A d) . i
"F Journal of Intelligent Information Systems, 19:2, 231-259, 2002

(© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Hypothetical Temporal Reasoning in Databases

MARCELO ARENAS' marenas@cs.toronto.edu
Pontificia Universidad Catolica de Chile, Escuela de Ingenieria, Departamento de Ciencia de Computacion,
Santiago, Chile

LEOPOLDO BERTOSSI bertossi @scs.carleton.ca
Carleton University, School of Computer Science, Ottawa, Canada

Abstract. In this paper we integrate a history—encoding based methodology for checking dynamic database
integrity constraints into a situation-calculus based specification of relational database updates. By doing this,
we are able to: (1) Answer queries about a whole hypothetical evolution of a database, without having to update
the entire database and keep all the information associated to the generated states, (2) State and prove dynamic
integrity constraints as static integrity constraints, (3). Transform history dependent preconditionsfor updatesinto
local preconditions.

The methodology presented here is based on the introduction of operators of predicate past temporal logic
as macros into the specifications, written in the situation calculus, of the dynamics of a database. Temporal
subformulas of aquery are treated as auxiliary views with the corresponding specification of their dynamics. An
implementation of hypothetical temporal query answering is presented.

Keywords: database dynamics, hypothetical reasoning, historical queries, dynamic integrity constraints

1. Introduction

In Reiter (1995), as an application of his solution to the frame problem (Reiter, 1991), Ray
Reiter proposed to specify the transaction based updates of arelational database by means
of aparticular kind of axioms written in the situation calculus (SC) (McCarthy and Hayes,
1969). In Bertoss et a. (1998) the implementation and the functionalities of SCDBR, a
computational system for doing automated reasoning from and about those specifications
(Bertossi et al., 1998), are reported.

We are motivated by the problem of answering queries about different states! in the
evolution of arelational database, when the database is virtually updated by the execution
of a sequence of primitive transactions, that are indecomposable and domain dependent
transactions. For example, we want to consider queries of the form “Has it always been
the case that the database has satisfied a given condition C?,” or “Has there been a state
of the database where a certain condition C has been satisfied?” or “Has the salary of
some employee decreased along the database evolution?.” Reiter raised this problem in the
context of his specifications of transaction based database updates (Reiter, 1995).

*Dedicated to the memory of our dear friend and colleague Javier Pinto (1959-2001), who made important
contributions to the logical foundations of the situation calculus.
T Present address; Department of Computer Science, University of Toronto, Toronto, Canada.

232 ARENAS AND BERTOSSI

Although there is no explicit time in our situation calculus, we call these quteagpo-
ral queries, due to their similarity with dynamic integrity constraints (Reiter, 1995), also
called“temporal constraints(Chomicki, 1995% Furthermore, we call these querldsy-
pothetical because we start from an initial, physical database at an initial Sated a list
T of primitive transactiong\y, ..., Ay, that virtually update the database, producing new
statesS,, ..., §; and we want to answer a query about the generated sequence of states,
without physically updating the whole database accordingly (and possibly keeping the data
for every intermediate state). We are interested in querying this whole virtual evolution of
the database.

The problem of answering this kind of queries was treated in detail in Siu and Bertossi
(1996) and a solution was implemented as reported in Bertossi etal. (1998). Nevertheless that
solution is based on a kind of minimal progression of the database that depends on a detailed
syntactical processing of the axioms of the sfieation, and the particular syntactical form
of them.

In this paper we reconsider this problem and we propose a new solution that relies on
processing the query itself, rather than the underlying axioms. This is done on the basis of (1)
a formulation of the query in a situation calculus language that contains temporal operators
inspired byfirst order pasttemporal logic (FOPTL) (Gabbay etal., 1994), (2) areformulation
of Chomickis history encoding methodology forfieiently checking temporal integrity
constraints (Chomicki, 1995), in the context of situation calculus §ipatibns of database
updates, and, in particular, (3) a sgamtion in the situation calculus of the evolution of
new history encoding auxiliary relations that are generated from the query.

Itturns out that the methodology we develop for answering queries can be adapted to give
a solution to other reasoning problems. Here we show how to transform dynamic integrity
constraints into static integrity constraints, so that any available methodology for handling
static integrity constraints can be adapted for the dynamic case. In particular, we can take
advantage of our results on automated proving of static integrity constraints (Bertossi et al.,
1996) when dealing with the dynamic case.

The other problem we solve consists in transforming preconditions for action executions
that depend on the history of the database into preconditions that depend on the local,
execution state.

This paper is concerned mainly with the problems of modeling and doing hypothetical
reasoning in databases, a subject that has not received enough attention (but see Bonner,
1990; Bonner and Kifer, 1998; Chen, 1997). We think hypothetical reasoning will become
more and more important in databases that are used for decision support; whatef”
questions are relevant, as the ones emerging in on-line analytical processing (OLAP) and
datawarehousing (Chaudhuri and Dayal, 1997). To have computational tools that can be
used to explore different courses of action without having to commit to any of them; in
particular, without having to physically update the database, is likely to be very important
in many applications of information systems, specially in the presence of rich primitive
transactions, like ours, that may affect several tables at the same time.

This paper is structured as follows. In Section 2 wefbyidescribe the situation calculus
based spefications of database updates. In Section 2.1, we introduce temporal queries and
constraints in a situation calculus framework. In Section 3.1 we introduce our language

HYPOTHETICAL TEMPORAL REASONING 233

for posing temporal queries. In Section 3.2 we introduce the elements we need to evaluate
queries, in particular, the spéiciation of the dynamics of the auxiliary, history encod-

ing, views; and we address the problem of answering the hypothetical temporal queries.
In Section 4 we apply the machinery developed in previous sections to the problem of
transforming dynamic integrity constraints into static integrity constraints. In Section 5 we
apply our methodology to the problem of transforming history dependent transactions, i.e.
transactions whose preconditions are temporal, into transactions with local conditions. In
Section 6 we sketch some possible extensions of the methodologies introduced in the pre-
vious sections. In Section 7 we compare our work with other approaches in the literature,
we comment on further work, and draw some conclusions. In Appendix A, we illustrate our
implementation of the developed methodology. In Appendix B some proofs are given.

2. Specifying the database dynamics

We will show the main ingredients of a spgcation in the situation calculus of transaction
based database updates, as proposed in Reiter (1995). The SC is a family of languages
of many sorted predicate logic used to represent knowledge and reason about dynamic
domains that are subject to discrete changes caused by action executions. In its languages,
we find domain individuals, states and primitive transactions, i.e. domainfepecid
indecomposable transactions, that we will also tatitions; and which are at the same
first order level. In consequendast order quantication over all these sorts of individuals
is possible. They are usually denotedwy;, Vs, Va respectively.

Among others wdind the following advantages in using the SC as a $ation lan-
guage: (1) It has a clear and well understood semantics. (2) Everything already done in
the literature with respect to applications of predicate logic to DBs can be done here, in
particular, all static and extensional aspects of databases and query languages are included.
(3) Dynamic aspects can be integrated at the same object level, in particular, it is possible
to specify how the database evolves as transactions are executed. (4) It is possible to rea-
son in an automated manner from the sfieation and to extract algorithms for different
computational tasks from it. (5) In particular, it is possible to reason explicitly about DB
transactions and their effects. (6) In this form, it is possible to extend the functionality of
usual commercial DBMSs.

In every SC language wignd a constant for an initial stat&, a function symboldo,
so thatdo(a, s) denotes the successor state that results from the execution of action
at states. We alsofind a predicateRosga, s), with the intended meaning that actiaris
possible at state In a particular SC language we wilhd function names for parameterized
primitive transactions (actionsi\(x), and names for tableE,(x, s), that is, predicates with
a single state argumeéntlf T is a sequence of action termds, ..., A,, to be executed
in that order, we abbreviate the situatido(A,, do(An_1, do(...do(As,s),...)) with
do([A, ..., Anl,) or simplydo(T, s).

