
CSC310 - Fall 2007
Assignment 3

due on Monday, December 3rd.

For all questions below, show your work. Do not just write down numbers. Do not show every single addition,

but show enough work to convince the reader you know what you are doing.

Problem 1

Let C1 and C2 be two codes for the same source with codeword lengths N1 and N2, respectively. We
define the product code C1C2 as follows. This code has codewords of length N1 ·N2. Given a string of that
length, arrange it in a matrix with N2 rows and N1 columns, filled from left to right starting with the top
row (that is, the (N1 + 1)-st bit in the string is in row 2 column 1 of the matrix). Now, this string is a
codeword in the C1C2 code if and only if every row is a codeword of C1 and every column is a codeword of
C2.

(a) Show that if C1 and C2 are arbitrary codes, their product could be empty.
(b) Show that if C1 and C2 are linear codes, their product is a linear code as well.
Let C1 and C2 be the codes with the following generator matrices:

G1 =

(

1 0 1 0
0 1 0 1

)

, G2 =

(

1 0 1
0 1 1

)

So, C1 is a [4, 2] code and C2 is a [3, 2] code. Think of each codeword in C1C2 as a 3× 4 matrix. One way to
view encoding is to arrange a block of 2× 2 input bits in the top left corner of a 3× 4 matrix, then complete
the rows to be codewords in C1, and finally complete the columns to be codewords in C2.

Let u and v be two column vectors. Their outter product is u · vT , which is a matrix with |u| rows and
|v| columns.

(c) Explain how to perform encoding in C1C2 in terms of outter products of basis vectors of the original
codes. You may assume that the source K1 × K2 = 2 × 2 bits are arranged in a 2 × 2 block of the 3 × 4
codeword matrix, left to right, starting with the top row.

Now take every codeword 3× 4 matrix and view it as a 12 bit string, by listing the top row, left to right,
then the second row and finally the third row.

(d) Give a generator matrix for C1C2 seen as a linear [12, 4] code in the manner described above.
It can be shown that if the minimum distances of C1 and C2 are d1 and d2, respectively, then the minimum

distance of C1C2 is d1 · d2. Thus, for the specific codes above, the minimum distance of C1C2 is 2 · 2 = 4.
(e) Imagine we use the product code across the BSC. Give an example of a transmission that has distance

2 from 2 distinct codewords. That is, assuming the channel introduced 2 independent errors, there are 2
equally possible ways to decode the transmission.

(f) Imagine we use the product code across a special type of BSC in which errors come non-independently,
in pairs of consecutive bits. Show that if the channel modifies only 2 consecutive bits (remember, we transmit
the top row, then the middle row, then the bottom row, each left to right) we can always recover the correct
codeword.

(g) Is (f) above still true if we replace the row code C1 by C′

1
that has the following generator matrix?

G′

1
=

(

1 0 0 1
0 1 1 0

)

Problem 2

Let C3 be the identity [N, N] linear code which has as generator matrix the identity N ×N matrix. Let
C4 be the [7, 4] Hamming code we saw in class. Consider the C3C4 product code across the BSC (C3 is used
for the rows).

1

(a) Assume we know the channel flipped t independent bits in a codeword. For what value of t can we
be sure to recover the correct codeword?

(b) Assume we know the channel flipped N consecutive bits in a codeword. Show that we can recover
the correct codeword.

(c) Using an algorithm similar to part (b) above, what is the maximum R so that we can always recover
N + R consecutive bit flips? For this question, do not lose yourself in case analysis just to add 1 or 2 to R.
If you have an idea of how to deal with R greater than 0, explain that idea, and say for how large an R it
works.

Problem 3

In this problem we provide a justification for the choice of random low-density parity check matrices
over general parity check matrices when it comes to using the message-passing algorithm we talked about
in class. Even though this question is not about numerical computations, it might help to keep in mind a
typical setting of parameters.

Suppose we want to communicate over the BEC with erasure probability f (think of f being small, like
.1). We know this channel has capacity C = 1− f . We want to construct a linear code that has rate R, with
R very close to but less than C (for instance, R = C − δ for some very small δ). Knowing our target rate R,
we choose K and N so that K/N = R. The specific choice of K and N depends on R = 1 − f − δ, thus on
f and δ. For the purposes of this question, f is fixed, and we study what happens as δ approaches 0. You
may assume without proof that as δ goes to 0, N goes to infinity.

In scenario 1, we construct our [N, K] code C1 as follows. Pick a random parity check matrix H1 by
setting each bit to 1 independently at random with probability α, where α is a constant in (0, 1) (for instance,
if the bits are picked uniformly at random, α = 1/2).

In scenario 2, we construct our [N, K] code C2 as follows. Pick a random parity check matrix H2 by
setting each bit to 1 independently at random with probability β/N , where β is a constant like 6.

Note. Scenario 2 doesn’t always generate a low-density parity check matrix. To see this, note that

there is a very small chance that, when flipping all N bits corresponding to one row, we will get all

1s. The probability of this bad event happening is exactly (β/N)N , which is a very small number

when N is large. However, the expected number of 1s per each row in H2 is (β/N) ·N = β, which

is a constant, like in a LDPC matrix. That’s why we consider scenario 2 to be very relevant to

a generating a true LDPC matrix.

Suppose we transmit a codeword w of length N across our BEC, and we receive r.
(a) What is the expected number of ’?’-s in r?
From now on, assume that the number of ’?’-s in r is exactly equal to the expected number you found

in (a). If you do not know how to solve (a), and only then, use (.3) · N as the number of ’?’-s.
To recover the ’?’-s, we will use the message passing algorithm we talked about in class. Note that, in

the graph associated with the parity check matrix, in order to derive the true value of the transmitted-bit
node i, we must have a check-bit node j such that j is a neighbour of i and we know the values of all other
neighbours of j. We call j a useful check-bit node, as we can use it to derive a new transmitted bit.

The questions below are about the very beginning of the message passing algorithm:
(b) Using code C1, what is the probability that the check-bit node j is useful?
(c) Using code C1, give an upper bound for the probability that there exists a useful check-bit node.
(d) Using code C2, what is the probability that the check-bit node j is useful?
(e) Using code C2, what is the probability that the check-bit node j is not useful?
(f) Using code C2, give an upper bound for the probability that none of the check-bit nodes are useful.
(g) Discuss what (c) and (f) tell you about decoding the codes C1 and C2 as N grows.

2

