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Abstract

We consider the problem of data sharing be-
tween autonomous data sources in an envi-
ronment where constraints cannot be placed
on the shared contents of sources. Our so-
lutions rely on the use of mapping tables
which define how data from different sources
are associated. In this setting, the answer
to a local query, that is, a query posed
against the schema of a single source, is
augmented by retrieving related data from
associated sources. This retrieval of data
is achieved by translating, through map-
ping tables, the local query into a set of
queries that are executed against the as-
sociated sources. We consider both sound
translations (which only retrieve correct an-
swers) and complete translations (which re-
trieve all correct answers, and no incorrect
answers) and we present algorithms to com-
pute such translations. Our solutions are
implemented and tested experimentally and
we describe here our key findings.

1 Introduction

We consider the problem of data sharing between
autonomous structured data sources. Such sources
may use different schemas to structure their data.
Furthermore, both the data and the schemas of the
sources may overlap little, if at all. Still, data resid-
ing in the different sources may be closely associated.
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As an example, consider the domain of biological
data sources. Different biological data sources can
store inherently different data which range from data
for genes or proteins to data for genetic diseases.
Nevertheless, these diverse data sets are closely asso-
ciated since genes encode for proteins and are related
to genetic diseases.

How can we share data in such a setting? In the
domain of biological sources, we can imagine that a
biologist who queries her local source for informa-
tion on a particular protein, say OPH, would like to
retrieve, in addition to the local data, related infor-
mation that is found in any number of networked
sources including related genes that encode for pro-
tein OPH and genetic diseases related to these genes.
To support such sharing of data, we must be able to
translate the local query into the vocabulary of the
other sources. This involves translating both the
structure of the query to use the schema elements of
the associated sources, but also the data itself. For
example, associated sources may use synonyms of
protein OPH, such as APH and AARE, or distinct
identifiers for the same gene.

Notice that the related data that each source re-
turns may be very different and it is often not pos-
sible to make this data conform to the local schema.
For conformance to be possible, the local database
must have anticipated the structure of all possible
answers to a query. Mappings are needed to fit
these structures into the local schema. Such a so-
lution may be undesirable for several reasons. First,
we may not wish to change the local schema to ac-
commodate data for which it was not designed. In
our example, the query results may be returned to
users and not stored locally, so it seems onerous to
insist that even virtual local structures be prede-
fined for receiving this data. Second, if any of the
networked data sources change their schemas, the lo-
cal database must, somehow, become aware of this
and update its mappings. Otherwise, the translated
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queries may not be valid on the updated sources.
Again, this is an onerous requirement.

Data sharing deals with the exchange of data be-
tween heterogeneous sources whose data need not
be interdependent and may represent different real
world domains. In keeping with the literature, we
refer to such autonomous, heterogeneous sources as
peers. Data sharing between peers differs from the
well-studied problems of data integration [12] and
data exchange [6]. The latter two problems use
schema-level mappings to express the relationships
between heterogeneous schemas. In data integra-
tion, these mappings are used, at run time, to con-
form the data of one source to the schema of another.
In data exchange, the mappings are used to populate
a target schema with the data of a source schema.

In this work, we consider how to translate queries
in the absence of such restrictive schema-level map-
pings. We make use of a form of data-level mappings
called mapping tables which we first introduced in
[11]. In brief, a mapping table contains a set of
data associations between data values in two peer
databases. Our previous work showed how to auto-
mate the management of mapping tables by checking
the consistency of the associations and by inferring
new associations from existing ones. Our current
work focuses on how to use mapping tables during
query answering. Our main contributions are:

− We introduce the semantics of query answering
in an environment of autonomous peers. The seman-
tics relies on the translation of queries between the
peers through the use of mapping tables.

− We introduce the notions of sound translations
(which only retrieve correct answers) and complete
translations (which retrieve all correct answers, and
no incorrect answers) to characterize the relation-
ship between translated queries.

− We extend the definition of mapping tables to
store not only associations between data values, but
also associations between pairs of translated queries.
This common representation of different types of as-
sociations permits more systematic and robust solu-
tions for managing the associations.

− We present an algorithm for computing com-
plete translations and an algorithm for testing if a
query is a sound translation of another. We use the
latter algorithm, and our ability to store past trans-
lations in mapping tables, to determine if a query
can be translated (partially or in full) by means of
the stored translations.

This paper is organized as follows. We motivate
our solutions in Section 2, while Section 3 describes
the related work. Section 4 presents the semantics
of query answering and introduces the notions of
sound and complete translations. Section 5 presents
the algorithms for computing such translations. Sec-

tion 6 discusses our implementation while Section 7
presents the experimental results. We conclude in
Section 8 with a summary of the work.

2 Motivating example

In what follows, we consider two biological
databases, namely MedLine and PubMed [1]. A por-
tion of their schemas and instances can be seen in
Figures 1 (a) and (b), respectively. Both databases
store similar information about articles, namely, an
article identifier, some keywords, which refer to pro-
tein names mentioned in the article, and date of pub-
lication (PubMed stores the month (pm) and year
(py) of publication, while MedLine stores only the
year). In spite of the similarities in their schemas,
the databases use different vocabularies to describe
articles. For one thing, the two databases use their
own local identifiers. Furthermore, they often refer
to the same protein by using different names. For in-
stance, OPH in MedLine and APH in PubMed refer
to the same protein. We can use mapping tables to
represent how values from different vocabularies may
correspond [11]. In the same figure, we show exam-
ples of such tables. Mapping table keyword2kw as-
sociates keywords from MedLine to keywords in the
PubMed relation. Notice that not all keywords from
MedLine are mapped, that is, the tables might be in-
complete. Mapping table id2id stores the identifiers
of articles that are mentioned in both databases. Fi-
nally, mapping table year2yr uses a variable in its
single tuple to represent the identity function, i.e.,
that each year in the first database is mapped to it-
self in the second. We note that not all attributes
need to be mapped through mapping tables. For ex-
ample, no table involves attribute pm of the PubMed
relation.

