
What’s Hard about XML Schema Constraints?

Marcelo Arenas1, Wenfei Fan2, and Leonid Libkin1

1 Department of Computer Science, University of Toronto.
{marenas,libkin}@cs.toronto.edu

2 Bell Laboratories
wenfei@research.bell-labs.com

Abstract. Data description for XML usually comes in the form of a
type specification (e.g., a DTD) together with integrity constraints. XML
Schema allows one to mix DTD features with semantic information, such
as keys and foreign keys. It was shown recently [2,7] that the interaction
of DTDs with constraints may be rather nontrivial. In particular, testing
if a general specification is consistent is undecidable, but for the most
common case of single-attribute constraints it is NP-complete, and linear
time if no foreign keys are present.
However, XML Schema design did not adopt the form of constraints
prevalent in the database literature, and slightly changed the semantics of
keys, foreign keys, and unique constraints. In this paper we demonstrate
the very costly effect of this slight change on the feasibility of consistency
checking. In particular, all the known hardness results extend to the XML
Schema case, but tractability results do not. We show that even without
foreign keys, and with very simple DTD features, checking consistency
of XML-Schema specifications is intractable.

1 Introduction

Any data-central system must provide a data definition language as well as a
data manipulation language. For commercial relational DBMSs, these languages
are well-understood. As a lot of data is becoming available in XML [11], and
much of database research focus is shifting from the traditional relational model
to semistructured data and XML [1,6,5,9,10], it is important to understand new
issues that arise in the context of describing and querying XML.

One such issue is the semantics of XML data specifications. Traditionally,
XML data was described by DTDs [11]1. But just as in the relational context,
where simple SQL’s create table must be supplemented with various con-
straints to provide semantic information, constraints must be added to XML
specifications as well. Most of the proposals deal with constraints similar to
those found in relational databases: keys and foreign keys [3,4,12]. However, un-
like traditional relational constraints, XML keys and foreign keys interact in a
nontrivial way with DTDs, allowing one to write seemingly perfect specifications
that nevertheless are inconsistent: no document can satisfy them.
1 Throughout the paper, by a DTD we mean its type specification; we ignore its

ID/IDREF constraints since their limitations have been well recognized [3].

R. Cicchetti et al. (Eds.): DEXA 2002, LNCS 2453, pp. 269–278, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

270 M. Arenas, W. Fan, and L. Libkin

In [2,7], we studied this problem, and demonstrated the following. First, if
arbitrary keys and foreign keys are added to DTDs, the consistency problem
is undecidable. Second, with the restriction to one-attribute constraints (unary
constraints, by far the most common in practice), the problem is intractable: de-
pending on the exact flavor of constraints, it is anywhere from NP-complete (sim-
ple element-type absolute constraints [7]) to PSPACE-hard (regular-expression-
based constraints [2]) to undecidable (relative constraints [2]). However, without
foreign keys, the problem is tractable: it is solvable in linear time.

Those results were shown for DTDs and (foreign) keys. These days, the prime
standard for specifying XML data is XML Schema [14]. It is a rather rich lan-
guage that supports specifications of both types and integrity constraints. Its
types subsume DTDs [11], and its constraints – even keys and foreign keys –
have a slightly different semantics from what has been primarily studied in the
database literature. In this paper we investigate specifications that consist of a
DTD and a set of constraints with the semantics proposed by XML Schema. We
show that this little change of semantics complicates things considerably, as far
as consistency checking is concerned.

We say that an XML document satisfies a specification if and only if it
conforms to the DTD and satisfies the constraints, and that a specification is
consistent if there is a document that conforms to it. A specification may be
inconsistent due to the interaction between the type and the constraint parts.

As an example, consider a specification in XML Schema S1 = (D1, Σ1), where
D1 is a simple DTD describing insurance policies for a transportation vehicle
and Σ1 is a set of keys and foreign keys:

D1: <!ELEMENT vehicle ((registr | plate), policy, policy)>
<!ATTLIST registr num CDATA #REQUIRED>
<!ATTLIST plate num CDATA #REQUIRED>
<!ATTLIST policy ref CDATA #REQUIRED>

Σ1: (vehicle/registr ∪ vehicle/plate, {@num}),
(vehicle/policy, {@ref}),
(vehicle/policy, {@ref}) ⊆FK (vehicle/registr ∪ vehicle/plate, {@num})