As in Lin and Reiter (1994), we will assume that the followifiogindational axioms of
the situation calculusinderlie any database spicatiorf: (1) Unique Names Axioms for
Actions: Aj(X) = Aj(Y), for all different action namesy, Aj; V(x, Y)[Ai (X) = Aj(y) D
X = Vy]. (2) Uniqgue Names Axioms for State§y # do(a, s), do(a;, ;) = do(az, 82) D

234 ARENAS AND BERTOSSI

a3 = ap A S1 = . (3) For some reasoning tasks we need an Induction Axiom on States:
VP[(P(S) A VsVa(P(s) D P(do(a, s))) D YsP(s)].

A specfication of the transaction based updates on a particular database will contain the
following axioms: (4) A setXy, of SC sentences that do not mention any state term other
than §. This is knowledge about the initial state, and state independent knowledge. (5)
Action Precondition Axioms: For each action namga precondition axiom of the form

V(X, S)[Pos$A(X), s) = ma(X, 9)], (1)

wherema(X, s) is a SC formula that isimple in s that is, it contains no state term other
thans, in particular, nado symbol, no quantications on states, and no occurrences of the
Posspredicate (Reiter, 1995). (6) Successor State Axioms (SSAs): For everyR@hls),

an axiom of the form

V(a, s)Posga, s) D VX[F(X, dofa, s)) = (X, a, s)], 2

where®r is a formula simple irs, in particular, it does not contain tide symbol. Provided
there is complete knowledge at the initial state, as is usually the case in relational databases,
this axiom completely determines the contents of t&bde an arbitrary legal database state,
i.e. reached frong by afinite sequence of transactions that are possible at their execution
states. We are usually interested in reasoning about the states that are accessible in this
form from the initial situation. For this purpose, aocessibility relatioron statess, can
be ddined on the basis of the induction axiom by means of the conditiess: S, s <
do(a,s') = Posga,sS)As<¥s.

We will denote this spefication with . It includes the initial databasgy and the
definition of the accessibility relation.

Example 1 Consider a database of a company, with the following relations:

Empx, s): Persorx is an employee of the company when the database is instate
Cedx, s): Personx is a chief executive dicer of the company, in the stade
Salary(x, p, s): The salary of the persanis p in the states.

and primitive transactions:

hire(x): Persorx is hired by the company.

fire(x): Persorx is fired by the company.

promotéx): Persorx is promoted to chief executivefater.
changeSalarfk, p): The salary of the persaonis changed tg dollars.

The spedication of the initial database has the the following formulas:

VX(Emp(x, §) = x = johnv x = ernestv x = page,
sue# john, sue# ernest sue= page
john # ernestjohn # page ernest# page

HYPOTHETICAL TEMPORAL REASONING 235

Thatis, John, Ernest and Page are the only employees of the company at the initial database
state.
The relations in this spefdtation have the following successor state axioms (see (2)):

V(a, s) Posga, s) D VX[Emp(x, do(a, s)) =
a = hire(x) v (Emp(x, s) A a # fire(x))]
V(a, s) Posga, s) D Vx[CedX, do(a, s)) =
a = promotéx) v (CedX, s) A a # fire(x))]
V(a, s) Posga, s) D V(x, p)[Salaryx, p, do(a, s)) =
a = changeSalarfx, p) v (Salaryx, p’, s) A
—3p'(a = changeSalarx, p’) A p # p))].
For example, théirst SSA says that is an employee at an arbitrary legal successor state
if he was just hired or he already was an employee and he wdgeain the transition to
the successor state.

Now, assume that we have the following precondition axioms for the actions in the
database.

V(X, s)[Posghire(x), s) = =Emg(x, s)].
V(x, s)[Posgfire(x), s) = EmX, s)].
V(X, s)[PosgpromptéXx), s) = EmpX, s) A =CedX, s)].
Y(X, p, s)[Pos¢changeSalarik, p), s) = EmfX, s) A
vp'(Salaryx, p’,s) D p’ < p)l. O

The regression operatQrR, (Reiter, 1991, 1995) applied to a formula containing a
successor state returns an equivalent formula (with respect to thdicatmn) evaluated
at the preceding state. This is done by using the SSAs. More precisely, if preflicate
appearing in a formulg:, has a SSA like (2), then the operat@r, applied toy, replaces
each occurrence of an atomic formula of the fdfift, do(a, s)) in ¥ by ®:(t, a, s).

The regression operator is implemented in SCDBR, a computational system for reasoning
about and from spefications of database dynamics as presented in this section (Bertossi
etal., 1998).

2.1. Temporal queries and constraints

In the context of such DB spduiations, a temporal query is a SC sentepde which all
the states involved, including quafiid states, lie onfinite statepatlyy < S <--- < S,
with § = do(A;, do(Ai_1,...,do(A1,) ...)), for a sequence of ground actions terms
Ay, ..., Ay, for somen. The query is true if and only iE = ¢.

Example 2 In Example 1, the temporal quefyHas Sue been working in the company
in all states generated by sequence T g?'San be expressed in the SC by means of
VS(S < s < S D Emgsuey)).

236 ARENAS AND BERTOSSI

The following sentence could be also a temporal query

VS, s (S<s <8 <5 D
v(x, p’, p")((Salaryx, p’,) A Salaryx, p”,s")) D p’' < p").

It asks whether the salary has not decreased. O

A static integrity constraint is a formula of the forvis(S < s D ¢(s)), whereg(s) is
simple in the state variab& such that = Vs(S < s D ¢(S)) is expected to hold (Reiter,
1995; Lin and Reiter, 1994). A dynamic (or temporal) integrity constraint is a SC sentence
¢ of the formVs; - - V$,(C(S, S1, ..., S) D ¢(S1, ...,), that should be entailed by
¥. Here,C(S, s1, - - -, S) is a formula that imposes a linear order constraint on the states
. S1, . .., S in terms of the accessibility predicate.

Example 3 The sentenc&s(S < s D Vp (Salary(sue p,s) D p > 4000)) could
be a static integrity constraint, stating that Susalary can not be lower than 4000. The
sentence

VE, NS <5 <s"D
v(x, p’, p")((Salaryx, p’, s') A Salaryx, p”,s”)) D p’' < p). (3)

is a dynamic integrity constraint expressing that a salary never decreases. O

In general, we will not have explicit integrity constraints in our sfieation, X, of the
database dynamics. We expect them to be logical consequentd®efter, 1995; Lin and
Reiter, 1994).

In the next section we will introduce temporal operators as found in past temporal logic
into the situation calculus. With these operators we will formulate queries and constraints,
and their new syntactic form will allow us to process and evaluate them.

3. Answering queries

In Chomicki (1995), the problem of checking temporal constraints stated in FOPTL was
considered. These are constraints that talk about, and relate, different states of the database.
There wefind a sequence of transactions that are physically executed, and in order to
minimize the cost of checking, one progressively updates néweatkrelations, or auxiliary

views, r, that correspond to the temporal subformutasin the constraint. These views
encode part of the database evolution up to a current database state. Theinac ated
updated in such a way that they store the historical information that is relevant to give an
answer to the query about the satisfaction of the integrity constraint onGeahécurrent)

state is reached. Then a new, non-temporal, but local and static query can be posed at the
final state.

HYPOTHETICAL TEMPORAL REASONING 237

In this paper we will combine our reconstruction of Chomiskiistory encoding in the
context of spedications of the dynamics of a database with the possibility, opened by
those spefications, of reasoning about the database evolution without having to phys-
ically update the database. In consequence, we will be in position to do hypothetical
temporal reasoning about the database evolution. We can say that while Chomicki an-
swers the query by positioning at tfi@mal physical state of the database, we query a
single future, virtual state from the initial, physical state. The fact that we are doing vir-
tual updates makes it possible to apply our methodology to any temporal query, whereas,
in the presence of physical updates, the queries have tbxbd, predetermined in
advancé.