Example 1 Assume that a user wants to retrieve
all MedLine articles that mention protein OPH.
Then a query such as the following may be used:

Q1: select *
from MedLine
where keyword = “OPH”

What if this user also wants to retrieve all PubMed
articles mentioning the same protein? Given that
APH and AARE are synonyms of OPH, the follow-
ing query may be used:

Q2: select *
from PubMed
where (kw = “APH” OR kw = “AARE”)

Mapping tables might provide us with sufficient
information to automate the process of translating a
query posed against one database to a query posed
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article id keyword year
20185348 OPH 2000

96281126 OPH 1996

87051725 NGF receptor 1986

99455262 CRAF1 1999

99455262 TNF receptor 1999

(a) MedLine relation instance

paper id kw py pm
10719179 APH 2000 March

8724851 AARE 1996 February

9915784 p75 ICD 1999 January

10944856 Sialidase 1 2000 July

(b) PubMed relation instance

keyword kw
OPH APH

OPH AARE

NGF receptor p75 ICD

G9 sialidase Sialidase 1

(c) Table keyword2kw

article id paper id
20185348 10719179

(d) Table id2id

year py
X X

(e) Table year2py

Figure 1: Instances and Mapping tables

against another, where both queries retrieve related
data. The details of how this is achieved, and under
which circumstances such a translation is possible,
is the main focus of this work.

Notice that the retrieved data do not conform
to the same schema. Even in this simple scenario,
where the schemas are rather homogeneous, we can-
not merge the results due to the difference in vocab-
ularies. In general, we will not know before-hand
what data we are going to retrieve and in what for-
mat. We expect that even the types of the retrieved
data may differ significantly. For example, our bio-
logical scenario includes not only information about
protein articles but also data about genes and dis-
eases. One of the objectives of this work is to deal
with this heterogeneity in the retrieved results.

Example 2 Continuing with our example, assume
now that the user decides to execute query Q3 which
retrieves PubMed articles mentioning protein APH:

Q3: select *
from PubMed
where kw = “APH”

Intuitively, query Q3 satisfies the initial user selec-
tion requirements since it returns PubMed articles
mentioning protein OPH. However, it does not re-
trieve all such articles. So, query Q3 is incomplete,
compared to Q2. Nevertheless, neither query Q2 nor
query Q3 return any incorrect answers, i.e., articles
not mentioning protein OPH.

Notions such as correctness (soundness) and com-
pleteness of query translations are formalized in the
next sections. Soundness is a property that every
translation must satisfy, however, executing queries
that are incomplete is often sufficient. For one thing,
users are often satisfied with incomplete answers if
complete answers are overwhelming. We may also
be able to cache the results from sound queries to
deliver some answers faster. From a systems point
of view, we show that significant savings in computa-
tion time can be achieved by reusing sound queries.

Our last remark concerns our representation of
queries. Mapping tables allow us to store, as part
of our database, the associations of values between
different peers [11]. Motivated by the same rational,
we offer here a similar representation for associating
queries and their translations. This uniform repre-
sentation allows us to develop a common set of tools
to manage both data and query associations.

3 Related work

Our previous work on mapping tables focuses on the
management of the tables and how these can be used
for value-based lookups [11]. Thus, it does not con-
sider structured queries. In the context of peer-to-
peer systems, advanced query mechanisms have been
proposed by Harren et al [8] and Huebsch et al [9].
The latter work proposes structured query answer-
ing in an architecture that can scale to accommodate
a large number of peers. However, peers must agree
to support a common schema. Our work does not
consider scalability issues but addresses instead is-
sues relating to the heterogeneity of peers.

In Piazza, associations between peers are ex-
pressed through either global-as-view (GAV) or
local-as-view (LAV) schema-level mappings [7, 14].
Both types of mappings are considered while trans-
lating queries between different peers. Our solutions
are complimentary to this work since our framework
operates in the absence of schema-level mappings
and the only mappings used are in the data-level
and have the form of mapping tables. The main
difference between the two approaches is that while
their work assumes that the retrieved data can be
made to conform to the schema of the peer where a
query is initiated, we make no such assumption.

Ng et al [15] also deal with the translation of
queries in a network of peers. Descriptive keywords
are used to associate schema elements of different
peers. Then, the translation of queries is performed
using the associated elements. A limitation of the
approach is the underlying assumption that the key-
words are used consistently throughout the peer net-
work. Thus, unlike our work, their solutions can-
not handle differences in the vocabularies within the
data values of the peers.
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The work of Chang and Garcia-Molina [5] also
deals with the translation of queries between hetero-
geneous sources. There, syntactic rules are used to
map selection predicates from one database to that
of another. At first glance, mapping tables look like
materializations of these syntactic rules. However,
the two constructs operate under different assump-
tions. A syntactic rule that maps MedLine article
identifiers to PubMed article identifiers assumes that
for any identifier of the former we can compute an
identifier of the latter. Thus, the query translation
process relies on this assumption to translate a query
from the former database to one in the latter without
having to deal with the intricacies of the mappings
at the data level, that is, the fact that mappings
are often incomplete. Our work makes no such as-
sumptions and our translation techniques deal with
exactly these circumstances. We also use a uniform
representation both for the rules, i.e., the mappings
between data values and for the queries and the map-
pings between translated queries.

4 Query semantics

We assume that query execution in our peer network
uses a gossiping mechanism. The process is initiated
by the execution of a user-defined query locally in a
peer. Then, the user-defined query is forwarded ei-
ther as is or in some translated form to either all
or to a selected number of acquaintances of the cur-
rent peer. Then, the execute-and-forward step is
repeated in each of the forwarded peers, causing in
turn the further propagation of the query. The pro-
cess terminates after a fixed number of propagations
of the initial user-defined query has occurred.

