
Security

What about MongoDB?
●  Even though MongoDB doesn’t use SQL, it

can be vulnerable to injection attacks
db.collection.find({active: true, $where: function() { return obj.credits -
obj.debits < req.body.input; } });

db.collection.find({active: true, $where: function() { return obj.credits -
obj.debits < 0; var date = new Date(); do {curDate = new Date();}
while(curDate-date<10000); } });

Protection
●  Don’t use $where, mapReduce, group which

accepts arbitrary JavaScript expressions
●  security.javascriptEnabled = false
●  Escape all user inputs before passing to

$where clause

Same Origin Policy
Motivation
●  Users visit many websites at a same time using browser

tabs or multiple windows
●  A webpage may include some JavaScripts to access its

DOM and send AJAX msgs to its backend
o  What if the script can also do same with other websites?

●  A website must not steal sensitive information from
another website opened by the same browser

Same Origin Policy
Let users visit untrusted websites without those
websites interfering with user’s session with
honest websites

Same Origin Policy
What is allowed?
●  GET/POST requests to different origins

o  Not PUT, DELETE
●  <script src=”other domain/script.js”>

o  similarly including , css, etc
Relaxation Methods
●  document.domain, CORS, JSONP

XSSI
●  Cross-site script inclusion

o  <script src=”URL”></script>
●  What is script’s origin?

o  Including document’s origin; therefore, the document
has full access to the script’s content

●  What if URL returns a dynamically created
JavaScript instead of a JavaScript file?

XSSI
<script src=”http://yourapp.com/secret”></script>
●  If http://yourapp.com/secret returns a JavaScript with

sensitive data and some functions…
o  Functions can be replaced with attacker’s version

and sensitive data can be stolen
●  If http://yourapp.com/secret returns a JSON array…

o  Attacker can override JSON array constructor to
steal array contents

XSSI

XSSI Protection
●  Do not support GET requests for script

returning URLs
o  <script src=”...”></script> sends GET requests

●  Use XSRF tokens (will talk later)
●  Do not include sensitive data

XSS
●  XSS enables attackers to inject scripts into

webpages viewed by other users
o  bypasses same origin policy

●  Injected script can do many things
o  steal cookies
o  change appearance of webpages
o  steal sensitive data displayed on webpages
o  ...

XSS
●  There are mainly 3 types

o  Reflected XSS
o  Stored XSS
o  DOM-based XSS

●  They are different in how scripts are injected
to webpages

Reflected XSS

Stored XSS

Injection Points
●  query parameters
●  form fields
●  cookies
●  HTTP request header
●  DB
●  filesystem

o  PHP

XSS Protection
●  Input validation
●  Output validation
●  HttpOnly option for cookies

XSS Protection
express.js
●  express-validator module
●  sanitizer module
●  xss-filters module
●  and many more..
Django
●  templates

XSRF
●  XSRF makes a user to submit requests on

behalf of the attacker

Why XSRF works?
●  Same Origin Policy allows sending GET/POST requests

to different origins
o  hyperlinks, forms, script, img, css, etc

●  User’s browser automatically submits cookies for all
requests

●  Whether a user intended a request or forced by an
attacker is unknown to websites!

XSRF Protection
●  Give a secret token to a user and tell the

user to submit it along with cookie on
following requests

●  Attacker cannot guess this token and
therefore websites can tell if the user wanted
to send a request or not

XSRF Protection

XSRF Protection

XSRF Protection
express.js
●  csurf module

Django
●  CsrfViewMiddleware

XSS Demo
Setup:
git	
 clone	
 https://github.com/sukwon0709/express.git	

cd	
 express	

npm	
 install	

npm	
 install	
 express-­‐validator	

	

Running:
node	
 example/auth	

XSS Demo

Input
<script>alert(‘you are hacked!’);</script>
to Username field

XSS Demo

XSS Demo
To test fixed version using express-validator..
cp	
 examples/auth/index.js	
 examples/auth/index_bad.js	

cp	
 examples/auth/index_fixed_xss.js	
 examples/auth/index.js	

node	
 examples/auth	

XSS Demo

Input
<script>alert(‘you are hacked!’);</script>
to Username field

XSS Demo

XSS Demo
Look at comments starting with XXX (soh) to
see how to use express-validator module.

XSRF Demo
Setup:
1.  npm install csurf
2.  Run node examples/auth again
3.  Open xsrf.html file on your browser
4.  Look at terminal output

XSRF Demo

XSRF Demo

A user logged in to auth app by just opening
xsrf.html page.

XSRF Demo
To test fixed version using csurf module..
cp	
 examples/auth/index.js	
 examples/auth/index_xsrf.js	

cp	
 examples/auth/index_fixed_xsrf.js	
 examples/auth/index.js	

cp	
 examples/auth/views/login.ejs	
 examples/auth/views/login_xsrf.js	

cp	
 examples/auth/views/login_fixed_xsrf.js	
 examples/auth/views/login.djs	

	

Run with:
node	
 examples/auth	

open	
 xsrf.html	
 on	
 your	
 browser	

XSRF Demo
Browser shows:

XSRF Demo
Terminal shows:

XSRF Demo
Look at comments on index_fixed_xsrf.js and
views/login.ejs to figure out what you need to
do.

