 A Function Family for k ≥ 3 Players

To design a family of functions for the case of k ≥ 3 players, we use a construction from [?].

Let k ≥ 3, and let n, m be positive integers with m ≥ log2 n. Let β1, . . . , βn be distinct elements of

F2m and define vi = (βi−1
1 , . . . , βi−1

n ) for 1 ≤ i ≤ n. Let gn,m : ((F2m)n)k−1 → F2m be defined by

gn,m(x2, . . . , xk) =
∑n

i=1

∏k
j=2〈vi, xj〉, where operations are over F2m .

DEFINITION 4.6. Let f = (fk,N)N∈N be defined as follows. Let n = N1/2 and let m = n1/2. Let fk,N :
F2m × (F2m)n × · · · × (F2m)n be defined by fk,N(x1, . . . , xk) = 1 if and only if gn,m(x2, . . . , xk) = x1.

We claim that this function family satisfies the mixing property from Definition 4.2, and hence, that

we can apply Theorem 4.4 to obtain a lower bound on its deterministic communication complexity. To

show this, we need the following technical result, which is the natural analogue of the Hash Mixing

Lemma [MNT93] over cylinder intersections.

Lemma 4.7. Let f be the function family from Definition 4.6. Let Z = ((F2m)n)k−1
. For every cylinder

intersection I ⊆ Z and for every y ∈ F2m , when (x2, . . . , xk) is drawn uniformly from Z ,

∣

∣

∣

∣

Pr[g(x2, . . . , xk) = y and (x2, . . . , xk) ∈ I] − 2−m ·
|I|

|Z|

∣

∣

∣

∣

≤ 2−(m−2)n/4k−1
.

Before proving Lemma 4.7, we show its consequences.

Corollary 4.8. When k ≤ (1/3) log n, the function family from Definition 4.6 satisfies the mixing property

from Definition 4.2.

Proof. Let I ⊆ Z be a cylinder intersection with |I| ≥ |Z| · 2−2m and let y ∈ F2m . By Lemma 4.7, when

(x2, . . . , xk) are drawn uniformly from I ,

Pr[g(x2, . . . , xk) = y] ≤ 2−m +
|Z|

|I|
· 2−(m−2)n/4k−1

≤ 2−m + 2−(m−2)n/4k−1+2m.

When k ≤ (1/3) log n, 4k−1 < n2/3. Then, (m − 2)n/4k−1 − 2m > (m − 2)n1/3 − 2m > m for large

enough n. In this case, Pr[g(x2, . . . , xk) = y] ≤ 2−m+1, as required in Definition 4.2.

Corollary 4.9. When k ≤ (1/6) logN , the function family f from Definition 4.6 has Dk(f) = Ω(logN).
Furthermore, f provides a separation between public-coin and private-coin communication complexities,

as Rpub

k (f) = O(1) and Rk(f) = Ω(log logN).

Proof. Since k ≤ (1/6) logN and n = N1/2 in the definition of f , we have k ≤ (1/3) log n. By

Corollary 4.8, the function family f satisfies the mixing property from Definition 4.2. By Theorem 4.4,

Dk(f) = Ω(logm). Since m = N1/4, we get Dk(f) = Ω(logN).

Since fk,N is simple for player 1, by Lemma 3.1, R
pub
k (f) = O(1). Finally, by Lemma 3.7, Rk(f) =

Ω(log logN).

Proof of Lemma 4.7. We extend the ideas of Raz [Raz00] and Beame and Vee [?]. We write g for gn,m to

reduce clutter. As shown in [?], for (x2, . . . , xk) uniformly chosen in Z and any two sets A0, A1 ∈ F2m

with |A0| = |A1|,

|Pr[g(x2, . . . , xk) ∈ A0] − Pr[g(x2, . . . , xk) ∈ A1]| ≤ (4/2m)n/2k−1
= 2−(m−2)n/2k−1

.