Here we omit the definition of elements whose type is string. The DTD says
that each vehicle must present either a registration number or a plate number,
and must purchase two insurance policies. The first constraint in Σ1 is a key
asserting that each vehicle can be uniquely identified by either its registration
number or its plate number2. The second constraint, another key, says that the
policies should use different references. The third constraint in Σ1 is a foreign
key. It says that a policy reference must be either the registration number or
the plate number. This schema is inconsistent: on one hand, as indicated in
Figs. 1 (a) and (b), for any XML document conforming to the DTD D1, the
vehicle element must have either a registr or a plate subelement, but it
cannot have both; on the other hand, the constraints enforce the presence of
both a registr subelement and a plate subelement, since otherwise two policy
references cannot be distinct. As a result, there is no XML document that both
2 We define the syntax and semantics of keys and foreign keys in Sec. 2.2.

What’s Hard about XML Schema Constraints? 271

vehicle

policy policy

@num @ref @ref

vehicle

policy policy

@num @ref @ref

vehicle

policy policy

@num @ref @ref

plate

seq

clone clone

DNA DNA gene

DNA DNA

(c)(b)(a)

. . . registr

gene

Fig. 1. XML documents (represented as trees) conforming to DTDs D1 and D2

conforms to D1 and satisfies Σ1. This example demonstrates that the DTD and
constraints in an XML-Schema specification may interact with each other, and
the interaction leads to the inconsistency of the specification.

Worse still, a specification in XML Schema may not be consistent even in the
absence of foreign keys. As another example, consider the following specification
S2 = (D2, Σ2) for biomedical data:

D2: <!ELEMENT seq (clone+)>
<!ELEMENT clone (DNA, gene)>
<!ELEMENT gene (DNA)>

Σ2: (seq/clone, {//DNA})

The DTD describes a nonempty sequence of clone elements: each clone has a
DNA subelement and a gene subelement, and gene in turn has a DNA subelement,
while DNA carries text data (PCDATA). The key in Σ2 attempts to enforce the
following semantic information: there exist no two clone elements that have
the same DNA no matter where the DNA appears as their descendant. Again this
specification is inconsistent. To see this, recall that XML Schema requires that
for any XML document satisfying a key, the “fields” (that is, //DNA in our
example) must exist and be unique. However, as depicted in Fig. 1 (c), in any
XML document that conforms to the DTD D2, a clone element must have two
DNA descendants. Thus, it violates the uniqueness requirement of the key in Σ2.

Is it possible to test consistency of an XML-Schema specification at compile
time? That is, given a specification (D,Σ), whether or not there exists an XML
document that both conforms to the DTD D and satisfies the constraints Σ. We
refer to this problem as the consistency problem for XML Schema. The question
is important as one wants to know whether or not a specification makes sense
before attempting to create or validate an XML document w.r.t. it.

The central technical problem investigated in this paper is the consistency
problem for XML Schema. Our main conclusion is that the semantics of keys
and foreign keys in XML-Schema makes the consistency analysis rather intri-
cate and intractable. Indeed, all the hardness and undecidability results of [2,7]
carry over to specifications of XML Schema. However, using a new technique, we

272 M. Arenas, W. Fan, and L. Libkin

show that the most important tractable cases under the standard key semantics,
become intractable under the semantics of XML Schema. We also identify sev-
eral restrictions, commonly used in practice, that still allow relatively-efficient
consistency checking.
Organization. Sec. 2 introduces a formalism for XML-Schema specifications.
We show in Sec. 3 that the consistency problem is highly intricate in general.
In Sec. 4 we identify restricted cases that allow relatively efficient consistency
checking. We summarize our results in Sec. 5. Proofs can be found in [15].

2 XML Schema

XML Schema [14] defines both a type system and a class of integrity constraints.
Its type system subsumes DTDs. It supports a variety of atomic types (e.g.,
string, integer, float, double, byte), complex type constructs (e.g., sequence,
choice) and inheritance mechanisms (e.g., extension, restriction). Its integrity
constraints include keys, foreign keys and unique constraints. In XML Schema,
a specification for XML data consists of a type and a set of integrity constraints.

The goal of this paper is to understand how types interact with integrity
constraints under the XML-Schema semantics. To focus on the nature of the
interaction and to simplify the discussion, we consider XML-Schema specifica-
tions in which the type is a DTD and the constraints are simple keys and foreign
keys3. We show that even in this simple setting, the interaction is already highly
intricate such that the consistency check of XML-Schema specifications is infea-
sible. Note that in practice, an XML-Schema specification typically consists of
a mild extension of a DTD as its type, as well as simple keys and foreign keys.

