CSC363-Summer 2005

Assignment 1
due on Tuesday, June 7th, at 6 pm

Problem 1 [10p]
Give a regular Turing Machine deciding the language $L=\left\{w w \mid w \in\{0,1\}^{*}\right\}$. Begin with a high-level description of how the machine works, followed by a formal description. To specify the transition function, you may use a table or a diagram. Also include informal descriptions of the states of your machine.

Problem 2 [10p]
A 2-head Turing Machine has a single two-way infinite tape, and 2 heads which can operate on the tape independently of each other. The transition function of a 2-head TM is of the form

$$
\delta\left(q, c_{1}, c_{2}\right)=\left(q^{\prime}, c_{1}^{\prime}, D_{1}, c_{2}^{\prime}, D_{2}\right)
$$

where q, q^{\prime} are states, $c_{1}, c_{2}, c_{1}^{\prime}, c_{2}^{\prime}$ are characters of the tape alphabet, and D_{1}, D_{2} are directions Left or Right. This transition means that, when the TM is in state q, head number 1 is reading c_{1} and head number 2 is reading c_{2}, the machine moves to state q^{\prime}, head number 1 writes c_{1}^{\prime} and moves in the direction D_{1}, and head number 2 writes c_{2}^{\prime} and moves in the direction D_{2}.

We adopt the following convention: if the two heads are reading the same cell prior to a transition, and they attempt to write distinct characters to the same cell during that transition, the character written by head number 1 will end up on the tape.

Show that 2-head TMs recognize the same class of languages as regular TMs. In your proof, you may give implementation-level descriptions of TMs (descriptions in English of how the machine moves its head and how it stores data on its tape).

Problem 3 [10p]
This is problem 4.18 from p. 170 in Sipser. Let A and B be two disjoint co-Turing-recognizable languages (meaning that their complements are Turing-recognizable, see p.167). Show that there exists a decidable language C, such that $A \subseteq C$ and $B \subseteq \bar{C}$.

Problem 4 [15p]
Let $A_{1}, A_{2}, \ldots, A_{i}, \ldots$ be a list of some languages such that for every i, A_{i} is decidable (i.e. for every i, there exists a decider M_{i} such that $\left.A_{i}=L\left(M_{i}\right)\right)$. Let

$$
A=\bigcup_{i \geq 1} A_{i}
$$

(a) $[5 \mathrm{p}]$ Prove that A is recognizable.
(b) [5p] Can A be recognizable but not decidable? Prove your answer.
(c) $[5 p]$ Let k be some fixed integer. Consider the language

$$
L_{k}=\left\{w \in\{0,1, \ldots, 9\}^{*}| | w \mid \leq k \text { and } w \text { appears in the decimal expansion of } \pi\right\}
$$

In plain English, L_{k} contains those strings w of length at most k such that w appears in the decimal expansion of π. We know $\pi=3.14159265$. ., so, for example, $41 \in L_{2}$ and $926 \in L_{4}$. Is L_{k} recognizable? Is L_{k} decidable?
(d) [Bonus 2p] Do you think that the following language is decidable? Explain.

$$
L=\left\{w \in\{0,1, \ldots, 9\}^{*} \mid w \text { appears in the decimal expansion of } \pi\right\}
$$