In accordance with the above, we assume here-
after that each query is defined, in terms of syntax,
with respect to the schema of a single peer. Our the-
sis is that for a user to issue a query, she need only
be aware of the local schema she is using. Over this
schema, we assume that the user poses queries that
involve only the operations of selection, projection
and join. Still, this is a significant extension of the
value-based lookups supported thus far. In terms of
execution, queries are classified into two categories.
A local query, much like a query in a centralized
system, is executed using only the data in the local
peer. On the other hand, a global query uses the
peer network to augment locally retrieved data with
data that reside in other peers. We now formalize
the above notions and explain the query semantics
with emphasis on the semantics of global queries.

Consider a set P = {P1, P2, . . . , Pn} of n peers.
Assume that peer Pi exposes a set of attributes
Ui (1 ≤ i ≤ n) and that Ui ∩ Uj = ∅ (i 6= j,
1 ≤ i, j ≤ n), and let ri be an instance of Pi. A
local query q, hereafter just called a query, over a
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q3

q2
6

q2
5

q1
5 q2

q4

P6

P5

P4

P1

P2

P3

P1

q4

q1

q2q2
5 q2

6

q1
5q1

6 q3

(c) The query dependency graph

(b) The annotated network(a) The peer network

P6

P3

P4

P5 P2

Figure 2: A query dependency graph

peer Pi (1 ≤ i ≤ n) is defined with respect to the
schema of Pi. The result of q is a relation over a set
of attributes Vi, where Vi ⊆ Ui, whose content is the
set of tuples q(ri). We denote by att(q) the set of at-
tributes Vi. A global query qP over the peers in P is
a set of queries {q1

1 , q
2
1 , . . . , q

k1

1 , . . . , q1
n, q2

n, . . . , qkn

n },

where query q
j
i (1 ≤ i ≤ n and 1 ≤ j ≤ ki) is over

the schema of peer Pi and att(qj
i ) = att(ql

i), for every
l ∈ [1, ki]. Each query in qP is called a component of
qP and, conversely, qP is said to be comprised of the
indicated set. The result of global query qP is a re-
lation over the schema RP [V1 ∪ V2 ∪ . . .∪ Vn], where

Vi = att(q1
i ) = · · · = att(qki

i ) (1 ≤ i ≤ n), whose
content is the set of tuples in the outer-union of the
union of the queries in each peer, that is, the outer-

union of
⋃k1

j=1 q
j
1(r1),

⋃k2

j=1 q
j
2(r2), . . .,

⋃kn

j=1 qj
n(rn).

Hence, we permit peers to return results with dif-
ferent schemas. We also propose not to merge re-
sults as merging semantics tend to be application
specific. Given these definitions, each local query
can be thought of as a trivial global query which is
comprised of a single component query.

Example 3 The set {Q1, Q2} of queries (from Ex-
ample 1) is a global query over the MedLine and
PubMed peers. The execution of this global query
is initiated by local query Q1. The result of this
global query is a relation with attributes {article id,
keyword, year, paper id, kw, py, pm}, whose content
is the outer-union of the relations obtained by ap-
plying queries Q1 and Q2 to the instances shown in
Figures 1 (a) and (b), respectively.

We now examine the relationship between the
component queries of a global query. For this, we
introduce the notion of query dependencies. Intu-
itively, as queries are propagated in the system, a
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(directed) query dependency graph is induced. The
nodes in this graph represent queries and there is an
edge from query qj to query qk if query qk depends
on query qj . A query qk on peer Pk is said to depend
on query qj over peer Pj , denoted as dep(qk) = qj ,
if peers Pj and Pk are acquainted and query qk has
resulted from the propagation of query qj on peer
Pj to peer Pk. Special care is taken to avoid the cre-
ation of cycles in the induced graph. This happens if
a query propagated by a peer Pk is re-received by the
same peer through one of its acquaintances. Tagging
queries with the path of peers through which they
are propagated allows the detection of such situa-
tions. In Figure 2(a) there is an example of a peer
network that consists of six peers, i.e., P = {P1,
P2, . . . , P6} and there is an edge between two peers
if they are acquainted. In Figure 2(b), we use an
intermediate representation where each peer in the
network is annotated with the component queries of
global query qP = {q1, q2, q3, q4, q1

5 q2
5 , q1

6 , q2
6} that it

executes. The edges in this representation show the
propagation of queries. Finally, Figure 2(c) shows
the dependency graph of qP . Notice that in some
peers more than one query is executed. For exam-
ple, in peer P5 we have the execution of two queries,
namely q1

5 and q2
5 . Query q1

5 results from the propa-
gation of query q1 from peer P1 while query q2

5 results
from the propagation of query q1

6 from peer P6. We
devote the next paragraphs examining how exactly
the propagation, and possible translation, of queries
is achieved between peers.

4.1 Mapping tables

We offer here an overview of mapping tables since
they are the main vehicle used for query translation.

Consider two peers that expose relations with at-
tributes U and V , respectively. A mapping table is
a relation over the attributes X ∪ Y , where X ⊆ U
and Y ⊆ V are non-empty sets of attributes from the
two peers. For example, a mapping table from a set
of attributes X = {keyword} to a set of attributes
Y = {kw} is shown in Figure 1(c). A vertical double
line is used to separate the two attributes sets.

To represent different semantics for mapping ta-
bles and values within them, the standard conven-
tion of using variables is followed. For instance, Fig-
ure 1(e) shows a mapping table containing variables.
Every valuation of these variables gives a value of
year that can be mapped to a value of py. Since
this mapping table contains the same variable in its
two columns, every valuation is a tuple of the form
(a, a), where a is a constant in the domains of year
and py. Thus, in this case variables offer a compact
way of representing the identity mapping.