In this section, we first provide a formalism of DTDs, and then define keys
and foreign keys under the XML-Schema semantics.

2.1 DTDs and XML Trees

Following [5,7], we formalize the definition of DTDs as follows. A DTD (Docu-
ment Type Definition) is a tuple D = (E, A, P, R, r), where:

– E is a finite set of element types;
– A is a finite set of attributes, disjoint from E.
– For each τ ∈ E, P (τ) is a regular expression α, called the element type

definition of τ : α ::= S | τ ′ | ε | α|α | α, α | α∗, where S denotes
the string type, τ ′ ∈ E, ε is the empty word, and “|”, “,” and “∗” denote
union, concatenation, and the Kleene closure;

– For each τ ∈ E, R(τ) is a set of attributes in A;
– r ∈ E and is called the element type of the root .

We normally denote element types by τ and attributes by @l, and assume that
r does not appear in P (τ) for any τ ∈ E. We also assume that each τ in E \ {r}
3 We do not consider relative keys and foreign keys [2,3] here as the simple constraints

suffice to demonstrate the complications caused by their interaction with types.

What’s Hard about XML Schema Constraints? 273

is connected to r, i.e., either τ appears in P (r), or it appears in P (τ ′) for some
τ ′ that is connected to r.

For example, recall the two DTDsD1, D2 given in the previous section. These
DTDs can be naturally expressed in the formalism given above.

Given a DTD D = (E, A, P, R, r), a path in D is a string w1 · · ·wm over
the alphabet E ∪ A ∪ {S} such that wi+1 is a symbol in the alphabet of P (wi)
for each i ∈ [1,m− 2], and wm ∈ R(wm−1) or wm is a symbol in the alphabet of
P (wm−1). Let Paths(D) = {p | p is a path in D}. We say that a DTD is non-
recursive if Paths(D) is finite, and recursive otherwise. We also say that D is a
no-star DTD if the Kleene star does not occur in any regular expression P (τ).

An XML document is typically modeled as a node-labeled tree. Below we de-
scribe valid XML documents of a DTD along the same lines as XML Schema [14].

LetD = (E, A, P, R, r) be a DTD. An XML tree T conforming to D, written
T |= D, is defined to be (V, lab, ele, att, val, root), where

– V is a finite set of nodes;
– lab is a function that maps each node in V to a label in E ∪A∪ {S}; a node

v ∈ V is called an element of type τ if lab(v) = τ and τ ∈ E, an attribute if
lab(v) ∈ A, and a text node if lab(v) = S;

– ele is a function that for any τ ∈ E, maps each element v of type τ to a
(possibly empty) list [v1, ..., vn] of elements and text nodes in V such that
lab(v1) . . . lab(vn) is in the regular language defined by P (τ);

– att is a partial function from V ×A to V such that for any v ∈ V and @l ∈ A,
att(v, @l) is defined iff lab(v) = τ , τ ∈ E and @l ∈ R(τ);

– val is a partial function from V to string values such that for any node v ∈ V ,
val(v) is defined iff lab(v) = S or lab(v) ∈ A;

– root is the root of T , root ∈ V and lab(root) = r.

For any node v ∈ V , if ele(v) is defined, then the nodes v′ in ele(v) are called
the subelements of v. For any @l ∈ A, if att(v, @l) = v′, then v′ is called an
attribute of v. In either case we say that there is a parent-child edge from v to v′.
The subelements and attributes of v are called its children. The graph defined
by the parent-child relation is required to be a rooted tree.

For example, Figs. 1 (a) and (b) depict two XML trees that conform to the
DTD D1, and Fig. 1 (c) shows an XML tree that conforms to D2.

In an XML tree T , the root is a unique node labeled with r. The subelements
of an element of τ are ordered and their labels observe the regular expression
P (τ). In contrast, its attributes are unordered and are identified by their labels.
The function val assigns string values to attributes and to nodes labeled S.

2.2 Keys and Foreign Keys

Given a DTD D = (E, A, P, R, r), a key over D is a constraint of the form

(P, {Q1, . . . , Qn}), (1)

where n ≥ 1 and P , Q1, . . ., Qn are regular expressions over the alphabet
E ∪ A ∪ {S}. Expression P is called the selector of the key and is a regular
expression conforming to the following BNF grammar [14].