3.1. A querylanguage

As discussed in Section 2.1, a temporal query is a sentgnicewhich all the states
involved, including the quarfted states, lie on &nite state pattfy < § < --- < &,
with § = do(Aj, do(Ai_1,...,do(A1,) ...)), for a sequence of ground actions terms
A, ..., An

In order to answer this kind of queries on an algorithmic basis, we needfitoede
them in a precise sense. Thus, we need findea query language for asking about the
history of a sequence of states. To achieve this, we will introduce in the situation cal-
culus some temporal operators inspiredftygt order past temporal logic, andn@acrg
holds. With these new elements we will be in position to represent an important class
of temporal queries. Nevertheless, if desired, the applicatiarodds to a formula with
temporal operators could be always rewritten into a usual situation calculus
formula.

The SC contains predicates with a state as an argument. For example, Wéausg
to state that is an element of tabl® in the states. We may eliminate the situation term
from predicateP, and use a new meta-predicatelds, and writeholds(P(a), s) with
the same meaning as before. Actually, we would like to extend the applicatiosiak
to more complex formulas, derived from SC formulas, but keeping the state dependency in
the second argument ablds.

Definition 1. A formulag is state suppresseg@nss-formuld if it is constructed as usual
from state independent predicates, state dependent predicates (i.e. databaseltadifes)or
with the state argument supressed, boolean connectivedirsindrder quantications on
domain individuals.

For example, the following is an ss-formukx3 p(Cedx) A Emg(x, p) O p > 5000)/
The state arguments have been suppressed from the tables. Predidgateill have an ss-
formulain itsfirst argument, and a state in the second argument. This wouldimale a
second order predicate. We can go badkrid order expressions by consideringlds as a
macro, as an abbreviation, as something that can be rewritten into an expression of the orig-
inal situation calculus. Thuaolds(p, S) whereg is an ss-formula, is damed recursively

238 ARENAS AND BERTOSSI

as follows:

holds(ty x tp, S) := ty = tp, for terms for individualg;, t,, and
* € {<, >, <, >, =, #}.
holds(P(x),s) := P(x),if P is a state independent predicate
holds(F(X),s) := F(X,s),if F is a predicate for a database table
holds(—¢,S) := —holds(g,S)
holds(¢ A ¥, S) ;= holds(p, S) A holds(y, S)
holds(¢ V ¥, S) ;= holds(p, S) V holds(v, S)
holds(p D ¥, S):= holds(p, S) D holds(¥, S)
holds(¢ = v, S):= holds(p, S) = holds(¥, S)
holds(IXg, S) := Ixholds(yp, s), if X is a variable for domain individuals
holds(Vxe,S) := Vxholds(g,S),if x is a variable for domain individuals

An advantage of using the machelds is that we can extend the class of formulas
¢ in holds(gp, S) in such a way that they contain new, temporal operators that represent
subformulas with some useful, natural and common gfiaation over states. In addition,
we can make thénal, evaluation states, explicit. For example, we want to represent in a
compact and distinguishable way the form#& S < s’ < s D P(a, §')) which says thaa
is an element of tablP in every state previous & without using an explicit quarfication
over states. For doing this, we introduce a logical temporal operatdefined by

holds(o P(a), s) := Vs (S < s’ < s D holds(P(a), s)).

More precisely, for posing temporal queries, we will introduce in the SC the four typical
temporal operators dirst order past temporal logic, the same operators considered in
(Chomicki, 1995). The intended meanings of them areigddr “ ¢ was true at the previous
moment of timé&. (b) ¢ sincey for “y was true at some time in the past and from that time
on, ¢ has been tre (c) ¢ ¢ for “Sometime in the pasgt was trué. (d) o ¢ for “Always in
the pasty was trué .8

They will be introduced as macros though, viatlads predicate. In consequence, the
class of ss-formulas (Dimition 1) has to be extended by means of the extra rule; if
are ss-formulas, thesy, ¢ sincey, ¢ ¢, oy are also ss-formulas.

The combinations ofiolds and the temporal operators arefided by the following
macros, that can be rewritten as SC formulas as follows:

holds(eg, S) ‘= 3(a, §)(s = do(a, §') Aholds(p, 5))
holds(y since, s) := 38 (§H < S < SA holds(y, S)A
vs’(s' < 8" < s D holds(yp, 5")))
holds(¢ ¢, S) = 39(S <8 < sAholds(p,s))
holds(og, S) =V (S <9 <sDholds(p, 9)).

This is a recursive dmition. In it, ¢ and are formulas that may include connec-
tives—, v, A, D and=; quantfication over domain individuals; and operatersince ¢
ando.

HYPOTHETICAL TEMPORAL REASONING 239

From now on, our temporal query language will consist of the formulas we jistedie
More precisely, our temporal queries will be of the form

holds(p, do(T, S))?, (4)

whereg is an ss-formula andl is a sequence of ground actions.

Formulag in (4) will possibly contain temporal operators, that is, it may contain subfor-
mulas starting with an application of a temporal operator. In Section 3.2, to each of these
subformulasy, we will associate a new, auxiliary, history encoding vi&y, Next, for these
views we will derive spedications of their dynamics, and use them in the process of query
answering. Before doing this, we present some examples of temporal queries expressed in
terms of the new operators.

Example 4 We can express the queries shown in Example 2 as folltvas sue been
working in the company in all states generated by a sequence of actions J7at S
holds(Empsug A cEmgsug, do(T, &)). “Is is true that the salaries have never de-
creased along the states generated by action sequence T execugt at S

holds(¥(x, p/, p")((Salaryx, p”) Ao Salaryx, p) > p' < p") A
o(Salary(x, p”) A o Salary(x, p') > p’ < p”)). do(T, Q).

Example 5 The query*Was Joe hired as an employee of a lower rank before becoming
a Chief Executive Giter (CEO) in all states generated by a sequence of actions §7at S
can be expressed by the formula

holds(o(Emp(joe) A —=Cedjoe)) A Empjoe) A Cedjoe) Vv
[Em@joe) A Ced joe)]since
[Emgjoe) A Cedjoe) A o(Emgjoe) A —=Ced joe))], do(T, S))

Example 6 The query'ls there anybody who has always been working in the company
(along the execution of the sequence of actions T frg)® 8an be expressed by the formula

holds(@X(Emp(x) A o Emp(x)), do(T, S)). O
With the temporal operators we can express an interesting and natural class of temporal
queries. The introduction of the temporal operators cannot be a substitute for the whole

expressive power of the situation calculus (Abiteboul et al., 1996), nevertheless we can
express with them the queries we need in most common practical applications.

3.2. Evaluating the query

Our starting point consists of a SC sffegationX as in Section 2, and a queylds (¢, S),
whereg is an ss-sentence, possibly containing temporal operators, to be evaluated at the

240 ARENAS AND BERTOSSI

final stateS = do(T, &). As expected, this formula implicitly refers to the states between
S andS.

In order to answer the query, we will construct a new SC djmation X that extends
3, and a new SC sentencl(g, S), such that the answer to the original queFy, =
holds(p, S)?, coincides with the answer obtained from the evaluatioti(ef S) with
respect toXy. The new sentenceéi(p, S), refers only to the stat§, and ¥y contains
a spedication of the dynamics of some new, history encoding, auxiliary relations that
correspond to the temporal subformulaspinBeing in this new scenario, we can use any
algorithm for answering queries that refer to a single, future state of the database.

First we will generatei(p, S), for an ss-formulap and ground stat&. Next, we will
show how to generatEy.

1. If ¢ is of the formt; * t, wheret; andt, are terms (for domain individuals) and
x € {<, >, <, >, =, #}, thenH(p, S) = ¢.

2. If ¢ is of the formP(t), whereP is a state independent predicate, thgp, S) := P(t).

3. If ¢ is of the formF (t), whereF is a predicate for a database table, th¢p, S) :=
F(t, S).

4. If g is ~y, thenH(p, S) := —H(Y¥, S).

5. H(y x6,9) := H(y, S x HH, S), wherex is any of the usual binary propositional
connectives.

6. H(QXx ¢, S) := QxH(p, S), whereQ is any of the usudirst order quantiers.

7. If g is ey (X), © ¥ (X) or oy (X), wherey does not contain any of the operatersince
¢ ando, thenH(yp, S) := R,(X, S), whereR, is a new table name.