Mapping tables restrict the way in which infor-
mation may be exchanged between peers, instead of

restricting their contents. Let r1 and r2 be instances
of peers P1 and P2, respectively, and m be a map-
ping table from X to Y , where X and Y are subsets
of the set of attributes exposed by P1 and P2, respec-
tively. Given a valuation ρ of the variables of m, a
value x ∈ πX(ρ(m)) is associated with the set of val-
ues πY (σX=x(ρ(m))) and, hence, each t1 ∈ r1 such
that t1[X ] = x can be mapped only to the tuples
t2 ∈ r2 for which t2[Y ] ∈ πY (σX=x(ρ(m))).

4.2 Sound and complete translations

We are interested in translating, through mapping
tables, queries that involve the operations of projec-
tion, selection and join. In what follows, we consider
how this is achieved in the presence of the latter two
operators. Then, in Section 4.3 we show how to han-
dle projections. This separation is possible since, as
we show, the issues involved are orthogonal.

Consider peers P1 and P2 that expose attributes
U1 and U2, respectively. To begin, we assume that a
single mapping table m exists with schema M [U1 ∪
U2] that associates values of U1 to values of U2. We
relax this assumption later. Consider two queries
q1 and q2 over peers P1 and P2, respectively, such
that dep(q2) = q1, that is, query q2 resulted from
the propagation and translation of query q1. We
claim that the nature of this translation should be
such that q2 retrieves from peer P2 only the data
that are related with those that could be retrieved
from query q1 in peer P1. The exact relationship is
determined by the set of mapping tables that exists
between the two peers.

Definition 4 Let q1 and q2 be queries over peers P1

and P2, respectively, such that q1 = σE(R1 ./ · · · ./
Rk), where E is a conjunction of equality atoms and
R1, . . ., Rk are relations in P1. Then q2 is a sound
translation of q1 with respect to mapping table m,

denoted by q1
m
7→ q2, if for every relation instance r2

of P2 and t2 ∈ q2(r2), there exists a valuation ρ of m
and a tuple t ∈ σE(ρ(m)) such that πatt(q2)(t) = t2.

We offer a few remarks on our definition. First,
observe that in the definition query q1 operates on
mapping table m, instead of operating on some in-
stance r1 of P1, while query q2 operates on an in-
stance r2 of P2. This is to allow for query q2 to
retrieve data from r2 that could be mapped to some
instance r1 of P1 through m, but that it is not nec-
essary for the data retrieved from q1. Second, note
that since m contains all the attributes mentioned
in R1, . . ., Rk, in order to evaluate q1 in the relation
ρ(m) we do not need to compute the join of R1, . . .,
Rk, we just have to check the condition E.

Example 5 Consider the mapping table ML2PM
shown in Figure 3. Since all variables in the ta-
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article id keyword year paper id kw py pm
X1 OPH Y1 X2 APH Y2 Z2

X3 OPH Y3 X4 AARE Y4 Z4

Figure 3: Mapping table ML2PM.

ble are distinct, the table essentially maps protein
OPH in MedLine to proteins APH and AARE in
PubMed. Now, consider queries Q1 and Q2 from
our motivating example (see Section 2). Query Q2

is a sound translation of query Q1 with respect to
the table ML2PM. On the other hand, the following
query is not a sound translation of query Q1.

Q4: select *
from PubMed
where kw = “APH” OR kw = “p75 ICD”

To see this, consider the PubMed relation instance
in Figure 1(b). Its third tuple satisfies Q4 but it can-
not be associated, through ML2PM, to any MedLine
article retrieved by Q1.

Another observation is that the above definition
is not symmetric. Also, note that sound translations
are not unique.

Example 6 While our previous example shows that
Q4 is not a sound translation of Q1, notice that Q1

is a sound translation of Q4, with respect to table
PM2ML (which is the inverse of the ML2PM). Tu-
ples retrieved by Q1, from every possible instance of
MedLine, correspond to articles mentioning protein
OPH which, through PM2ML, can be associated with
PubMed articles mentioning protein APH. Concern-
ing the uniqueness of sound translations, remember
from our motivating example that both queries Q2

and Q3 are sound translations of query Q1.

Since one sound translation might retrieve more
data than another, we consider next the notion of
completeness. That is, whether there is a sound
translation that retrieves from remote peers all pos-
sible sound data.

Definition 7 Given queries q1, q2 over peers P1

and P2, respectively, we say that q2 is a complete
translation of query q1 with respect to mapping ta-

ble m, if q1
m
7→ q2 and for every query q′

2 over P2

such that q1
m
7→ q′

2 and every instance r2 of P2,
q2(r2) ⊇ q′

2(r2).

Notice that, by definition, if two queries q2 and
q′

2 are complete translations of a query q1, then q2

and q′

2 are equivalent.

Example 8 Consider query Q1 from our motivat-
ing example and its sound translations, namely, Q2

and Q3. We claim, without providing a formal proof,
that query Q2 is a complete translation of Q1, with
respect to mapping table ML2PM.

We are now in a position to formally characterize
the relationship between the component queries of a
global query. Specifically, we require that for each
pair qi, qj of component queries such that dep(qj) =
qi, query qj is a sound translation of query qi.

Our definitions assume that a single mapping ta-
ble maps all the attributes in the relations involved.
We relax this assumption in Section 5.5. We also
note that so far we have only considered the selec-
tion and join operators. We investigate the issues
concerning the projection operator next.

4.3 The projection operator

Sound translations guarantee that only correct tu-
ples are retrieved from remote peers. However, not
all the attributes from the remote peers are necessar-
ily of interest. The user has the ability, through the
projection operator, to express what local attributes
are of interest to her and, thus, we provide a similar
mechanism for the data retrieved from remote peers.