274 M. Arenas, W. Fan, and L. Libkin

selector ::= path | path ∪ selector
path ::= r//sequence | sequence
sequence ::= τ | | sequence/sequence

Here is a wildcard that matches any element type, τ ∈ E and // represents
the Kleene closure of , that is, any possible finite sequence of node labels. The
expressions Q1, . . ., Qn are called the fields of the key and are defined by [14]:

field ::= path | path ∪ field
path ::= //sequence/last | /sequence/last
sequence ::= ε | τ | | sequence/sequence
last ::= S | @l | @

Here @ is a wildcard that matches any attribute and @l ∈ A. This grammar
differs from the one above in restricting the final step to match a text node or
an attribute. A key containing exactly one field is called unary.

It should be mentioned that XML Schema expresses selectors and fields with
restricted fragments of XPath [13], which are precisely the regular expressions
defined above. In XPath, ‘ ’ represents child and ‘//’ denotes descendant4.

A foreign key over a DTD D is an expression of the form

(P, {Q1, . . . , Qn}) ⊆FK (U, {S1, . . . , Sn}), (2)

where P and U are the selectors of the foreign key, n ≥ 1 and Q1, . . ., Qn, S1,
. . ., Sn are its fields. A foreign key containing one field in its left hand side and
one field in its right hand side is called unary.

To define the notion of satisfaction of keys and foreign keys, we need to
introduce some additional notation. Any pair of nodes x, y in an XML tree T
with y a descendant of x uniquely determines the path, ρ(x, y), from x to y.
We say that y is reachable from x by following a regular expression β over D,
denoted by T |= β(x, y), iff ρ(x, y) ∈ β. For any fixed T , let nodesβ(x) stand for
the set of nodes reachable from a node x by following the regular expression β:
nodesβ(x) = {y | T |= β(x, y)}. If there is only one node y such that T |= β(x, y),
then we define x.β = y.

Definition 1. Given an XML tree T = (V, lab, ele, att, val, root), T satisfies
a key (P, {Q1, . . . , Qn}), denoted by T |= (P, {Q1, . . . , Qn}), if
1. For each x ∈ nodesP (root) and i ∈ [1, n], there is exactly one node yi such

that T |= Qi(x, yi). Furthermore, lab(yi) ∈ A or lab(yi) = S.
2. For each x1, x2 ∈ nodesP (root), if val(x1.Qi) = val(x2.Qi) for all i ∈ [1, n],

then x1 = x2.

That is, the values of Q1, . . ., Qn uniquely identify the nodes reachable from the
root by following path P . It further asserts that starting from each one of these
nodes there is a single path conforming to the regular expression Qi (i ∈ [1, n]).
4 XPath [13] uses ‘*’ to denote wildcard. Here we use ‘ ’ instead to avoid overloading

the symbol ‘*’ with the Kleene star found in DTDs.

What’s Hard about XML Schema Constraints? 275

Definition 2. An XML tree T = (V, lab, ele, att, val, root) satisfies a foreign
key (P, {Q1, . . . , Qn}) ⊆FK (U, {S1, . . . , Sn}), denoted by T |= (P, {Q1, . . . , Qn})
⊆FK (U, {S1, . . . , Sn}), if T |= (U, {S1, . . . , Sn}) and
1. For each x ∈ nodesP (root) and i ∈ [1, n], there is exactly one node yi such

that T |= Qi(x, yi). Furthermore, lab(yi) ∈ A or lab(yi) = S.
2. For each x ∈ nodesP (root) there exists a node x′ ∈ nodesU (root) such that

val(x.Qi) = val(x′.Si) for each i ∈ [1, n].
The foreign key asserts that (U, {S1, . . . , Sn}) is a key and that for every node x
reachable from the root by following path P , there is a node x′ reachable from
the root by following path U such that the Q1, . . ., Qn-values of x are equal to
the S1, . . ., Sn-values of x′.

Observe that condition 1 of Defs. 1 and 2 requires the uniqueness and exis-
tence of the fields involved. For example, the XML tree depicted in Fig. 1 (c)
does not satisfy the key (seq/clone, {//DNA}) because the uniqueness condi-
tion imposed by the key is violated. Uniqueness conditions are required by the
XML Schema semantics, but they are not present in various earlier proposals
for XML keys coming from the database community [3,4,7,2].

Given an XML tree T and a set of keys and foreign keys Σ, we say that T
satisfies Σ, denoted by T |= Σ, if T |= ϕ for each ϕ ∈ Σ.