8. If p(X) is ¥ (X) sinced(x), wherey(X) andd(x) do not include any of the operatoss
since ¢ ando, thenH(yp, S) := R,(X, S), whereR, is a new table name.

By bottom-up transformation of a formujathat appears in the macraslds, we can
always obtain such a formuli{g, S). Notice that this is a SC formula that is simple in the
stateS, i.e. it talks about an isolated stat®,

Now, we will specify the dynamics of the new tables introduced in the last two cases in
the inductive dénition above by means of appropriate SSAs:

(a) Leta(X) be of the forme+/(X). This formula is true at a given state iff(X) is true at the
previous state. Then, the new talRg(X, s) has the following SSAY(a, s)Posga, s) D
VX(R. (X, do(a, s)) = H(y (X), s)). At the initial statex(x) is false for eaclx, because
S has no predecessor state, so we spetify R, (X,).

(b) Leta(x)be ofthe formy(x) sincef (X). This formulais true at a stasewith predecessor
states/, iff (sinced) was true as’ and/ is still true ats, or v became true a and
0 became true &'. This is equivalent to saying that)(since®) v 6) is true ats’ and
¥ is true ats. Then, forR, (X, s) it holds:

V(a, s)Posga, s) D VX(R,(X, do(a, s)) =
H(y (X), do(a, s)) A (Re(X, S) v H(O(X), 9))).-

This is not a SSA of the form (2), because theredsé, s) term in one of the formulas
on the RHS. But we can get rid of it applying Reiteregression operatdt, that

HYPOTHETICAL TEMPORAL REASONING 241

takes a formula, instantiated at a successor state of thedofans), into a formula
instantiated at the previous stas€see Section 2). So, we obtain:

V(a, s)Posga, s) D VX(R,(X, do(a, s)) =
RIH(Y(X). dofa, s)))] A (Ru(X, s) v H(O(X), 9))).

Notice that the application of the regression operator leaves the RHS of the equivalence
above as a simple formula & Also notice that whem is a sentence, then the SC
formulaR,(s) becomes a situation dependent propositional predicate. Finally, we also
specifyvVx—R, (X, &).

(c) Letu(x) be of the forme v (X). Given thate v (X) := true sincev (x), the new table
R, has the spefication:

YX=Ry(X, S),
V(a, s)Posga, s) D VX(R. (X, do(a, s)) = H(¥(X), s) vV R,(X, S)).

Let B(x) be of the formay (X). Sinceny (X) := —¢ =¥ (X), Rs has the spefication:

VX Rs(X, S)
V(a, s)Posga, s) D Yx(Rgs(X, do(a, s)) = H(¥(X), S) A Rg(X, 9)).

Example 7 Assume that the original spéiciationX contains the following SSA for the
table P(x, s):

V(a, s)Posga, s) D Vx(P(x, do(a, s)) = a = A(X) v (P(x, s) A a # B(x))).

We want to evaluate the quex(P(x) sincecQ(x)) at stateS = do(T, §). If B isoQ(X),
then we introduce a new tabk; with SSA:

V(a, s)Posga, s) D Vx(Rg(X, do(a, s)) = Rg(X, s) v Q(X, s)).

Introducing Rg in the query, we obtaid@x(P(x) since Rg(x)). If the formula inside the
quantfier isx(x), for the new tabler, we have

V(a, s)Posga, s) O VX(R,(x, dofa, s)) =
RIP(x, do(a, s))] A (Ru(X, S) V Rg(x, 9))).

ReplacingR[P(x, do(a, s))] by the RHS of the SSA foP, we obtain the following SSA
for R,:

V(a, s)Posga, s) D Vx(R,(X, do(a, s)) =
(a=A(x) Vv (P(x,s) na# B(X))) A (Ru(X, 8) v Rs(X, 9))).

The new query i9x R, (X, S). O

242 ARENAS AND BERTOSSI

The following proposition shows why we can usend Xy to answer queries about a
specficationX, constructed by usingolds.

Proposition 1. Let > be a SC spefication and T a legal sequence of ground actfhns
thenX = holds(p, do(T, S)) if and only if 2 = H(gp, do(T, S)).

Notice thatholds (¢, dO(T, S)) is instantiated at thignal stated o(T, S), and this is the
only state mentioned in the formula. So, we can see that we have transformed our problem
of answering a temporal query with respect to a virtually updated database iteatheral
projection problenof Al (Hanks and McDermott, 1986), that is, the problem of querying
a future state obtained by the execution of a sequence of actions. To solve this problem
we may apply some existing techniques for Reiter like djtions, e.g. Reité&s query
regression (Reiter, 1995), minimal rolling forward of the database based on information
that is relevant to the query (Bertossi et al., 1998; Siu and Bertossi, 1996), or even full
progression of the database (Lin and Reiter, 1997). All these methodologies are supported
by the database reasoner SCDBR (Bertossi et al., 1998).

Example 8 We want to know if there is someone who has always been working in
the company, in all states generated by the execution of the sequences of @ctiens
[hire(susg, fire(john)] from the initial situation. So, we are asking whether

¥ = holds(@X(EmMX) A o EmAX)), do(T, S)).
Applying our methodology we obtain the new SC query
IX(EMEX, do(T, S)) A Ru(X, do(T, S))).
and the original spefitation extended t&y by addingvx R,(x, &) and
V(a, s)Pos4ga, s) D Vx(Ry(X, do(a, s)) = Emg(x, s) A R,(X, S)).
Thenwe ask sy = IX(EmpX, do(T, S)) A R.(x, do(T, S))). Now the query is simple
in thefinal stated (T,).
Running the regression operator twice on the RHS and simplifying the resulting steps by

means of the unique names axioms for actions, we obtain the following query to be posed
to the initial databas®g:

Ix((x = sueA Empx, Q) A X # john A Emp(X, S) A Ry (X,).
Simplifying R, (X, &) to true, we obtain the equivalent query
Emp(sug S) v Ix(x # john A Empx, S)).

SCDBR can answer this query by calling a conventional DBMS on the initial database, or
a Prolog program if the initial database is a Prolog database.

HYPOTHETICAL TEMPORAL REASONING 243

The implementation in SCDBR of the methodology we have presented so far is described
in Appendix A.

4. Transforming dynamic integrity constraints

In Section 2 we déned a Static Integrity Constraint (SIC) as a formula of the fgsg <
s D ¢(S)), whereyp(s) was a formula simple is. By using the macraolds we can extend
this ddinition by saying that a static integrity constraint is a formula of the form

Vs(S < s D holds(y, S)). (5)

If ¢ is a formula that does not include operatersince ¢ ando, then the previous formula

is a static integrity constraint of the form showed in Section g.iifcludes these operators,
then it can represent a more complex kind of integrity constraint. In fact, by means of this
operators it is possible to represent several Dynamic Integrity Constraints (DICs). Thus, by
using the equivalence between madiedds andH it is possible to transform a dynamic
constraint in one spefttation into a static constraint in another sfieaition.

Therefore, we can use our methodology to transform DICs into SICs. Actually, the
work in Chomicki (1995) has to do witbheckingDICs statically. In our case, with our
reformulation of Chomicks methodology in terms of a spécation of the dynamics of the
history encoding relations, we can rewrite DICs as SC sentences expressing SICs, which can
beprovenas such from the (extended) sdezation of the database dynamics. In particular,
we can use theorem proving techniques for proving SICs by automated induction, like
the ones presented in Bertossi et al. (1996), in order to automatically prove DICs from
the spedication of the database dynamics. The following proposition formalizes the idea
showed above.

Proposition 2. Given a SC spefication . If Xy is constructed fronk as shown in
Section3.2, then

Y = VS(S < s D holds(p, 8)) iff Ty = VsS(S < S D H(p, 9)).