14



Now for any function h : Z → {0, 1} define ∆(h) = E[(−1)h(x2,...,xk)] where the expectation is over

choices of (x2, . . . , xk−1) ∈ Z . If h is F2-multilinear, as observed in [?, ?], the argument in [Raz00] shows

that ∆(h)1/2k−1
is an upper bound on the discrepancy under the uniform distribution of h on any cylinder

intersection I . For a given I this discrepancy is

ΓI(h) = |Pr[h(x2, . . . , xk) = 0 and (x2, . . . , xk) ∈ I]

−Pr[h(x2, . . . , xk) = 1 and (x2, . . . , xk) ∈ I]|.

For each S ⊆ [m] define function gS : Z → {0, 1} as
⊕

i∈S ϕ(g(x2, . . . , xk))i where ϕ is an F2-

linear bijection from F2m to F
m
2 . Therefore, for each S the function gS is linear. Set AS,b = {~y ∈ F2m |

⊕

i∈S
ϕ(~y)i = b} for b ∈ {0, 1}, If S 6= ∅ then |AS,0| = |AS,1| and so by definition,

∆(gS) = |Pr[gS(x2, . . . , xk) = 0] − Pr[gS(x2, . . . , xk) = 1]|

= |Pr[g(x2, . . . , xk) ∈ AS,0] − Pr[g(x2, . . . , xk) ∈ AS,1]|

≤ 2−(m−2)n/2k−1
.

Fix some cylinder intersection I on Z . It follows that for S 6= ∅ the discrepancy of gS on I ,

ΓI(gS) = |Pr[gS(x2, . . . , xk) = 0 and (x2, . . . , xk) ∈ I]

−Pr[gS(x2, . . . , xk) = 1 and (x2, . . . , xk) ∈ I]|

≤ 2−(m−2)n/4k−1
.

Now define the function p : F
m
2 → R given by

p(y) = Pr[ϕ(g(x2, . . . , xk)) = y and (x2, . . . , xk) ∈ I].

Clearly,
∑

y∈Fm
2
p(y) = Pr[I]. Consider the Fourier transform of p over F

m
2 and write p =

∑

S⊆[m] p̂SχS

where χS(y) =
∏

i∈S(−1)yi and p̂S = 1
2m

∑

y∈Fm
2
p(y)χS(y). Observe that by definition |p̂S | is precisely

ΓI(gS)/2m and thus p̂S is Pr[I]/2m for S = ∅ and has absolute value at most 2−m2−(m−2)n/4k−1
for all

other S ⊆ [m]. If we define q(y) = Pr[I]/2m for all y ∈ F
m
2 then it is easy to see that q̂∅ = Pr[I]/2m and

q̂S = 0 for ∅ ⊂ S ⊆ [m]. Define function r = p − q. Then by the linearity of the transform, r̂∅ = 0 and

|r̂S | ≤ 2−m2−(m−2)n/4k−1
for all other S ⊆ [m]. By Parseval’s equality, ||r||2 = ||r̂||2 and thus

||r||22 ≤
∑

y∈Fm
2

2−2m2−2(m−2)n/4k−1
= 2−m2−2(m−2)n/4k−1

and thus ||r||2 ≤ 2−m/22−(m−2)n/4k−1
. Since r has 2m dimensions, ||p − q||1 = ||r||1 ≤ 2m/2||r||2 ≤

2−(m−2)n/4k−1
. In particular, this implies that for any y ∈ F

m
2 ,

|Pr[φ(g(x2, . . . , xk)) = y and (x2, . . . , xk) ∈ I] − Pr[I]/2m| ≤ 2−(m−2)n/4k−1
,

which is what we wanted to prove.
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5 On Complete Problems for NP
cc
k

An alternative approach to separating P
cc
k from RP

cc
k with an explicit function is to find a function that is

complete in some sense. If we can prove for some explicit function that it is “at least as hard” as any function

in RP
cc
k , then by our separation result we can conclude that it is not in P

cc
k . The set intersection function is

complete for the class analogous to NP
cc
k in the number-in-hand (NIH) model, and thus also for NP

cc
2 . In

this section, we prove that this function is not complete for NP
cc
k for k ≥ 3.