Our solutions make use of attribute correspon-
dences which associate attributes in different peers.
Learning attribute correspondences is a main com-
ponent of schema matchers [16]. An attribute cor-
respondence for attributes requiring no data trans-
lation can be encoded by a simple mapping table
with the identity mapping. This is the situation de-
picted in Figure 1(e). In general, a mapping table
m[X ∪ Y ] encodes, in addition to the set of data as-
sociations, an attribute correspondence between the
set of attributes X and Y .

Definition 9 Let P and P ′ be peers exposing set of
attributes U and U ′, respectively, and m[X ∪Y ] be a
mapping table such that X ⊆ U and Y ⊆ U ′. Then,
m is relevant to a query q over P , if att(q) ⊆ X.

Hence, when translating a query q that includes a
projection on attributes att(q) we make use of all the
relevant mapping tables m1[X1 ∪ Y1], m2[X2 ∪ Y2],
. . . mk[Xk∪Yk], and the translated query returns the
union of all the Yi’s in these tables.

Example 10 Consider the query that retrieves
from MedLine all the protein names mentioned in
articles published in 1998:

Q5: select keyword
from MedLine
where year = “1998”

The complete translation of Q5, with respect to map-
ping table year2py shown in Figure 1(e), is:
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Q6: select kw
from PubMed
where py = “1998”

There are two points to make here. First, due to
mapping table year2py, our projection is on the kw
attributes of the retrieved PubMed tuples. Second, it
is possible that the latter query retrieves PubMed ar-
ticles that violate mapping table keyword2kw shown
in Figure 1(c). However, this is consistent with our
query semantics since soundness is defined here only
with respect to the year2py mapping table.

5 Algorithms

In general, queries are initially expressed in a query
language (e.g., relational algebra, SQL) and are later
transformed in some appropriate internal represen-
tation. Before we discuss the issue of querying, we
need to fix these two parameters, i.e., the query lan-
guage and the representation used.

We focus here on queries that are expressed in
S+J algebra. An S+J query uses the operators of
selection and join. The selection formula is positive,
i.e., it has no negation and it consists of conjunctions
and disjunctions of atoms of the form (A = B) and
(A = a), where A and B are attribute names and a
is a constant. Note that projection is supported in
our framework but is handled independently.

Common query representations include tableau,
which is a tabular representation of a query which re-
sembles a database instance, and query trees, which
is a graph-like representation of a query [3]. In
this work, the tabular representation is the preferred
choice. One reason for this is uniformity. Notice
that we already use a similar representation, namely,
mapping tables, to address issues of heterogeneity
among different peers. In the following paragraphs,
we introduce T-queries which is a tabular represen-
tation of queries and we show that for each S+J
query we can have an equivalent T-query. Then, we
show how T-queries can be used to test whether a
query q′ is a sound translation of query q. Finally, we
show how T-queries can be used to compute sound
and complete query translations.

5.1 T-queries

We start by defining T-queries over one relation.
Thus, we only consider selections. We later show
how our definitions are extended to consider queries
over multiple relations, thus taking into account
joins. The following paragraph presents the syntax
and semantics of T-queries.

A T-query qT over relation schema R[U ] is a ta-
ble T with attributes U where each variable appears
in at most one row. Intuitively, one can think of
each t ∈ T as a tableau query whose corresponding

tableau only has a single tuple. Then, T represents
a set of tableau queries. Given a T-query qT over
schema R and an instance r of R, the result of exe-
cuting qT on r, denoted as qT (r) is:

qT (r) = {ρ(t) | ρ is a valuation of t ∈ T and ρ(t) ∈ r}.

Example 11 Consider the following query that re-
turns all articles from PubMed mentioning proteins
APH or p75 ICD:

Q7: select *
from PubMed
where kw = “APH” OR kw = “p75 ICD”

Then, the corresponding T-query is shown below:

paper id kw py pm

X1 APH Y1 Z1

X2 p75 ICD Y2 Z2

Proposition 12 For any S+ query q over a rela-
tion R[U ] there is an equivalent T-query qT , and vice
versa.

To construct query qT from q, first we have to trans-
form q into an equivalent query q′ of the form σE(R),
where E is in disjunctive normal form. T-query qT

is of size linear in the size of q′, which, in turn, has a
size which is exponential, in general, with respect to
the size of the initial query q. However, this is not
a problem in practice since large selection formulas
rarely occur.

We extend the definition of T-queries over multi-
ple relations in the following way. Let R = {R1[U1],
R2[U2], . . . , Rn[Un]} be a relational schema and U
be ∪n

i=1Ui. A T-query qT over R is a table T with
attributes U where each variable appears in at most
one row. In terms of semantics, consider a T-query
qT over R and an instance r = {r1, r2, . . . , rn} of
R. Then the result of executing qT on r, denoted by
qT (r), is:

qT (r) = {ρ(t) | ρ is a valuation of t ∈ T

and ρ(t) ∈ r1
� � · · · � �

rn}.

Proposition 13 For any S+J query q over a rela-
tional schema R, there is an equivalent T-query qT ,
and vice versa.

We conclude this subsection by presenting the no-
tion of join between T-queries. This will play a
central role in all the algorithms presented in the
following subsections. Let T1 and T2 be the tables
of T-queries q1

T and q2
T with attributes U1 and U2,

respectively. Attribute sets U1 and U2 are not nec-

essarily disjoint. Then T1

var
� �

T2 is a T-query with
attributes U1 ∪ U2 defined as follows. Recall that
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a substitution is a function that maps only vari-
ables to either variables or constants. For every
t1 ∈ T1 and t2 ∈ T2, find substitutions θ1 and θ2

for the variables of t1 and t2, respectively, such that
θ1(t1[U1 ∩ U2]) = θ2(t2[U1 ∩ U2]). Furthermore, we
require that for any other pair of substitutions θ′

1

and θ′

2 satisfying this condition, θ1 is as general as
θ′

1 and θ2 is as general as θ′

2, that is, there exist
substitutions γ1 and γ2 such that γ1 ◦ θ1 = θ′

1 and
γ2 ◦ θ2 = θ′

2 (this corresponds to the notion of most
general unifier used in logic programming [13]). If

substitutions θ1 and θ2 exist, then add to T1

var
� �

T2

a U1 ∪ U2-tuple t defined as: t[U1] = θ1(t1) and
t[U2] = θ2(t2).

