Performance

1. Load Testing
2. Frontend Tips
3. Server-side Tips

Load Testing

Load testing is the process of putting demand on a system
or device and measuring its response. Load testing is
performed to determine a system’s behavior under both
normal and anticipated peak load conditions.

Load Testing in High Level

Purpose

e Predict how your application will perform when a large
number of users are using your application at the same
time

How?
e Simulate artificial but realistic workloads

Load Testing Tools

e JMeter

o Free and written in Java
e [sung
o Free and written in Erlang
e |oader.io
o Partially free; integrates with Heroku

e |ocust.io
o Free and written in Python (Today’s Focus)

Advantages
e \Write simple Python code to simulate a user behaviour
e Handles thousands of users on a single machine

Disadvantages
e Results are downloadable in CSV format

Installation
pip install locustio

Every HTTP connection will open a new file, but OS sets a
limit for the max # of files that can be opened.

You need: # max open files >= # of user you want to test
Linux

ulimit -Sn <# max open files> <- works up to
~64,000

Make sure to do this for both terminals

running express.js and locust.io!!!

1. Simulating a user
Write a class subclassing HttpLocust to define
a user.

class User(HttpLocust):
task set = UserTasks
min_wait = 5000
max_wait = 15000

Explanation:
A user’s behaviour will be defined in UserTasks class. The user will wait
randomly between 5 to 15 secs before sending a request to the application.

class UserTasks(TaskSet):
@task(2)
def index(self):

self.client.get(“/”)

@task(1)

def about(self):

self.client.get(“/
about/”)

Explanation:

A user will randomly send a GET
request to “/” endpoint and a GET
request to “/about/” endpoint. The
user will send GET requests to “/”
about twice as many times as GET
requests to “/about/”.

locust.io Web Interface

Locust

€« C [} 127.0.0.1:8089

LOCUST

AMODERN LOAD TESTING TOOL

Start new Locust swarm
Number of users to simulate

300

10|

Start swarming

STATUS
READY

locust.io Web Interface

LOCUST STATUS SLAVES RPS FAILURES
RUNNING 0%
(]
A MODERN LOAD TESTING TOOL :61(;0 users 6 76 4

/

/blog

/blog/[post-slug]

fforum
fforum/[thread-slug]
fforum/[thread-slug]
fforum/new

Isignin

Total

Front-end Tips

1. gzip
2. cache control

gzip in express.|s

e Use compress middleware (Version 3.x)
app.use(express.compress());

e Use compression middleware (Version 4.x)
var compress = require(‘compression’);
app.use(compress());

Cache Control

e HTTP Header
e You can tell a user’s browser to cache

specific resources from your application
o €.g.images, js files, css files, etc

e Reduce latency
o a user will receive response faster

e Reduce network bandwidth
o a network can handle more messages

Cache Control

Useful headers
e Mmax-age=[seconds]
o max amount of time a resource will be considered fresh

e no-cache
o forces server validation before releasing a cached copy

e no-store
o disable caching a resource

e public/private
o allow/disable caching a response to a public (shared) cache

Cache Control

e \What happens if a resource seems stale?
o Cache will try to validate its copy against your
application
o Uses Last-Modified or ETags header

Last-Modified

How It works

HTTP Cache: Last-Modified

i R ea— d 2.Web Server Finds File
GET /logo.png HTTP/1.1 1IKB > Jvar/www/_flogo
If-Modified-Since: Mar 16 2007 ~/1080-png
Checks
Date
3.Server Response

Cache Not Modified

4, Browser Loads Page From | 7 1kB ‘ HTTP/1x304

ETags

How It works

HTTP Cache: If-None-Match

1. Browser Request
GET /logo.png HTTP/1.1
If-None-Match: ead145f

2.Web Server Finds File

| 1KB Jvatfvewiwe_logo.pog \
| 1 ,.
Checks

ETag

. 3. Server Response
4. Browser Loads Page From e | HTTP/1.x304
Cache e Net Modified

ETag usually computes a hash ot a resource to detect any
changes made to it.

Cache Control Iin express.js

e Good News!
o They are mostly built-in or easy to use!

Cache Control in express.js

e Static Files
o Use express.static() with maxAge option

Example

app.use(express.static(_dirname + ¢/public’, {
maxAge: 86400000

1))

Cache Control in express.js

e favicon
o serve-favicon module

Example

var favicon = require(‘serve-favicon’);
app.use(favicon(path.join(__dirname, ‘public’,
‘favicon.ico’), {maxAge: 86400000}));

Cache Control in express.js

ETags
e express.js calculates ETags automatically

e However, if you want to customize it...

app.set(‘etag”, function(body, encoding) {
return calculateHash(body, encoding);

})s

Cache Control Iin express.js

e response.send() does automatic cache
control support
e htip://expressjs.com/api.html for more

information
e But you can always set these headers
manually!

Backend Tips

1. Increase parallelism of node.js
2. Caching
3. DB index

e Asynchronous + single threaded
o Almost all computers are multi-core now
o node.js (express.js) uses only 1 core by default!

e Solution?
o Run one node.js process per core of your machine

Cluster module

e cluster module makes your job of managing
multiple node.|s processes easier.
e https://nodejs.org/api/cluster.html for more

iInformation

Cluster module

var cluster = require(‘cluster’);
var numCPUs = require(‘os’).cpus().length;
if (cluster.isMaster) {
for (var i = 0; i < numCPUs; i++) cluster.fork();
} else {
var app = require(‘express’)();
app.get(¢/’, function(reqg, res) {..});
app.listen(3000);

Handling failures

if (cluster.isMaster) {
for (var 1 = @; i < numCPUs; i++) cluster.fork();
cluster.on(‘exit’, function(worker) {
cluster.fork();

})s

Basic Idea:
Cache resources that are costly to generate
and frequently read and rarely modified

Options:
e Redis, Memcached, Varnish, ...

Caching with Redis

e Key-value cache/store known to be very very
fast! http://redis.io/

e |dea:
o Store results from expensive computation in Redis
for quick reuse (avoid computation)

Using Redis

e [nstallation instruction Iin
nttp://redis.io/download

e Provides node.js driver similar to MongoDB
o npm install redis

app.get(‘/expensive’, function(req, res) {
var result = 0;
for(var 1 = 0; 1 < 100000; i++) {..}
res.send(result);

})s

var redis = require(‘redis’);
var client = redis.createClient();
app.get(“/expensive’, function(req, res) {
client.get(‘result’, function(err, val) {
if (val) return res.send(val);

else {
var result = 0;
for(var i=0; i<10000; i++) {..}
client.set(‘result’, result);

}

1)
1)

MongoDB Index

e |ets you avoid scanning every document in
a collection

e Speeds up your read operations

e However, they may hurt your write

operations
o Because it needs to write more data

MongoDB Index

e |[ndexes are just data structures that stores
specific field values in sorted order

Example

db.collection(‘collection’).createIndex(
{field: 1}

)5