Example 9 Let X be the spedication in Example 1 ang be the DIC (3) expressing that
an employe®s salary cannot decrease, that must hold in every legal currenssttae
DB. That is, as a sentence, it must follow frdn

We can express this integrity constraint in our extended formalism as follows:
Vs(§ <sD
holds(V(e, p/, p”)((¢ Salarye, p') A Salarye, p”)) D p' < p’) A
o((c Salary(e, p') A Salary(e, p”)) D p' < p”), 9) (6)
If x(e, p') is ¢ Salarye, p'), we create a tabl&, with specfication:
V(e p)—=Ru(& P, D),
V(a, s)Posga, s) D V(e, p')(R.(e, p’,do(a, s)) =
R.(e, p', s) v Salarye, p/, 9)). @

244 ARENAS AND BERTOSSI

IntroducingR, in thefirst argument ofolds in (6) we obtain:

V(e p', p")((Ri(e, p') A Salarye, p’)) D p' < p”) A
o((R(e, p') A Salarye, p")) D p' < p")). (8)

If B(e, p', p”) is the subformula((R. (e, p’) A Salary(e, p”)) > p’ < p”), we create a table
Rg with specfication

V(e p’, p")Rs(e P, P, S).
V(a, s)Posga, s) D V(e, p’, p")(Rs(e p’, p’, dofa, s)) =
Rs(e. p', p”.s) A ((Ru(e, P, S) A Salary(e, p”, 9)) D p' < p’)). 9

IntroducingRg in (8), we obtain

V(e p', p")(((Ru(e p',s) A Salarye p’,9) D p' < p’) A Rs(e p, p’9)).

Thus, the original DIC holds in every state if and only if the sfieationXy, consisting
of ¥ plus (7) and (9), entails the SIC:

Vs(S <sD V(e p,p")
(((Re(e, p',9) A Salarye, p’,9) D p < p’) A Rs(e, p, p’, 9)). (10)

The IC (10) can be split into the twbinary static integrity constraintys(S <s >
V(e p', p)((Salarye, p’,s) A =p’ = p') D =Ry(e P, 9))) andV¥s(S < s D V(e p', p”)
Rs(e, p’, p”, 8)). As shown in Pinto (1994) and Bertossi et al. (1998), these constraints
can be compiled into the spéiciation of the extended database dynamics, in this case,
modifying the original SSAs for the new tabl& andRg.

5. History dependent transactions

As we saw in Section 2, the formalism for specifying DB updates contains preconditions
for action executions that depend on the current state of the database, only. Many concepts
and algorithms that have originated from this formalism are based on this kind of local
action precondition axioms (APAs). Nevertheless, there are natural scenarios in which the
conditions for executing an action should depend on a longer history of the database. For
example, in a voters database we might have the following APA for agtits

V(X, Y, s)(Posgvotex, y), s) = In(Agdgx, n,s) An > 18) A
Candidatgy, s) A VS'($ < ' < s D —InJail(x, s7))). (11

That is,x can vote fory as long asy is a candidatex is not younger than 18, andhas
never been in jail. This is a history dependent transaction.

HYPOTHETICAL TEMPORAL REASONING 245

We can use the macras1ds to represent this kind of actions. In fact, we can extend the
definition of action preconditions as follows:

V(X, 5)(Pos¢A(X), S) = holds(¥/(X), 5)). (12)

If ¥ includes some of the operatarssince ¢ or o, we have a history dependent action.

We can use the machinery developed so far for transforming history dependent transac-
tions into local transactions. To do this we only need to construct a newfigp¢ion X,
from Xy, in its turn obtained fromi(y(X), s) as before, but with the original APA (12)
replaced by the new APA:

V(X, s)(PosgA(X), s) = H(¥/(X). 5)).

which is of the form (1). As before, the new spiezation contains SSAs for the auxiliary
tables introduced by the constructiontgf/ (x), s).

Proposition 3. LetX be a SC spefitation containing a history dependent APA for action
A and letZ be the new SC spéditation containing SSAs for the auxiliary relations and
the old APA replaced by the newocal one. If Posg and <y are the possibility predicate
and accessibility relation daed on the basis of the new ARAen it holds

(a) For every ground state term, &nd ground action term of the form(&,

Y = S <SD>PosgA(C),S) iff Ty E S <n SD Possi(A(C), 9.
(b) For every ground state term, S
2SS ffEHES=HS |
The proposition says that at every accessible state, aétisrpossible in the old sense
if and only if it is possible in the new sense and that both dptions déne the same

accessible states.

Example 10 We can apply the methodology to the voters example. In (11), the original
APA for votegx, y) can be expressed by means of the maardsis as follows:

V(X, Y, s)(PosgvotdX, y), S) = holds(In(Aggx, n) An > 18) A
Candidatéy) A —InJail(x) A o—InJail(x), s)) (13)

In consequence, we generate a new $pEtionX,, extendingZ, that includes now:

1. A new tableR,(x, s) that contains, at statg the peoplex that have not been in jail
before states, whose speéication consists of

VX R (X,),
V(a, s)Posga, s) D Vx(R,(X, do(a, s)) = R,(X, s) A —InJail(x, s)).

246 ARENAS AND BERTOSSI

2. The original APA for actiorA replaced by

V(X, y, s)(Posgvotex, y), s) = In(AgeXx, n,s) An > 18) A
Candidatéy, s) A —InJail(x, s) A R,(X),).

6. Possible extensions
6.1. Explicit time

In Chomicki (1995), explicit time was also included to extend history encoding and deal
with real-time issues. In Arenas et al. (1998d) it is shown how to extend our methodology
by introducing explicit time in the database. This can be done by considering time as a
new parameter for actions (Reiter, 1996). In this way, situations will have their associated
times. Here we given only some hints on how explicit time can be accommodated into our
framework.

As before, primitive actions will be denoted with function symbols, but now with one
extra parameter of a new, temporal sortThus, a ternborrow(book t;) would denote the
instantaneous action of borrowing a book at timeéWe also include a nhew functidime
from actions taZ, such that, for each action functidk(x, t), timesatigies the axiontime
(A(x, t)) = t. Therefore, ifborrombook t;) is an action term, then we would hatime
(borrowm(book t;)) = t;. We also need a functiorstart, from situations to times, such
thatstart(s) is the starting time for situatios. Since actions are instantaneous, we require
thatstart(do(a, s)) = time(a) (Reiter, 1998). Nevertheless, situations may have a duration
(Baier and Pinto, 1998).

The spedication of the accessibility relation between situatioashas to be modied
by the axiom

s < do(a, 8) = Posga,) A s1 < $ A start(sy) < time(a).

According to this characterizatios, < s, is true if all the actions that lead frosa to s,
are possible in the intermediate situations where they are performed, and their times are in
the right order.

We also have to modify the unique names axioms as follows:

a(xg, ..., X, t) Za' (Y1, - .-, Ym, t').
a(Xg, ..., Xn, t)=ayr, Ym) DXt =V1 A - AXn=Yn At =1

In the temporal extension of the situation calculus we fivil temporal atomic formulas of

the formt; ~ t,, wheret; andt, are temporal terms and € {=, #, <, >, <, >}. We also

have more complex temporal formulas of the fasmcy, wherec is a nonnegative integer,
stating that formula/ is true in some previous time, and the previous and present times are
subject to the constraint c. For example, if the time unit is a day, then.s—Empg(sué
states thdive days agsuewas not an employee of the company. More precisely, iaee

holds(¢ ~c¥, S) '= 35 (S < S < s A (start(s) — start(s)) ~ c A
holds(v, S)).

HYPOTHETICAL TEMPORAL REASONING 247

For example, sinckolds(Em@sug, s) = Emgsue s), we have

holds(¢ _s—Empsug,s) =3I (H <s <sA
(start(s) — start(s')) = 5 A =Emp(sug s)).