Intuitively, given relation instances r1 and r2 over
U1 and U2, respectively, the join of T1 and T2 gives
us a new T-query qT such that:

qT (r1
� �

r2) = q1
T (r1)

� �
q2
T (r2).

5.2 Algorithms for sound translations

In the previous section, we introduced sound trans-
lations and we provided a definition through which
we can test, given two queries q and q′ over peers
P and P ′, respectively, whether query q′ is a sound
translation of q with respect to a mapping table m.
The definition of sound translations, however, does
not provide us with a practical way to do the test-
ing. In the next paragraphs, we show that one of the
benefits of representing queries as T-queries is that
we are able to perform such a test efficiently.

In brief, the proposed algorithm accepts as input
two queries q and q′ over peers P and P ′, respec-
tively, and a mapping table m between the sets of
attributes U and U ′ exposed by these peers. Ini-
tially, it converts both q and q′ to their correspond-
ing T-queries, say qT = T and q′

T = T ′, respec-
tively. Then the algorithm uses mapping table m
to constrain the association of query disjunctions.
Formally, given T , m and T ′, the algorithm con-
structs a T-query qc

T with attributes att(q′) defined

as πatt(q′)(T
var

� �
m

var
� �

T ′). We note that it is
possible to perform this join since mapping tables
and T-queries use the same syntax. In the last
step, the algorithm checks whether qc

T is equiva-
lent to q′

T , that is, for every instance r′ of peer P ′,
qc
T (r′) = q′

T (r′). To perform such a test we use an
algorithm that checks for containment of union of
conjunctives queries [17]. If qc

T is equivalent to q′

T ,
then the algorithm outputs yes.

Theorem 14 The above algorithm outputs yes on
input (q, m, q′) if and only if q′ is a sound translation
of q with respect to mapping table m.

The following proposition is used in the proof of
this theorem. It also shows that the previous al-

article id keyword year paper id kw py pm
X1 OPH 1998 X2 APH 1998 Y2

X3 OPH 1998 X4 AARE 1998 Y4

X5 OPH 2003 X6 APH 2003 Y6

X7 OPH 2003 X8 AARE 2003 Y8

Figure 4: Storing query translations

gorithm only needs to check whether q′

T ⊆ qc
T to

verify whether q′ is a sound translation of q.

Proposition 15 The queries q′

T and qc
T computed

by the above algorithm on input (q, m, q′) are such
that qc

T ⊆ q′

T .

Finally, we establish the exact complexity of our
problem.

Theorem 16 The problem of testing whether a
query is a sound translation of another query is Πp

2-
complete.

5.3 Computing complete translations

Here we describe an algorithm that, given a query q
and a mapping table m, computes a query q′ such
that q′ is a sound and complete translation of q with
respect to mapping table m. The algorithm extends
the algorithm for testing sound translations. Let
P and P ′ be two peers that expose attributes U
and U ′, respectively, and assume that q is a query
over P and m is mapping table between the set of
attributes U and U ′. The algorithm begins by con-
verting query q to its corresponding T-query qT = T .
Then, it considers mapping table m and computes

T-query q′

T = πU ′(T
var

� �
m). Finally, the algorithm

outputs the query q′ represented by q′

T . The follow-
ing theorem shows that q′ is a sound and complete
translation of query q.

Theorem 17 Query q′ computed by the above al-
gorithm on input (q, m) is a complete translation of
q.

5.4 Composing translations

In this section, we show the benefits of using a com-
mon formalism for representing both data and query
associations. In more detail, we show that the algo-
rithms that were created for inference of mapping
tables can be used to effectively perform query com-
position. Consider the point in time after a com-
plete translation has been computed. This trans-
lation may be stored within a mapping table. An
example is shown in Figure 4. The query on the left
of the table retrieves MedLine articles that mention
protein OPH and were published in 1998 or 2003.

475



The query on the right represents a complete trans-
lation on PubMed. Notice that each tuple in the
mapping table pairs a query with a sound transla-
tion of the query. Such storage permits us to reuse
the data association inference algorithm of our ear-
lier work [11] to compose query translations. Con-
sider a path θ = P1, P2, ..., Pn of peers with a set
of mapping tables mi storing data associations be-
tween peers Pi and Pi+1, for 1 ≤ i ≤ n − 1. Now
let Ti be a mapping table containing pairs of sound
query translations (that is, each tuple (q, q′) in the
mapping table represents a T-query q on Pi and a
sound translation q′ of q with respect to the mapping
table mi).

Let m denote the mapping table that results from
our inference algorithm [11] over the path θ and the
set of mapping tables mi. And let T denote the
mapping table that results from our inference algo-
rithm over the path θ and the set of (query) mapping
tables Ti. Then, each tuple (q, q′) in T contains a T-
query q′ that is a sound translation of q with respect
to the mapping table m.

5.5 Using multiple mapping tables

The algorithms presented in the previous sections
assume the existence of a single mapping table that
maps all the attributes in the relations involved. In
real life, we expect that multiple mapping tables are
provided and that some attributes are not mapped.
In what follows, we investigate how to handle these
two situations.