In two-player communication complexity, Babai, Frankl, and Simon [BFS86] defined a natural notion

of a reduction between problems called a ‘rectangular’ reduction that does not require any communication

to compute.

DEFINITION 5.1. For k = 2, let f : X1 × X2 → {0, 1} and g : X ′
1 × X ′

2 → {0, 1}. A pair of functions

ϕ1, ϕ2 with ϕi : Xi → X ′
i is a rectangular reduction of f to g, written f ⊑ g, if and only if f(x1, x2) =

g(ϕ1(x1), ϕ2(x2)).

Furthermore, they defined an appropriate ‘polynomially-bounded’ version of rectangular reduction for

function families.

DEFINITION 5.2. For function families f = {fn} and g = {gn} where fn, gn : ({0, 1}n)2 → {0, 1}, we

write f ⊑p g if and only if there is a function m : N → N such that for every n, fn ⊑ gm(n) and m(n) is

2(log n)O(1)
.

Proposition 5.3 ([BFS86]). Let f and g be function families. If f ⊑p g and g ∈ P
cc
2 then f ∈ P

cc
2 . If f ⊑p g

and g ∈ NP
cc
2 then f ∈ NP

cc
2 .

DEFINITION 5.4. A function family g is complete for NP
cc
2 under rectangular reductions if and only if

g ∈ NP
cc
2 and for all f ∈ NP

cc
2 , f ⊑p g.

Recall the set intersection function INT from Definition 2.1 Clearly, INT ∈ NP
cc
k . Babai, Frankl and

Simon observed the following:

Proposition 5.5 ([BFS86]). INT is complete for NP
cc
2 under rectangular reductions.

For k ≥ 3, rectangular reductions extend to cubic reductions in the NIH model of communication

complexity. Moreover, it is easy to see that the completeness result of Proposition 5.5 continues to hold in

the NIH model under cubic reductions. One might conjecture that INT is also complete for NP
cc
k under a

natural extension of rectangular reductions in the NOF model. Such a notion of reduction should not require

any communication between the players. This yields the following definition:

DEFINITION 5.6. Given f : X1 ×· · ·×Xk → {0, 1} and g : X ′
1×· · ·×X ′

k → {0, 1} we say that functions

ϕ1, . . . , ϕk are a cylindrical reduction of f to g if and only if for every (x1, . . . , xk) ∈ X1 × · · · × Xk

there is an (x′1, . . . , x
′
k) ∈ X ′

1 × · · · × X ′
k such that for all i ∈ [k], ϕi(x1, . . . , xi−1, xi+1, . . . , xk) =

(x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
k) and f(x1, . . . , xk) = g(x′1, . . . , x

′
k). Thus, each ϕi maps the NOF view of the

i-th player on input (x1, . . . , xk) for f to the NOF view of the i-th player on input (x′1, . . . , x
′
k) for g.

We show that cylindrical reductions must be of a special form, given by the natural no-communication

reductions associated with the number-in-hand model.

DEFINITION 5.7. Given f : X1 ×· · ·×Xk → {0, 1} and g : X ′
1×· · ·×X ′

k → {0, 1} we say that functions

(ψ1, . . . , ψk) are a cubic reduction of f to g if and only ψi : Xi → X ′
i for every i, and f(x1, . . . , xk) =

g(ψ1(x1), . . . , ψk(xk)).
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Lemma 5.8. If (ϕ1, . . . , ϕk) is a cylindrical reduction of f to g then there is a cubic reduction (ψ1, . . . , ψk)
of f to g such that, for all i,

ϕi(x1, . . . , xi−1, xi+1, . . . , xk) = (ψ1(x1), . . . , ψi−1(xi−1), ψi+1(xi+1), . . . , ψk(xk)).