For a temporal formula(x) of the formo...y (X), whereys is a non-temporal formula,
the formulaH (¢(X), S) (see Section 3.2) Bt(R,(x, t, S) At ~ c), whereR, is new table.
We use the temporal parameten R, to store the amount of time that has elapsed since
¥ (X)wastrue. Thus, ifr(x) is true afs, then at statdo(a, s), int we stordime(a) — start(s).
Moreover, if R,(X, t’, s) is true, and thereforer(x) was truet’ units of time ago at some
state previous ts, at statedo(a, S), in t we storet’ + time(a) — start(s).'° In consequence,

R, (X, t, s) has the following successor state axiom:

V(a, s)Posga, s) D V(X, t)(R,(X, t, do(a, s)) =
(H(y(X), s) A t = (timg(a) — start(s))) v
It'(Ry(X, t', s) At =1’ + time(a) — start(s))).
At the initial state we diéne R, by V(X, t)—R,(X, t,).
With this extension to explicit time, now it is possible to express a metric temporal

precondition for the actiofire saying that it is possible tfire an employee if he/she has
been working at least 30 days in the company:

V(X, s)(Posgfire(x), s) = holds(—¢.30~EmAX), S)).

As before, this precondition can be changed by a new one referring to the execution state
only: if p(x) is ¢.30—EmQXx), then

V(x, s)(Posgfire(x), s) = —3t(R,(x,t,s) At < 30)),
where the new tabl®, is defined by

V(a, s)Posga, s) D V(x, t)(R,(X, t, do(a, s)) =
(—EmpXx), s) At = (timg(a) — start(s))) v
3t'(R,(x, t', s) At =t' + time(a) — start(s))).

6.2. Open queries

In this paper, we have just considered queries that are sentences, that is without free vari-
ables. We think this kind of queries is more likely to occur in hypothetical reasoning,

in the sense that they deal with global properties of an hypothetical state of the world.
Nevertheless, our methodology can be easily applied to open queries that should return
database tuples as answers. Those tuples can be retrieved from the domain elements ap-
pearing inthe transaction log and from the initial database. This can be done, again, by means
of the regression operator that is able to handle free variables. The formulas resulting in the
process can be easily simipdid taking advantage of the uniqgue names axioms before the
final evaluation process (cf. Bertossi et al., 1998 and Appendix A).

248 ARENAS AND BERTOSSI

6.3. Regular expression queries

In this paper we have considered a wide, but restricted class of historical queries, namely
those that can be constructed on the basis of the dasalorder past temporal logic
operators. In Abiteboul et al. (1996), predicate calculus and extended temporal logic (ETL)
were compared in terms of expressive power for temporal databases. ETL is a proper
extension offirst order past temporal logic by means of formulas that are constructed on
the basis of regular expressions. History encoding and our methodology can be extended
to include regular expression queriesfonite transaction logs.

7. Discussion and conclusions

Among the contributions in this paper Wiad the following: (1) An embedding and repre-
sentation of the operators fifst order past temporal logic in the situation calculus. (2) An
extension of methodology presented in Chomicki (1995) to check dynamic integrity con-
straints to the case in which there is a sfieation of the evolution of the database. (3) A
methodology for doing hypothetical reasoning along a virtual evolution of the database ob-
tained by the execution of domain spfgcprimitive transactions, whereas (Chomicki, 1995)
concentrates ofixed integrity constraints and physical and usual updates of the database.
(4) Ageneral solution to the problem of answering temporal queries in the context of Reiter
specfications of database updates, and this solution works both in a progressive as in a re-
gressive way. (5) A general transformation mechanism of dynamic integrity constraints
into static integrity constraints, in a context like Reisewhere both kind of constraints
are expected to be logical consequences of the fpa&iidn. (6) A general mechanism for
transforming history dependent preconditions for action executions into preconditions to be
evaluated at the execution state. (7) An implementation of all these methodologies. (8) An
extension of all the previous results and techniques to the case of explicit time or metric
temporal logic.

Preliminary versions of this work can be found in Arenas and Bertossi (1998a, 1998b).
In thefirst case, no temporal operators were considered, and temporal queries were much
more complex than here. In the second case, explicit uesbbrder past temporal logic
and translations between it and the SC was made. The current version combines the best of
the two approaches.

We think that the methodologies developed here for relational databases could be applied
in other scenarios as well, e.g. (1) Hypothetical reasoning in fhawis (Bonner, 1999;
Davulcu, 1998; Trajcevski et al., 2000), (2) Reasoning from and about policies (Chomicki
et al., 2000), and (3) Temporal reasoning in Al in general (Chittaro and Montanari, 2000).

7.1. Complexity issues

As already described, in Chomicki (1995) a procedure for checking temporal integrity
constraints is presented. It is based on the idea of history encoding, that we have captured
and used in the situation calculus framework. The history encoding methodology presented
in Chomicki (1995) turns out to be polynomially bounded in the sense that given an integrity

HYPOTHETICAL TEMPORAL REASONING 249

constraint to be checked, the number of auxiliary relations to be introduced does not depend
on the lengtm of the transaction log, and the amount of historical information stored in
the union of the auxiliary relations does not dependpbut is bounded by a polynomial
evaluated on the amount of data in the initial database plus the domain values appearing in
the transaction log (the history) and the constraint.

In our SC context, we may have domairfided primitive actions, possibly appearing
in transaction logs, that could have the instantaneous effect of inserting a huge amount of
data in several database relations at the same time. If we restrict ourselves to most common
situation in which those primitive actions are of the foimsert(x), X into table P and
delete (x), thatinsertx from tableP, respectively, then we still have polynomially bounded
history encoding in the sense that the number of auxiliary relations depends on the temporal
queryholds (¢, &) and not on the length of the transaction lod\s, ..., A, (producing
statesS,, ..., &), and the amount of data stored in the union of them is bounded by a
polynomial on the number of domain values appearing in the initial relational datalase
plus Ay, ..., A, andg.?

This situation and analysis is relevant fofieiently answering historical queries by
means of a physical progression of the database, in particular, through materialization of the
auxiliary views (see Section 3.2). Nevertheless, if we want to answers the query by appealing
to a solution of the temporal projection problem via query regression (see Section 3.2), and
thus avoiding the materalization of the historical views, we have to analyze things in a
different way.

In the regression based approach, the number of auxiliary historical relations does not
depend on the length of the transaction log, but on the original query only. The amount of
data potentially stored in those relations is no longer relevant since they are not materialized.
The problem is that in a general situation, the regression of a given formula may become
exponentially long wrt the original query (Reiter, 2001), and thus leading to exponential time
to evaluate the regressed query. Nevertheless, there are situations in which this evaluation
can be done in polynomial time. This is the casecofitext-freesuccessor state axioms
(Reiter, 2001). Those are axioms in which there are no conditions on the database at the
execution state for the actions to have their deséféettqthere might be preconditions for
theirexecutionsbut they do not appear explicitly in the SSAs). This is a common situation
in databases, in particular, when only actions of the fameert-(x) anddelete(X) are
considered.

Our running example (Example 1) contains context-free SSAs only. For example, the
SSA forEmpis

V(a, s)Posga, s) D VX[Emp(x, do(a, S)) =
a=hire(x) v (EmpXx, s) A a # fire(x))].
Here, actiona = hire(x) will have the effect of having inserted intoEmpat the succe-
sor state, without any condition. Nevertheless, this action does have a precondition to be
executed, namely:

V(x, s)[Posghire(x), s) = —Emg(x, s)].

250 ARENAS AND BERTOSSI

Notice that the query to be regressed will contain some auxiliary relations, which have
derived SSAs that will be used by the regression operator. It is an interesting subject for
further investigation tdind conditions under which the derived SSAs will be context-free
when the SSAs for the original database are context-free. For this purpose, some syntactic
techniques introduced in Arenas and Bertossi (1998c) could be useful. In general, the
complexity of regression based query answering in knowledge representation and databases
requires further research.