Assume that instead of a single mapping table m,
we are given a set of mapping tables M to use dur-
ing the computation of a complete translation. The
exact way in which these tables are combined can
be either pre-specified or it can be left to the user.
Here, we propose a technique for combining mul-
tiple tables automatically. The following example
illustrates that combining all available tables during
the computation of translations might yield counter-
intuitive translations.

Example 18 Consider query Q1 from our motivat-
ing example that retrieves articles from MedLine
mentioning protein OPH. Assume that instead of
just using mapping table keyword2kw, in Figure 1(c),
we consider both mapping tables keyword2kw and
id2id to compute the translation. Furthermore, as-
sume that every retrieved tuple from PubMed must
be associated with a local OPH article with respect to
both mapping tables. Then, the resulting translation
is equivalent to the following query:

Q8: select *
from PubMed
where (kw = “APH” OR kw = “AARE”)

AND paper id = “10719179”

That is, by using both mapping tables, we are forced
to restrict the identifiers of the retrieved articles.
Since no restriction is imposed in the article id at-
tribute of the MedLine retrieved articles, a similar
reasoning should be followed when translating this
query for the PubMed articles. This reasoning sup-
ports not using mapping table id2id, in Figure 1(d),
in translating this query.

The proposed technique accepts as input a query
q over a peer P and a set of mapping tables M from
P to a second peer P ′, and it uses the set M to
compute a complete translation q′ of q. Initially, the
algorithm converts q into its equivalent disjunctive
normal form. Then, it proceeds by considering each
disjunct Dj of q in isolation. For each disjunct Dj ,
it selects a table for the translation, if this table’s
local attributes participate in an atom of the dis-
junct. Call Mj the set of selected mapping tables.
If the set of attributes of Dj is contained in the set
of attributes of Mj (Mj is relevant to Dj), the al-
gorithm combines the mapping tables in Mj into a
single mapping table mj by using the ∧-operator
[11]. For the time being assume that mj mentions
all the attributes exposed by peers P and P ′. Then,
the algorithm considers Dj as a T-query Tj contain-
ing only one row and computes a sound and com-
plete translation of Tj with respect to mapping table
mj . Then the translated T-query is converted into
an equivalent relational algebra expression whose se-
lection formula becomes a disjunct in the resulting
query q′.

Example 19 By using the algorithm described here,
query Q1 is translated to query Q2 which is indeed
its complete translation. As another example, as-
sume that Q9 is a query retrieving information from
MedLine about articles that mention protein OPH
and were published in 1999:

Q9: select *
from MedLine
where keyword = “OPH” AND year = “1999”

Then, our algorithm selects only mapping tables
year2py and keyword2kw for the translation, result-
ing in the following query:

Q10: select *
from PubMed
where (kw = “APH” OR kw = “AARE”)

AND py = “1999”

If any of the mapping tables mj computed by the
above algorithm does not mention all the attributes
exposed by P and P ′, then it is extended to a map-
ping table m′

j that maps the extra attributes to any
value. For example, mapping table ML2PM in Fig-
ure 3 is the extension of the following mapping table
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to the set of attributes {article id, keyword, year,
paper id, kw, py, pm}.

6 Implementation

We implemented our ideas over the prototype imple-
mentation of the Hyperion peer-to-peer data man-
agement system [4]. The structure of each peer in
this system is shown in Figure 5. We provide a
graphical user interface through which a user can
set up acquaintances with new peers or pose local
queries. Each peer in the system manages its own
collection of data and it autonomously chooses a log-
ical design and physical organization for the data.
We use the MySQL relational DBMS to store both
the peer data and any possible mapping tables that
each peer might maintain.

The servent, which is the main component of this
architecture, consists of four main modules. From
these four modules, the query processing engine is
the main focus of this work. It includes the im-
plementation of the algorithms that convert SQL
queries to their disjunctive normal form; convert
SQL queries to their equivalent T-queries and back;
and compute the complete translation of a query
given a mapping table. Furthermore, it includes the
algorithm for testing containment of T-queries and
the algorithm to test whether a query is a sound
translation of another one, with respect to a given
mapping table. Finally, we also implemented the al-
gorithm that, given a query q and a set of mapping
tables M , selects the set of mapping tables to use in
order to compute a complete translation.

We implemented a number of optimizations to
improve the efficiency of our algorithms. One such
optimization relies on the fact that our representa-
tion of queries as T-queries allows us to store in the
database both the query itself and the relationship
with its sound translations. As an example, con-
sider again the stored translation shown in Figure

4. Assume that the calculation of this translation
happened some time in the past, but the system
stores this relationship between the two T-queries
in the database. Now, assume that a new query is
issued on MedLine asking only for articles that men-
tion protein OPH and were published in 1998. At
this point, we could run the optimized version of
the algorithm for computing complete translations
in order to retrieve the corresponding PubMed arti-
cles. Alternatively, one can use the algorithm for T-
query containment to conclude that the correspon-
dence between T-queries in Figure 4 can be used
to compute the translation. In more detail, we test
whether the T-query representation of the current
query is contained in the left part of the table in the
figure. Since this is the case in our running example,
we treat the table in the figure as a mapping table
and we use it to compute the translation of the cur-
rent query. In this example, this computation will
result in the selection of the right parts from the first
two tuples.

An interesting application of the previous opti-
mization relies on the observation that in peer-to-
peer systems users are often satisfied with answers
that are not complete, as long as they are given
the guarantee that anything that is retrieved is cor-
rect. With this in mind, even a query that re-
trieves all articles in MedLine mentioning proteins
OPH or NGF receptor can be answered satisfacto-
rily from the PubMed peer by just retrieving articles
that mention these proteins and were published in
some particular time interval (for example, the last
5 years). Testing for T-query containment is also
central in this approach since the stored query is
contained in the query being posed.

We conclude our overview by noting that the
implementation of the query processing engine was
done in the C programming language and it contains
approximately four thousand lines of source code.