3 Consistency Problem: The General Case

We are interested in the consistency, or satisfiability, problem for XML-Schema
specifications; that is, whether a given set of constraints and a DTD are satisfi-
able by an XML tree. Formally, for a class C of integrity constraints and a class
D of DTDs, the input of the consistency problem SAT(D, C) is a DTD D ∈ D
and a set of constraints Σ ⊆ C and the problem is to determine whether there
is an XML tree T such that T |= D and T |= Σ.

The same problem was considered in [7]. The constraint language introduced
there is properly contained in the language defined in the previous section. Given
a DTD D, element types τ , τ ′ and attributes @l1, . . ., @ln, @l′1, . . ., @l

′
n, keys

and foreign keys in [7] are of the form

(r//τ, {@l1, . . . ,@ln}), (3)
(r//τ, {@l1, . . . ,@ln}) ⊆FK (r//τ ′, {@l′1, . . . ,@l′n}), (4)

respectively. Then, from [7] we immediately derive:

Corollary 1. The consistency problem for XML-Schema specifications, i.e., ar-
bitrary DTDs and keys, foreign keys of the form (1) and (2), is undecidable.

Observe that given an XML tree T conforming to a DTD D, for every node x
reachable from the root by following a path r//τ , there exists exactly one node
reachable from x by following a path @li, which correspond to the attribute @li
of x. In this case, to check the consistency of an XML-Schema specification one

276 M. Arenas, W. Fan, and L. Libkin

does not need to consider the first condition of Defs. 1 and 2. Also from results
of [7], for keys of such a form alone, and for arbitrary DTDs, there exists a linear
time algorithm for the consistency problem.

However, none of the previous results give us any hint as to what happens
when the first condition of Defs. 1 is imposed on arbitrary XML-Schema keys.
Somewhat surprisingly, this extra condition makes the problem intractable, even
for unary keys and very simple DTDs. By using a reduction from SAT-CNF [8],
we can show the following:

Theorem 1. The consistency problem is NP-hard for unary keys of form (1)
and for non-recursive and no-star DTDs. ✷

From these one can see that the consistency analysis is impossible for general
XML-Schema specifications, and it is still not practical even if only unary keys
are considered. In light of these we consider restricted cases of specifications in
the next section, by imposing restrictions on the fields of keys and foreign keys.

4 Consistency Problem: A Restricted Case

In this section we study a class of XML-Schema constraints that are commonly
found in practice, and investigate their consistency analysis. More specifically,
we consider keys and foreign keys of the form

(P, {@l1, . . . ,@ln}), (5)
(P, {@l1, . . . ,@ln}) ⊆FK (U, {@l′1, . . . ,@l′n}), (6)

where P and U are regular expressions defined by the BNF grammar for selector
expressions given in the previous section. Furthermore, if these constrains are
defined over a DTD D = (E, A, P, R, r), then they must satisfy the following
existence condition: for each τ ∈ last(P), {@l1, . . . ,@ln} ⊆ R(τ), and for each
τ ′ ∈ last(U), {@l′1, . . . ,@l′n} ⊆ R(τ ′), where last(P) is the set of element types
that are the last symbol of some string in the regular language defined by P .
Note that these conditions can be checked in polynomial time.

Observe that the keys and foreign keys satisfying these conditions trivially
satisfy requirement 1 of Defs. 1 and 2. For this kind of constraints, one can show
the following by reduction to the emptiness problem of finite state automata.

Proposition 1. For keys of the form (5) satisfying the existence condition and
for arbitrary DTDs, the consistency problem is decidable in linear time.

In practice, unary constraints are most commonly used, with the form:

(P, {@l}), (7)
(P, {@l}) ⊆FK (U, {@l′}). (8)

The next result tells us that when constraints are restricted to be unary and
defined with attributes, the consistency problem is decidable even in the presence
of foreign keys. This follows from results of [2]. However, the complexity is very
high.

What’s Hard about XML Schema Constraints? 277

Proposition 2. For constraints of the form (7), (8) satisfying the existence
condition and for arbitrary DTDs, the consistency problem is PSPACE-hard and
decidable.

Obviously it is completely impractical to solve a PSPACE-hard problem. Thus
one may want to consider further restrictions to get lower complexity. One ap-
proach is to further restrict constraints. Observe that constraints of the form (3)
and (4) are a restriction of (7) and (8): P and U are required to be of the form
(r//τ) for some element type τ . This helps, but not much: from [7] we get:

Proposition 3. The consistency problem for unary constraints of form (3) and
(4) is NP-complete for arbitrary DTDs, and is in PTIME for a fixed DTD.