7.2. Related work

There has been some work done on hypothetical reasoning in databases. In Bonner (1990),
a datalog language, Hypothetical Datalog, that allows both databaségtémn and hypo-
thetical reasoning, is presented. There, special rules for hypothetical reasoning are included
in the datalog spefitation. These rules contain predicates with a sort of annotations indi-
cating that the predicate will be true if certain tuple is deleted or inserted into the database.
Then, the kind of reasoning they allow is of the fotkWould that predicate be true if these
properties are added/includedThe final virtual state is evaluated. It is also possible to
specify a sort of hypothetical predicates, whose truth depends on the execution of future
add/delete transactions. Hypothetical Datalog alsofiisrfeom the possibility of specify-

ing recursive predicates. The queries than can be posed at the hypothetical state are limited
by the datalog formalism. In Bonner (1990) other related formalisms for hypothetical rea-
soning in databases are discussed.

In Chen (1997) a language that can be considered as an extension of Hypothetical Data-
log is presented. More complex database updates are integrated into the language, more
precisely, as predicates in the rules. In addition, hypothetical reasoning with respect to a
particular predicatd,, can be done by evaluating an auxiliary predicate, This predicate
is evaluated ak, except for the fact that the updates that appear in the rules that have to do
with L are not committed. After evaluation, the database goes back to the current physical
state.

The more interesting and more powerful logic programming formalism than the two
above for specifying and executing updates is Transaction Logic Programming (Bonner
and Kifer, 1998). It also allows doing hypothetical reasoning. As discussed in Bertossi et al.
(1998), Transaction Logic and the Situation Calculus can complement each other well. In
the situation calculus it is possible to specify primitive transactions, in particular, giving
an account of the frame problem for this kind of transactions; and transaction logic can be
used to specify more complex transactions.

In our case, instead, we restrict ourselves to relational databases (as opposed to deductive
databases), but we have arbitrary domain djpettansactions which are spéeil in the SC
formalism. The hypothetical situation is created by virtually executing explicit transactions
of this kind. Actually, Reiteis formalism is a language for reasoning about action executions
(but not for executing actions); this makes it perfect for hypothetical reasoning.

We are in position to query the whole database evolution, with involved relationships
between the generated states; for this we take advantage of the existence of explicit states
in our formalism and quariftications over them. Our query language, both for trajectories

HYPOTHETICAL TEMPORAL REASONING 251

and particular states is much more expressive. We do not need extra rules or auxiliary
predicates for doing hypothetical reasoning; we just use thefgg@n of our database,

in particular, we will not get to the situation of having to introduce new rules and predicates
in the program which we might have initially forgotten.

With the formalism we have, as it is, we do not have the possibility of introducing
recursive predicates. Nevertheless, recursion could be introduced as macros as done in
Golog (Levesque et al., 1997), a situation calculus based logic programming language for
high level robot programming. Introducing predicates whose truth depends on future states
does not seem to be a problem in our formalism, because §joatitins on states and the
do operator should allow doing this.

The problem of answering hypothetical historical queries in the context of the situation
calculus spefications of database updates was posed in Reiter (1995), where also some
particular cases were treated. Further work on this problem is presented in Reiter (2001), but
essentially the case obntext-freesuccessor state axioms is considered. Our methodology,
being much more general, provides the same formulas to be evaluated against the initial
database in those cases, but can be applied to a wider range of queries.

Appendix A: Implementation

We have added to the automated reasoner, SCDBR, the functionality of generating the new
SC formula and spefication, including the application of the regression operator (Bertossi
et al., 1998). The reasoner is implemented in PROLOG.

Example 11 Let us consider the formula
holds(¢op(vi) sincenq(vy), S). (14)

To evaluate it, we need to considé(c p(v1) sincetq(vy), S) in an extended spdatation
¥y. To do this, we will use some of the procedures of SCDBR.

|?7- i_p(diamond p(vl) since box q(vl), F),
tl initial(F, s, Il, [F2,F3,F4], _, [F5,F6,F71),
p-i([F2,F3,F4,F5,F6,F7]1, [12,13,14,15,16,17]).
I1= r 0(vl,s),
I2= forall(vl):(neg r 0(v1,s0)),
I3= forall(vl):(neg r_0_s1(v1,s0)),
I4= forall(vl):(neg r_O_sr(vi,s0)),
I5= forall(a):(poss(a,s) => (r.0(vi,do(a,s)) <=>
(r0.sl(vil,s) v p(vi,s)) &
(r0(v1l,s) v neg rO0sr(vi,s)))),
I6= forall(a):(poss(a,s) => (r_0_sl(vl,do(a,s)) <=>
r 0.s1(vl,s) v p(vi,s))),
I7= forall(a):(poss(a,s) => (r_-Osr(vli,do(a,s)) <=>
r 0_sr(vl,s) v neg q(vi,s)))

252 ARENAS AND BERTOSSI

Here, wdirstintroduced (14) by means of the predicate. This predicate stores it ihas
o p(vy) since—o—q(v1), that corresponds to its internal representation. Next, the predicate
t1l_initial was applied o, obtaining: (aH(¢ p(v1) since—o—q(v1), S), which is stored
in I1; (b) the list of the initial state formulas for the generated auxiliary tables, which
are stored irF2, F3 andF4; (c) the list of the successor state axioms for the generated
auxiliary tables, which are stored it5, F6 andF7. Finally, the predicate_i was applied
for translating (b) and (c), written in the internal representation, Ir2tp 13, 14, I5,
I6 andI7, written in infix notation.

From the SCDBRs invocation, we can see thatO(vy, S) is equal toH(¢ p(v1) since
—¢—((v1), S). For producing this formula, the system generated three auxiliary tables
r_0,r _0_sl andr _0_sr, with the following initial state dinitions:

Yvi(=r 0(v1, S)), Yva(=r -0-sl(v1, S)), Yva(—r -0-sr(v1,));
and with the following SSAs axioms:

Posga, s) D (r_0(v1, do(a, s)) =
(r .0sl(vy, S) v p(v1, S)) A (r O(vy, S) v —r _0_sr(vy, S))),
Posga, s) D (r _0_sl(vq, do(a, s)) =r _0_sl(v1, S) vV p(v1, S)),
Posga, s) O (r .0_sr(vy, do(a, s)) = r _0_sr(v1, S) vV —q(vs, S)).
If we run the regression procedure in SCDBR to solve the temporal projection problem,
we will eventually obtain a query to be posed to the initial database. SCDBR can answer

this query by calling a conventional DBMS (actually, ORACLE) or a PROLOG program or
a theorem prover (OTTER), depending on the kind of initial, physical database available.

Example 12 Let us consider the spéidation shown in Example 1. We want to know the

list of the employees who have always been working in the company, in all states generated
by the execution of the sequence of actidhs= [hire(sug, fire(john)] from the initial
situation. Thus, we are asking

holds(Empx) A CEmEX), do(T,)). (15)

We can answer this query by means of the following invocation of SCDBR

|?7- ip(emp(x) & box emp(x),F),tl initial(F,do(fire(john),
do(hire(sue),s0)), F1, [F2], I, [F3]), p_i(F1, F6),
p_i(F2, F7), p_i(F3, F8), regn(F1, 2, F4),
prune_una(F4, F5), p-i(F5, F9), prolog-initial(F5, I).

Transforming Query into Prolog Goal...Done.