7 Experiments

To evaluate our algorithms, we undertook two stud-
ies. The objective of our first study is to investi-
gate the performance of our translation algorithms
with respect to three problem parameters, namely,
the size of the input query, the size of the output
query, and the size of the mapping tables used in the
translation. The second study investigates the per-
formance of our algorithms under large query load
and examines the benefits of storing and re-using
past translations. Due to lack of space, our second
study is only available in the extended version of the
paper [10]. The data used by both studies are real
and are extracted from publicly available sources.
We use these data to create distinct peers, one per
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Figure 6: Generating large output queries

machine within the same LAN, and each peer has
the structure shown in Figure 5.

7.1 Biological Databases

The data for this study belong to the MedLine,
PubMed and SwissProt [2] databases. We populated
each of the MedLine and PubMed relations with ap-
proximately 25000 tuples corresponding to protein-
related articles. We assumed that MedLine articles
are indexed, through the keyword attribute, by the
currently approved protein name while PubMed ar-
ticles are indexed by aliases of the approved names.
Mapping table id2id had approximately 24000 tuples
while mapping table keyword2kw had approximately
12000 tuples. The former table maps an MedLine
article to at most one PubMed article while the lat-
ter table maps currently approved protein names to
their corresponding aliases. Both mapping tables
were retrieved from SwissProt.

Given query Q1 and mapping table keyword2kw,
we expect that the time to translate Q1 is influenced
by the number of values that OPH is associated with,
since this number influences the number of disjuncts,
and thus the size, of the output query. Thus, the
objective of our first experiment is to investigate the
exact relationship between the time to perform a
query translation and the size, in terms of disjuncts,
of the translated query. For this purpose, we select
20 distinct input queries each of which is similar, in
spirit, to query Q1, i.e., it retrieves MedLine articles
for a particular keyword/protein. The queries were
selected in such a manner that the first query refers
to a protein with a single alias in keyword2kw, the
second query refers to a protein with 2 aliases, and
so on, while the last query refers to a protein with
20 aliases. Figure 6 shows the translation times (in
seconds) for each of these queries. As we can see,
the translation time scales gracefully and, even for
large output queries, it is still fractions of a second.

In the previous experiment, all the input queries
have only a single disjunct. In this experiment, we

Number of disjuncts in the input query
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Figure 7: Translating large input queries

vary the number of disjuncts in the input query and
we investigate how this influences the translation
time. We start by selecting 20 distinct input queries
each of which, once translated, results in an output
query with 14 disjuncts. From the 20 input queries,
4 queries have 2 disjuncts, 4 have 3 disjuncts, and
so on, and the last 4 queries have 6 disjuncts. We
consider 4 alternative queries for the same number
of disjuncts since, given the number of disjuncts in
a query, there are different combinations with which
these disjuncts can contribute to result in 14 out-
put disjuncts. For example, for a query with just
two disjuncts, each of the two input disjuncts can
be translated to 7 output disjuncts, or alternatively,
the first input disjunct can result in 10 output dis-
juncts while the second input disjunct can result in
the remaining 4. In Figure 7, we average the transla-
tion times of input queries with the same number of
disjuncts and we also report, in the first column, the
translation of an input query with a single disjunct.
Notice that as the number of disjuncts in the input
query increases, there is a corresponding increase in
the translation time of the query. Although there is
a correlation between these two quantities, our next
experiment shows that there is another factor that
also comes into play during the translation process.

For this experiment, we use the input query that
had the worst performance, in terms of time, in our
previous experiment. This is the input query with
6 disjuncts, denoted with D1 to D6, where disjunct
D1, once translated, results in 9 output disjuncts
while the remaining 5 input disjuncts all result in a
single output disjunct. Notice again that the number
of disjuncts in the output query is 14. During this
experiment, we translate this input query 6 times
and the only difference between the translations is
the order with which we translated the 6 input dis-
juncts. In particular, in the first run, the input dis-
junct D1 is considered first for translation, while in
the second run, disjunct D1 is considered second in
order for translation. Continuing in this fashion, in
the sixth run, the five single-output disjuncts are
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Figure 8: Translating a large input query

considered first, while disjunct D1 is considered last.
Figure 8 show the translation time for each of the six
runs of the algorithm. The drop in translation time
is due to the following reason. After a disjunct of
the input query is translated, the algorithm checks
whether any of generated output disjuncts is already
part of the output query due to a previously trans-
lated input disjunct. The objective of this check is
to avoid duplicate disjuncts in the output query, or
pairs of disjuncts where one is contained in another.
However, the check generates more comparisons, and
thus more computation, if a large number of output
disjuncts is generated early in the translation pro-
cess. Hence, delaying the translation of a disjunct
like D1 causes reduced translation times. In general,
reordering of input disjuncts seems beneficial and
it can be achieved by storing frequency information
about the values of a mapping table. Using these
frequencies we can estimate the number of output
disjuncts for each input disjunct.

We also experimented with varying the mapping
table sizes. Our experiments show that this param-
eter does not influence the translation time. This is
because we do not scan the whole table in order to lo-
cate the tuples to be used in the translation, but we
use in-memory hash indexes. Our implementation
of the hash indexes is customized to the semantics
of mapping tables and thus takes into consideration
the existence of variables in the tables.

8 Conclusions

We have considered the problem of data sharing be-
tween autonomous data sources. We used mapping
tables to associate data from different sources and
we have shown how the tables can be used in the
translation of structured queries. We introduced the
notions of sound and complete translations and we
proposed algorithms to compute such translations
and an algorithm to test if a query is a sound trans-
lation of another. We implemented our algorithms
and we have presented experiments which show that

these can be used in practice.
Our future work investigates algorithm optimiza-

tions along with support for more expressive query
languages that include, for example, negation.
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