
A Normal Form for XML Documents

Marcelo Arenas

Department of Computer Science

University of Toronto

marenas@cs.toronto.edu

Joint work with Leonid Libkin

Outline

• Motivation

• Functional dependencies for XML

• A normal form for XML documents

• An algorithm for normalizing XML documents

• Implication problem for functional dependencies

• Ongoing work

A Normal Form for XML Documents 1

XML Data: University Database

name

"A"

grade

courses

name

@cno taken_by @cno taken_by

student student student student

@sno name@snograde@snograde@sno namegrade

"Smith" "Smith""st1" "Deere" "A+" "st2" "B+""B-" "st1" "Deere" "st3"

"csc200" "mat100"
title

"Automata
Theory"

title
"Calculus"

coursecourse

A Normal Form for XML Documents 2

DTD: Schema of XML Documents

<!DOCTYPE courses [

<!ELEMENT courses (course*)>

<!ELEMENT course (title, taken_by)>

<!ATTLIST course

cno CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT taken_by (student*)>

<!ELEMENT student (name, grade)>

<!ATTLIST student

sno CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT grade (#PCDATA)>

]>

A Normal Form for XML Documents 3

Semantic Information

• XML specifications can include semantic information:

♦ Two distinct course elements cannot have the same cno

♦ Two distinct student subelements of the same course cannot have the

same sno

♦ Two student elements with the same sno value must have the same

name

• XML documents can contain redundant information

A Normal Form for XML Documents 4

Our Goal: Schema Refinement

courses

"A+"

taken_bytitle
"Automata
Theory"

student student

@sno gradegrade@sno

"st1"

grade

"st2" "B-"

@cno
"mat100"

title
"Calculus"

taken_by

student student

@sno

"st1"

"csc200"

"A"

@sno grade

"B+"

@cno name

@sno@sno
"st1"

number

info

"st2"

"Deere"
number number name

@sno
"st3"

"Smith"

info

"st3"

coursecourse

A Normal Form for XML Documents 5

Relational Ideas can be Inadequate: DBLP

@key @pages

conf

db

conf

title

inproceedings

@year author author title booktitle

inproceedings

issue issue

conf

A Normal Form for XML Documents 6

Problems to Address

• Definition of a language for expressing functional dependencies

♦ Simple language

♦ Absolute and Relative constraints

♦ The order of children in an XML tree is irrelevant as far as satisfaction

of constraints is concerned

• Definition of a normal form for XML documents (XNF)

• Construction of an algorithm for normalizing XML documents

♦ Implication problem for functional dependencies

♦ Testing if a specification is in XNF

A Normal Form for XML Documents 7

Framework: DTDs

We do not consider mixed content, IDs and IDREFs

Notation:

• Paths(D): all paths in a DTD D

In the university database example:

courses courses.course

courses.course.@cno courses.course.title

courses.course.title.S . . .

• EPaths(D): all paths that end with an element type

courses.course is in EPaths(D)

courses.course.@cno is not

A Normal Form for XML Documents 8

Framework: XML Trees

"csc200"

"Automata
Theory"

. . .

"st1"

"Deere" "B-""Smith"

"st2"

"A+"

@sno

title@cno

name grade @sno name grade

coursecourse

taken_by

student student

v1

v0

S

v2

v4

v5

S

v7

v9v8

SS

v6

S

v3

A Normal Form for XML Documents 9

Tree Tuples

A tree tuple t in a DTD D is a function from Paths(D) to

Vertices ∪ Strings ∪ {⊥}

t(courses) = v0

t(courses.course) = v1

t(courses.course.@cno) = csc200

t(courses.course.title) = v2

t(courses.course.title.S) = Automata Theory

t(p) = ⊥, for the remaining paths

"csc200"

"Automata
Theory"

title@cno

course

v1

S

v2

v0

A Normal Form for XML Documents 10

XML tree: Set of Tree Tuples

• An XML tree can be represented as a set of tree tuples, if we

consider it as an unordered tree

• We consider tuples containing a maximal amount of

information (minimal set of ⊥ values)

• If T is the XML tree containing information about courses,

then TuplesD(T) = {t1, t2, t3, t4}, where . . .

A Normal Form for XML Documents 11

Tree Tuples of T

"csc200"

"Automata
Theory"

@cno

"Deere" "A+"

"st1"

@sno

"csc200"

"Automata
Theory"

@cno

"Smith" "B-"

"st2"

@sno

. . .

v1

S

v2

v0

v5 v6

S S

v4

v3

t1 :

v1

S

v2

v0

S S

v3

v7

v8 v9

t2 : t3 :

A Normal Form for XML Documents 12

Functional Dependencies for XML

• A functional dependency over a DTD D is an expression

S1 → S2

where S1 and S2 are finite subsets of Paths(D)

• T |= S1 → S2 if for every t1, t2 ∈ TuplesD(T),

t1.S1 = t2.S1 and t1.S1 6= ⊥ =⇒ t1.S2 = t2.S2.