Proof. We prove by induction on k that any consistent cylindrical reduction (whether or not it correctly

reduces f to g) must be cubic. The claim is trivial for k = 2. Assume that k > 2. Consider (x1, . . . , xk)
and let (x′1, . . . , x

′
k) be the output of the cylindrical reduction on x. Let yk ∈ Xk. The requirement that

ϕk(x1, . . . , xk−1) = (x′1, . . . , x
′
k−1) and the fact that the views output by the ϕi for i < k must be consistent

with this output implies that for i < k,

ϕi(x1, . . . , xi−1, xi+1, . . . , xk−1, xk) = (x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
k−1, x

′
k)

and

ϕi(x1, . . . , xi−1, xi+1, . . . , xk−1, yk) = (x′1, . . . , x
′
i−1, x

′
i+1, . . . , x

′
k−1, y

′
k)

for some y′k ∈ X ′
k. Thus the first k−2 coordinates of the output of ϕi are independent of the last coordinate

of its input. Since x = (x1, . . . , xk) and yk were chosen arbitrarily, for any such input we can define

functions (ϕ′
1, . . . , ϕ

′
k−1) where ϕ′

i(x1, . . . , xi−1, xi+1, . . . , xk−1) consists of the first k − 2 coordinates of

ϕi(x1, . . . , xi−1, xi+1, . . . , xk−1, yk) for any yk ∈ Xk. These form a consistent map on k − 1 coordinates

and therefore by the inductive hypothesis there are (ψ1, . . . , ψk−1) such that

ϕ′
i(x1, . . . , xi−1, xi+1, . . . , xk−1) = (ψ1(x1), . . . , ψi−1(xi−1), ψi+1(xi+1), . . . , ψk−1(xk−1))

and therefore for i < k and any x1, . . . , xk ∈ Xk,

ϕi(x1, . . . , xi−1, xi+1, . . . , xk−1, xk) = (ψ1(x1), . . . , ψi−1(xi−1), ψi+1(xi+1), . . . , ψk−1(xk−1), x
′
k)

for some x′k = φi(x1, . . . , xi−1, xi+1, . . . , xk) for some function φi; i.e., ϕi acts component-wise on all but

the k-th coordinate. Now, since k > 2 there is some j /∈ {i, k} and, by symmetry, the same inductive argu-

ment can be applied to characterize ϕi for all i 6= j so that ϕi acts component-wise on all but the j-th coordi-

nate. Moreover, the inductive argument implies that there are functions ψ′
1, . . . , ψ

′
j−1, ψ

′
j+1, . . . , ψ

′
k that give

this component-wise behavior. Defining ψ′
j = ψj and ψk = ψ′

k we see that we must have ψ′
i = ψi for all i ∈

[k]. Therefore for i < k, ϕi(x1, . . . , xi−1, xi+1, . . . , xk) = (ψ1(x1), . . . , ψi−1(xi−1), ψi+1(xi+1), . . . , ψk(xk)).
Since k was arbitrarily chosen, the same applies for i = k and the result follows by induction.

DEFINITION 5.9. The set A ⊆ X1 × · · · ×Xk is a cube if A = A1 × . . . × Ak for some sets Ai ⊆ Xi, for

all i ∈ [k].

Lemma 5.10. If there is a cylindrical reduction of f : X1 × · · · ×Xk → {0, 1} to INTk,m then f−1(1) is

a union of m cubes.

Proof. By Lemma 5.8, there are functions (ψ1, . . . , ψk) such that

f(x1, . . . , xk) = INTk,m(ψ1(x1), . . . , ψk(xk)).

