
CSC 363 - Summer 2005
Assignment 4

due on Tuesday, August 9th, at 6pm

Problem 1 [15p]
Recall that we defined coNP as the class of languages L such that the complement of L is in NP.
Formally, coNP = {L|L ∈ NP}.

(a) [5p] We can define the class coNP-hard in a manner similar to that in which we defined the class
NP-hard. So, we say that language L is coNP-hard if every language L′ ∈ coNP is polytime
reducible to L, i.e. L′ ≤p L. Furthermore, we say L is coNP-complete if L is both coNP and
coNP-hard.
Show that, for every language L, L is coNP-hard iff L is NP-hard.

(b) [10p] Show that if there exists some NP-complete language that is in coNP, then NP = coNP.

Problem 2 [10p]
This is part of problem 7.23 on p.296 of Sipser v2. Let CNFk be the language consisting of encodings of
satisfiable CNF formulas, in which every individual variable appears at most k times. Note that we are
counting both positive and negative appearances. For example, f = (x1 ∨x1 ∨x2 ∨x1)∧ (x1 ∨x3)∧x2

is a satisfiable CNF formula in which x1 has 4 appearances, x2 has 2 appearances and x3 has one
appearance. So 〈f〉 ∈ CNF4, but 〈f〉 /∈ CNF3. Also note that the size of the clauses does not play
any role in deciding membership to CNFk.

Prove that CNF3 is NP-complete.

Problem 3 [20p]
In the Simple Knapsack problem, we are presented with m weights, w1, . . . , wm, and a bound W , all
in binary notation. We need to select a subset of weights S ⊆ {1, . . . ,m}, such that the sum of those
weights,

∑
i∈S wi is maximum, while not exceeding W . In the decision version, we are also given a

bound T , and we have to accept iff there is a subset with total weight at least T and not more than
W .

Formally,

SKD = {〈w1, . . . , wm, T, W 〉 | ∃S ⊆ {1, . . . , m} such that T ≤
∑

i∈S

wi ≤ W}.

It is easy to show that SKD is NP-complete using a reduction from Subset-Sum. You may use this
fact without proof.

(a) [5p] Show that, if P = NP, then there exists a polynomial time algorithm, which, on input
〈w1, . . . , wm,W 〉, outputs a value T , such that T is the maximum sum achievable with these
weights, that is at most W . In other words, T = max(

∑
i∈S wi | S ⊆ {1, . . . ,m} and

∑
i∈S wi ≤

W).
Note: For this part, assume that all the values mentioned (weights, bounds) are positive integer
numbers.

(b) [15p] We have seen that for problems like CLIQUE or VC, if the target parameter is a constant
or the maximum value minus a constant, the problem has polynomial time solutions; and if the
target parameter is half the maximum value, the problem is still NP-complete. We investigate
whether this is the case for SKD.

1

For each of the following languages, prove either that it has a polynomial time algorithm, or that
it is NP-complete:

Half-SKD = {〈w1, . . . , wm,W 〉 | ∃S ⊆ {1, . . . , m} such that
W

2
≤

∑

i∈S

wi ≤ W}

k-SKD = {〈w1, . . . , wm,W 〉 | ∃S ⊆ {1, . . . , m} such that W − k ≤
∑

i∈S

wi ≤ W}

Note: For this part, assume that all the values mentioned (weights, bounds) are positive rational
numbers. You may assume we represent the rational number p/q (where p, q are positive integers)
as 〈p, q〉. In other words, the length of the encoding of p/q is in the order of the sum of the lengths
of the encodings of p and of q: |〈p, q〉| = O(|〈p〉| + |〈q〉|). In a nutshell, what I’m saying is that
you can perform division as long as both numerators and denominators are reasonably sized.

2