A Normal Form for XML Documents 13

Back to the University Example

• Two distinct course elements cannot have the same cno:

courses.course.@cno → courses.course

• Two distinct student subelements of the same course cannot

have the same sno:

{courses.course, courses.course.taken by .student .@sno} →

courses.course.taken by .student

• Two student elements with the same sno value must have the

same name:

courses.course.taken by .student .@sno →

courses.course.taken by .student .name.S.

A Normal Form for XML Documents 14

XNF: An XML Normal Form

• XML specification: a DTD D and a set of functional

dependencies Σ

• (D,Σ) is in XML Normal Form (XNF) if:

for every non-trivial functional dependency ϕ ∈ (D,Σ)+ of

the form S → p.@l or S → p.S, it is the case that S → p is

in (D,Σ)+

• XNF generalizes BCNF and a normal form for nested relations

(NNF) when those are coded as XML documents

A Normal Form for XML Documents 15

XNF: Back to the Examples

• University specification is not in XNF:

courses.course.taken by .student .@sno →

courses.course.taken by .student .name

is not in (D,Σ)+.

• DBLP specification is not in XNF:

db.conf.issue → db.conf.issue.inproceedings.@year ∈ (D,Σ)+

db.conf.issue → db.conf.issue.inproceedings 6∈ (D,Σ)+

• Proposed solutions are in XNF

A Normal Form for XML Documents 16

Normalizing XML Documents

We consider functional dependencies of the form

{q, p1.@l1, . . . , pn.@ln} → p

where n ≥ 0, q ∈ EPaths(D) and p ∈ Paths(D)

The normalization algorithm applies two transformations until the

schema is in XNF:

• Moving attributes: if there is an anomalous functional

dependency q → p.@l in (D,Σ)+, then
r

@l
@m

p
q

A Normal Form for XML Documents 17

Normalizing XML Documents

• Creating new element types: choose a minimal anomalous

functional dependency {q, p1.@l1, . . . , pn.@ln} → p.@l and

. . .

. . .

r

τ

@ln@l1

τ1 τn @l

@ln @l1

@lpn p1

q

p

A Normal Form for XML Documents 18

Normalizing XML Documents

• Theorem The decomposition algorithm terminates and outputs

a specification in XNF

• Our transformations do not lose information: there are XQuery

queries that translate back and forth two schemas

(a‘ la Hull’s information capacity of schemas)

• It involves implication of functional dependencies

A Normal Form for XML Documents 19

Reasoning about Functional Dependencies

• Typically, regular expressions used in DTDs are rather simple

• D is a simple DTD if D contains regular expression of the form
s1, . . . , sn, where

♦ each si is either one of ai, ai?, a+
i or a∗i

♦ for i 6= j, ai 6= aj

D can also contain “permutations” of this type of expressions:

(course | info)∗

A Normal Form for XML Documents 20

Example: ebXML

Business process specification schema of ebXML:

<!ELEMENT ProcessSpecification (Documentation*, SubstitutionSet*, (Include |

BusinessDocument | ProcessSpecification | Package | BinaryCollaboration |

BusinessTransaction | MultiPartyCollaboration)*)>

<!ELEMENT Include (Documentation*)>

<!ELEMENT BusinessDocument (ConditionExpression?, Documentation*)>

<!ELEMENT SubstitutionSet (DocumentSubstitution | AttributeSubstitution |

Documentation)*>

<!ELEMENT BinaryCollaboration (Documentation*, InitiatingRole, RespondingRole,

(Documentation | Start | Transition | Success | Failure |

BusinessTransactionActivity | CollaborationActivity | Fork | Join)*)>

<!ELEMENT Transition (ConditionExpression?, Documentation*)>

A Normal Form for XML Documents 21

Reasoning about Functional Dependencies

• Theorem For simple DTDs

♦ The implication problem for FDs is solvable in quadratic time

♦ Testing if a specification is in XNF can be done in cubic time

• Other results

♦ There is a larger class of DTDs for which these problems are tractable

(“small” number of disjunctions)

♦ There is a class of DTDs for which these problems are coNP-complete

A Normal Form for XML Documents 22

Ongoing Work

• Improve the decomposition algorithm in various ways

• Find a complete classification of the complexity of the

implication problem for various classes of DTDs

• Construct a more expressive language for functional

dependencies (regular expressions)

• Consider other anomalies and other integrity constraints

• Implementation

A Normal Form for XML Documents 23