Thus (x1, . . . , xk) ∈ f−1(1) if and only if there is some i ∈ [m] such that the i-th coordinate of each of

ψ1(x1), . . . , ψk(xm) is 1. For j ∈ [k] let Ai,j = {xj | the i-th coordinate of ψj(xj) is 1} ⊆ Xj . Therefore

Ai,1 × . . . ×Ai,k is a cube for each i ∈ [m] and f−1(1) =
⋃

i∈[m]Ai,1 × . . .×Ai,k as required.
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Theorem 5.11. There is a function f : ({0, 1}n)3 → {0, 1} with deterministic 3-player NOF communica-

tion complexity at most 3 such that any cylindrical reduction of f to INT3,m requires m > 2n−3.

Proof. For x, y, z ∈ {0, 1}n, define f(x, y, z) to be 1 if and only if x, y, and z are pairwise orthogonal in

F
n
2 . There is a trivial 3-player NOF protocol for f in which 3 bits are exchanged, namely, each player checks

that the inputs it sees are orthogonal. We now show that any way to write f−1(1) as a union of cubes must

contain exponentially many cubes since each cube can only cover an exponentially small portion of f−1(1).
For u, v ∈ {0, 1}n, let h(u, v) = 1 iff 〈x, y〉 = 0 in F

n
2 . Then f(x, y, z) = h(x, y)h(y, z)h(x, z).

Consider the uniform distribution µ over {0, 1}3n.

We first show that f−1(1) is a set of probability more than 1/8. Under µ, for each pair u, v ∈ {x, y, z},

the probability that h(u, v) = 1 is 1/2 + 1/2n > 1/2 (consider whether or not u = 0n). We claim that

the probability that f(x, y, z) = 1 is at least 1/8. Suppose that x 6= 0n. Then the probability that y is

orthogonal to x is precisely 1/2. Now, z is orthogonal to the span 〈{x, y}〉 with probability at least 1/4. So,

conditioned on x 6= 0n, the probability that f(x, y, z) = 1 is at least 1/8. If x = 0n then the probability that

f(x, y, z) = 1 is precisely the probability that y and z are orthogonal which is at least 1/2. Therefore the

probability that f(x, y, z) = 1 is more than 1/8 overall.

Now since f(x, y, z) = h(x, y)h(y, z)h(x, z), any cube C = A1 × A2 × A3 with C ⊆ f−1(1) must,

in particular, have, A1 ×A2 ⊆ h−1(1). Thus every x ∈ A1 must be orthogonal to every y ∈ A2 and so the

dimensions of their spans must satisfy dim(〈A1〉)+dim(〈A2〉) ≤ n. Therefore |A1×A2| ≤ |〈A1〉×〈A2〉| ≤
2dim(〈A1〉)+dim(〈A2〉) ≤ 2n so |C| ≤ 2n · |A3| ≤ 22n and the probability that (x, y, z) ∈ C is at most 2−n.

The claimed result follows immediately.

This argument can be extended to other functions h : {0, 1}2n → {0, 1} that have only small 1-

monochromatic rectangles. It suffices that h(x, y)h(y, z)h(x, z) be 1 on a large fraction of inputs. Also,

although the above Lemma is stated only for k = 3 it is easy to see that the same bounds hold for larger k.

Given that any function f(x, y, z) of the form h1(x, y)h2(x, z)h3(y, z) has communication complexity

at most 3, it seems unlikely that any function is complete for NP
cc
3 under efficient reductions that do not

require communication.

6 Open Problems

In this paper we have separated the NOF communication complexity analogs of the complexity classes P
cc
k

and RP
cc
k for up to k = nO(1) players. This is somewhat surprising because the only method for proving

any lower bound for an explicit function is the discrepancy method, which only seems to work for up to

k = log n players. A major open problem is to prove this separation for an explicit function in P
cc
k .

As mentioned earlier, a similar separation has recently been proven between the NOF communication

complexity analogs of RP
cc
k and NP

cc
k for up to k = ǫ log n players for all ǫ < 1. It is open whether or not

this separation continues to hold for more players, even for nonexplicit functions.
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