What is Express.js?

 Web application framework for Node.js
e Light-weight and minimalist

* Provides boilerplate structure & organization
for your web-apps

Installing Express.js

* |nstall node and node package manager (npm)
— ‘sudo apt-get install nodejs’ on Debian/Ubuntu.
— Installer available for Mac [1]
— Installing node should also install npm

— Running ‘node’ on a shell would now open an
interactive node session (just like python)

[1] http://nodejs.org/download/

http://nodejs.org/download/

Installing Express.js

* We can now create a project (say a blog),
initialize it as a node package & install express.js
— ‘mkdir blog && cd blog’
— ‘npm init’
* Creates a node package (touching package.json)
» pacakge.json: lists all dependencies (node modules)

— ‘npm install express --save’
* |nstall express and add it as a dependency to our app

Hello World - Example

Let’s write a simple hello world program using node and express.

We create a file ‘app.js’ inside the blog directory, with the following
contents:

var express = require('express');
var app = express();

4 app.listen(3000);

* The app is invoked with ‘node app.js’ on the console. At this point, node listens

on port 3000, but doesn’t really do much.
* We can check this out, by accessing http://localhost:3000 on the browser.

http://localhost:3000/

Example - Continued

With a few more lines:
var express = require('express’');
var app = express();

app.get('/"', function(request, response)){
response.send('Yay!');

LE

app.listen(30660);

-~
-
/1
s
oY
pe
o
7

CO

* Declare an instance of express called ‘app’

* Accept requests on ‘/’ (the root path on the URL — localhost:3000) and
pass it to function (more on this later).

* The processing function or ‘callback’ receives the request and is expected
to present with a response.

Example - Continued

With a few more lines:

var express = require('express’');
var app = express();

=

|

app.get('/"', function(request, response)){
response.send('Yay!');

LE

app.listen(30660);

-
/1

o
pe

o

()

* Send a string as the response.

Example - Continued

We can obviously add some ‘dynamically’ generated content:

var express = require('express');
var app = express();

app.get('/', function(request, response)){
var d Date();
response.send("Yay!
 Today's date is " + d "/b>");

s

app.listen(3000);

i @ [localhost

Yay!
Today's date is: Mon Feb 02 2015 23:45:57 GMT-0500 (EST)

Routing

* Apps needs to know what exactly to do when
a request is made to a particular endpoint.

— http://localhost:3000/ -- /" is the endpoint

— http://localhost:3000/admin -- ‘/admin’ is the
endpoint

* We do this by defining routes. In the previous
example, we defined one route ‘/* which
returned a string as the response.

Routing - structure

e app.METHOD(ENDPOINT, HANDLER)
— Equivalent to app.action(where, what-to-do)

* ENDPOINT: What path is the request directed
to.

— This can be a regular expression.
— app.get('/ab*cd’,); will match:

* localhost:3000/abcd, localhost:3000/abXYZcd and so
on.

Routing - structure

e app.METHOD(ENDPOINT, HANDLER)
— Equivalent to app.action(where, what-to-do)

* ENDPOINT: What path is the request directed
to.

— This can be a regular expression.

— app.get(/.*catS/,); will match:

* localhost:3000/happycat, localhost:3000/sadcat and so
on.

Routing - structure

 app.METHOD(ENDPOINT, HANDLER)
— Equivalent to app.action(where, what-to-do)

* HANDLER: Or a ‘callback’ — function that
determines how to process the request.

— Takes in a few parameters (request and response
as an example).

Routing - structure

* Handler: 4 app.get('/', function(request, response)){

— Sent in an anonymous function that would receive
the request and return a response.

— Data pertaining to t
be obtained throug

— Data pertaining to t

nis instance of the request can
n the ‘request’ variable.

ne response should be

handled through the ‘response’ variable.

Routing - structure

e Handler:

— Handler functions can also be passed as variables
for brevity.

var my_handler = function(reqg, res){
res.send('This works too.');

o

app.get('/', my_handler);

Routing — chaining handlers

* Handlers can be chained together.

— Route handlers take a third parameter called ‘next’.
Invoking this variable as a function, delegates the request
to the next handler (if there is one).

var secret_check = function(reqg, res, next){

next();
}s

var error = function(req, res){
res.send("Access denied.")

b i

app.get('/', secret_check, error);

Routing — chaining handlers

var secret _check = function(req, res, next){

next();
}s

var error = function(req, res){
res.send("Access denied.")

}s

app.get('/"', secret _check, error);

— Ordering of the handlers matter.

— |f secret_check() sent in a response (instead of calling
next) the delegation to error() won’t happen and the
handler chain would stop with secret_check()

Response methods

Method Description
res.download() Prompt a file to be downloaded.
res.end() End the response process.
res.json() Send a JSON response.
res.jsonp() Send a JSON response with JSONP support.
res.redirect() Redirect a request.
res.render() Render a view template.
res.send() Send a response of various types.
res.sendFile Send a file as an octet stream.

res.sendStatus() Set the response status code and send its string representation as the response body.

Aside: Logging

e ‘console.log(...)” is extremely useful for logging
information server side (by default would
print out to the console).

— Helps with debugging.

8 app.get('/', function(req, res)){

console.log("Someone made a request from: " req.connection.remoteAddress)
10 res.send('Yay!');
11 1)
— Prints out the client’s IP address for every request
they make -- to the console (where you invoked

‘node app.js’)

EXxpress generator

* Express provides a tool that can create and
initialize an application skeleton.

— Sets up a directory structure for isolating your
business and presentation logic (among others).

— Not a norm in any way, can be used as a starting
point.

EXxpress generator

* How to use it?
— Installing using ‘npm install express-generator —g’
— Can then be invoked with ‘express’
e Create an app (for instance, a blog)
— ‘express blog’ — will generate the directories/files
— ‘cd blog && npm install’ — will install the dependencies
— Invoke the server using ‘DEBUG=blog ./bin/www’

EXxpress generator

* Provides & sets up some boilerplate
code for getting started faster

* Adds some commonly used
dependencies

* Pretty good starting point for digging
deeper into Node.js/Express.js

* Creates a structure that allows
separation of concerns on
business/presentation logic (more on
this next week)

app-js
bin

Wwwi

package.json
; public

images

javascripts

stylesheets

style.css

routes

index.js

users.js

views

error.jade

index. jade

layout.jade

Resources

e http://expressjs.com (Sections: Guide, API ref.)

* http://expressijs.com/starter/faqg.html

 http://code.tutsplus.com/tutorials/introduction-to-express--
net-33367

 Some resources on the slides are based on ‘Getting Started’
section from http://expressjs.com

Using template engine

* First you need to tell express to use JADE
template engine.

* Then you can create JADE template files inside
view directory.

app.set(‘'view engine’, 'Jade’);

Using template engine

iIndex.jade

html

head
title!= title

body
h1l!= message

Using template engine
app.|s

app.get('/’, function(request, response) {
res.render(‘index’, {title: 'Hey', message: 'Hello there!'});

D;