Note that Proposition 3 does not require the existence condition as it can be
checked in linear time for constraints of form (3) and (4). The motivation for
considering a fixed DTD is because in practice, one often defines the DTD of a
specification at one time, but writes constraints in stages: constraints are added
incrementally when new requirements are discovered.

Alternatively, one may want to further restrict the DTDs involved. However,
this again does not help much: even under some rather severe restriction on
DTDs, the consistency problem remains intractable. More precisely, we show
that even if DTDs contain a fixed number of elements and attributes, the con-
sistency problem for unary keys and foreign keys is NP-hard.

Let k > 0 be a fixed constant and let Dk be the class of DTDs D =
(E, A, P, R, r) such that |E ∪ A| ≤ k.

Theorem 2. If C is the class of unary keys and foreign of the form (7), (8)
satisfying the existence condition, then for each k ≥ 11, SAT(Dk, C) is NP-hard.

This again is a new result that does not follow from previously published results
on the consistency checking for XML.

5 Conclusion

We have shown that the semantics of XML-Schema constraints makes the con-
sistency analysis of specifications rather intricate. The main results of the paper
are summarized in Fig. 2, which indicate that static consistency checking for
XML-Schema specifications is very hard: in general it is beyond reach (undecid-
able); for extremely restricted DTDs and constraints, it is still rather expensive

DTD [7] XML Schema
Keys and foreign keys undecidable undecidable
Unary keys and foreign keys NP-complete PSPACE-hard
Keys only linear time NP-hard
No constraints linear time linear time

Fig. 2. Complexity of the consistency problem

278 M. Arenas, W. Fan, and L. Libkin

(NP-hard and PSPACE-hard). In particular, with only unary keys, the consis-
tency problem is NP-hard under the XML-Schema semantics, in contrast to its
linear-time decidability under the standard key semantics [2,7].

These negative results tell us that under the current semantics of XML-
Schema constraints, there is no hope to efficiently check whether or not an
XML-Schema specification makes sense. One may find that a seemingly per-
fect specification turns out to be inconsistent, after repeated failures to validate
documents. The designers of XML Schema might want to take these results into
account when revising the W3C recommendation.

Acknowledgments

Marcelo Arenas and Leonid Libkin are supported in part by grants from the
Natural Sciences and Engineering Research Council of Canada and from Bell
University Laboratories. Wenfei Fan is currently on leave from Temple Univer-
sity, and is supported in part by NSF Career Award IIS-0093168.

References

1. S. Abiteboul, P. Buneman and D. Suciu Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufman, 2000.

2. M. Arenas, W. Fan and L. Libkin. On verifying consistency of XML specifications.
In PODS’02, pages 259–270.

3. P. Buneman, S. Davidson, W. Fan, C. Hara and W. Tan. Keys for XML. In
WWW’10, 2001, pages 201–210.

4. P. Buneman, S. Davidson, W. Fan, C. Hara and W. Tan. Reasoning about Keys
for XML. In DBPL, 2001.

5. D. Calvanese, G. De Giacomo, and M. Lenzerini. Representing and reasoning
on XML documents: A description logic approach. J. Logic and Computation
9(3):295–318, 1999.

6. S. Ceri, P. Fraternali, S. Paraboschi. XML: Current developments and future
challenges for the database community. In EDBT 2000, pages 3–17.

7. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs. In
PODS’01, pages 114–125.

8. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, 1979.

9. D. Lee and W. W. Chu. Constraints-preserving transformation from XML docu-
ment type definition to relational schema. In ER’2000, pages 323–338.

10. V. Vianu. A Web odyssey: From Codd to XML. In PODS’01, pages 1–15.
11. W3C. Extensible Markup Language (XML) 1.0. W3C Recommendation, Feb.

1998.
12. W3C. XML-Data, W3C Working Draft, Jan. 1998.
13. W3C. XML Path Language (XPath). W3C Working Draft, Nov. 1999.
14. W3C. XML Schema. W3C Recommendation, May 2001.
15. Full version: http://www.cs.toronto.edu/˜marenas/publications/xsc.pdf.

	1 Introduction
	2 XML Schema
	2.1 DTDs and XML Trees
	2.2 Keys and Foreign Keys

	3 Consistency Problem: The General Case
	4 Consistency Problem: A Restricted Case
	5 Conclusion
	Acknowledgments
	References

