Problem 1 [20p]
Show that a language \(L \) is decidable iff there exists an enumerator \(E \) that enumerates the strings in \(L \) in lexicographical order.

Problem 2 [10p]
Let \(\Sigma \) be a finite alphabet.
1. Let \(A \) be the set of all functions \(f : \Sigma^* \rightarrow \{0, 1\} \). Is \(A \) countable or uncountable? Justify briefly.
2. Let \(B \) be the set of all functions \(f : \{0, 1\} \rightarrow \Sigma^* \). Is \(B \) countable or uncountable? Justify briefly.

Problem 3 [10p]
Prove that the halting problem for C programs is undecidable. In your proof, you may not mention the Church-Turing thesis or Turing Machines. Simply adapt the diagonalization-like argument seen in class to work for this problem.

Formally, let us assume that C programs are single-functions with signatures of the form \(\text{int } f(char *w) \). Assume that a C program either halts with an integer output by calling the special \(\text{return(int value)} \) function, or it does not halt (in particular, treat any crash as a not halt). Furthermore, assume that you have access to a built-in function \(\text{int run(char *P, char *x)} \) that interprets \(P \) as a C program and \(x \) as an input, and it effectively runs program \(P \) on input \(x \) (in reality, one can actually implement this function by compiling the code of \(P \) at run-time and running the resulting executable on input \(x \)). If \(P \) halts on input \(x \), the \(\text{run} \) function returns the value \(P(x) \). If \(P \) does not halt on input \(x \), the call to the \(\text{run} \) function will not halt either.

Show that there is no C program with signature \(\text{int halt(char *P, char *x)} \) such that for all C programs \(P \) and inputs \(x \), \(\text{halt}(P,x) \) returns 1 if the call \(P(x) \) halts and 0 if it does not halt.

Note: We said that C programs take only one \(char * \) argument and now we’re asking about a C program that takes two arguments. Do not get stuck into this kind of details, that’s not the point of the question. If it makes you feel better, assume that both \(\text{halt} \) and \(\text{run} \) work as they should when \(P \) is a C program with a single argument and crash otherwise.

Problem 4 [20p]
We can encode each TM \(M \) as a unique string \(\langle M \rangle \) over the alphabet \(\{0, 1\} \). Let \(\langle M_1 \rangle, \langle M_2 \rangle, \ldots \) be the list of all TM encodings in lexicographical order. You may assume that it is computationally possible to (i.e. some TM can) accomplish the following: when presented with an input \(w \), find out if \(w = \langle M_i \rangle \) for some \(i \), and output that index \(i \).

Define \(f : \mathcal{N} \rightarrow \mathcal{N} \) by \(f(k) = \) index in the above list of the \(k \)-th TM \(M \) such that \(L(M) = \emptyset \).

Notice that \(f \) is well defined for every \(k \), since there are infinitely many TMs \(M \) with \(L(M) = \emptyset \). For example, if \(L(M_2) = L(M_5) = \emptyset \) and \(L(M_1), L(M_3), L(M_4) \) are not empty, then \(f(1) = 2 \) and \(f(2) = 5 \).

Prove that \(f \) is not computable. Hint: assume it is computable by some TM \(M_f \) and show how to use \(M_f \) to construct another decider TM for a language we know is undecidable.

Problem 5 [10p]
Consider the following problem. We are given two TMs \(M_1, M_2 \) with the same input alphabet and a string \(w \), and we need to decide if it is the case that: if \(M_1 \) accepts \(w \), then \(M_2 \) accepts \(w \). So: if \(M_1 \) does not accept \(w \) (rejects or doesn’t halt), then the answer should be YES, regardless of what \(M_2 \) does. If \(M_1 \) accepts \(w \) and \(M_2 \) accepts \(w \), again the answer should be YES. If \(M_1 \) accepts \(w \) and \(M_2 \) doesn’t accept \(w \), then the answer should be NO.

We formalize this problem as language membership by defining the language

\[
L = \{ \langle M_1, M_2, w \rangle : M_1, M_2 \text{ are TMs and } w \in L(M_1) \Rightarrow w \in L(M_2) \}\]
1. Show that $A_{TM} \leq_m L$.
2. Show that $A_{\overline{TM}} \leq_m L$.