[[x,ernest]]
[[x,pagel]

F6 = emp(x,do(fire(john),do(hire(sue),s0))) &
neg r_0_r(x,do(fire(john),do(hire(sue),s0))),

ax v emp(x =0)))

HYPOTHETICAL TEMPORAL REASONING 253

F7 = forall(x):(neg r_0.r(x,s0)),
g§8x=vfempl%k(ad) Ipksnég,§ohn &g Gr(x,do(a,s)) <=>
r 0.r(x,s)v neg emp(x,s))),
F9 = ((sue e
& neg((r_.0_r(x, s0) v neg emp(x, s0)) v
neg (sue e

As in Example 11, we use the predicat@_initial for generatingd(Emp(x) A
OEmAXx), do(T, §)). More precisely, the system generatf&EmQAx) A —=o—EmMQX),
do(T, &)) in F6:

Emp(x, do(fire(john), do(hire(sug, S))) A
=r _0.r (x, do(fire(john), do(hire(sug, S))), (16)

which includes the auxiliary table O_r. For this table, the system also generates the fol-
lowing formula describing its initial state

YX(=r 0 (X, S)), (17)
and the following SSA
Posga, s) O (r_0.r(x, do(a, s)) = (r .0_r(x, s) v —EmfX, s))). (18)
In consequence, for answering (15) and (16) needs to be answered with respect to the
company database plus the information in (17) and (18).
As we see in the invocation, the procedueg n is used for applying twice the regression
operator on (16). After that, by means of the predigaténe_una, the resulting formula is

simplified on the basis of the unique name axioms for actions. So, the following formula
F9 is generated to be posed against the initial database state

((sue= x v Emfx,)) A —john= x) A
=((r .0r(x,) v —EmpXx, &)) v =(sue= x vV EmfX, §))). (29)

If the (initial) database of the company is a PROLOG database, we answer to (19) by means
of the procedurgrolog_initial, which uses PROLOG as query language. In this way,
we obtain the following tuples as answer to the query:

X = ernestv x = page

As described in Bertossi et al. (1998), SCDBR can be interfaced with a RDBMS.

Example 13 We have an ORACLE database with information about the employees in
the company at the initial state. We execute the list of transactfaagjphn), fire(ernesj].

254 ARENAS AND BERTOSSI

Now we want to know all the employees who have worked for the company from the initial
state on:

holds(Em{X) vV oEmAX), do(T, S))

and has to be posed at the stdtéT,).
We can ask SCDBR to generate a new query in SQL to be posed against the initial
relational database:

|?7- ip(emp(x) v diamond emp(x), F), tl_initial(F,
do(fire(ernest),do(hire(john),s0)), F1, [F2], I,[F3]),
p.i(F1, F6), p.i(F2, F7), p.i(F3, F8), reg.n(F1,2,F4),
prune_una(F4,F5) ,p_i(F5,F9) ,ora_sql(F5).

[[pagel, [john], [ernest]]

HereF5 stands for dirst order query that the predicaiea sql transforms, via a lower
level predicate, into a SQL query to be posed to the ORACLE database. Aftenthaiqgl
prints the answer. In this case, we obtain= pagev x = johnv x = ernest

Appendix B: Proofs and intermediate results

Lemmal. Letp(x)andy (x)beformulasthatdo notinclude operaterssince < ando,
and X a SCspecfication constructed from &C specfication X as was showed in Sec-
tion 3.2. Then

Y E VsS(S < s D VX(holds(ep(X), S) = H(eg(X), S)))

Zh | VS(S = s D Vx(holds(op(X), S) = H(op(X), 5)))

Zh E VS(S = s D VX(holds(p(X),) = H(Tp(X), S)))

Sh E Vs(S < s D VX(holds(p(X) sincey(x), s) =
H(p(X) sincey(X), s)))

Proof: Itis necessary to prove this lemma for operawesdsince.We are going to do
this by induction on states. Firstly, we consider the operattira(x) = o¢(X), then:

holds(x(X), s) = 3(a, s')(s = dofa, ') A holds(p(X), s)),
H(“(@? S) = Rot()?7 S)

whereR, is ddiined as follows:

VX=Ry(X, S)
V(a, s)Posga, s) D VX(R, (X, do(a, s)) = H(p(X), S))

HYPOTHETICAL TEMPORAL REASONING 255

In this case, we have that by unique name for stas@gis(x(x), &) is false for every value
of x. Thus, by dénition of R, we conclude that:

Ty E VX(holds(x(X), S) = H(a(X), D))
Let us suppose that for a given st&esuch thaty) < S, we have that:

Ty = VX(holds(a(X), S) = H(x(X), 9))).
Let A a be ground action such thRbsgA, S) is true in S. In this case, we know that
holds(x(X), do(A, S)) =3(a, §)(do(A, S)=do(a, S') A holds(e(X), s)) and H(x(X), do

(A, 9) = R,(X,do(A, S). Thus, by taking into account unique name for states and the
SSA of R, we conclude that:

holds(x(X), do(A, S)) = holds(¢(X), S),
H(x(x), do(A, S)) = H(p(X),).

Given thatp(x) does not include operatosssince ¢ ando, we have thatiolds(¢(X), S) =
H(p(X), s). Therefore

SH = VX(holds(a(X), do(A, §) = H(x(X), do(A, 9)))).
Secondly, we are going to considance If a(X) = ¢(X) sincey(x), then

holds(p(X) sincey(X), s) = IS($ < S’ < SAholds(¥(X),s) A
vs’(s' < 8" < s D holds(p(X),s"))),
H(p(X) sincey (x), s) = Ry(X, s).

whereR, is ddined as follows:

VX=Ry(X, S)
V(a, s)Posga, s) D VX(R,(X, do(a, s)) =
R[H(p(X), do(@, s))] A (Ru(X,) v H((X), 5))

Given that there is no staggsuch thas’ < §, holds(x(x), S) is false for every value of
X. Thus, by dénition of R, we conclude that:

Ty = VX(holds(a(X), S) = H(a(X), S)))
Let us suppose that for a given st&esuch thats, < S, we have that:

TH E VX(holds(a(X), S) = H(a(X), 9))). (20)

256 ARENAS AND BERTOSSI

Let A a ground action such thRosgA, S) is true inS. In this case, we know that:

holds(g(X) sincey (X), do(A, S)) = IS(§ < s < do(A, S) A
holds(¥(X),S) AVS'(S' < 8" < do(A, S D holds(p(X), s"))).

But, this formula is equivalent to

3Is(S <8 < SAholds(¥(x),s) A
Vvs’(s' < 8" < do(A, S) D holds(p(x),s"))) v
(holds(¥(X), S) A holds(p(X), do(A, 9)))

which is equivalent to

3s(S < s < SAholds(¥(X),s) A
Vs’(s' < 8" < SD holds(p(x), S”))) A holds(p(x), do(A, §) v
(holds(¥(X), S) A holds(p(X), do(A, S))).

Thus, by déinition of holds we conclude thatiolds(a(X), do(A, S)) is equivalent to

(holds(a(Xx), S) A holds(p(X), do(A, 9)) v
(holds(¥(X), S) A holds(p(X), do(A, S)))

But, by (20) we conclude that

TH E VX(holds(a(X), do(A, 9) =
holds(p(X), do(A, S)) A (H(x(X), S) Vv holds(¥(X), 9)).

Given thate(x) and ¥ (X) do not include operators, since < and 0, we have that
holds(p(X), s) = H(p(X), s) andholds((X), s) = H(¥(X), s). Therefore

Yh E VX(holds(a(X), do(A, 9) =
H(p(X), do(A, §)) A (H(a(X), §) v H(¥(X),).

Finally, give thatPosgA, S) is true inS, we have that

Zn E YX(H(p(X) sincey (x), do(A, §)) =
R[H(p(X), do(A, 9)] A (Ru(X. §) vV H(¥(X). 9))),

and

T = YX(H(p(X). do(A, §)) = R[H(¢(X), do(A, 9))]).

HYPOTHETICAL TEMPORAL REASONING 257

Therefore
Th E VX(holds(a(X), do(A,) = H(a(x), do(A, 9))).
O

Proof of Proposition 1: By Lemma (1) and taking into account that= holds(p, do
(T, S)) ifand only if £y = holds(p, do(T, S)). O

Acknowledgments

This research has been partially supported by FONDECYT Grants (# 1980945, #1990089,
#1000593). Part of this work has been done during the second ausiadbatical at the TU
Berlin. He is grateful to Ralf Kutsche and the CIS group for their support and hospitality;
and to the GK"Distributed Information Systenisthe DAAD and the DIPUC for their
financial support.

Notes

1. Inthis paper we do not make any distinction between states and situations.

2. Sometimes, in the literature, they are call&ibstorical queried,but this name may cause confusions with
work done by the temporal databases community that thiorical' the queries about valid time, rather
than about transaction time (Snodgrass and Ahn, 1986), which can be better associated to the situations of the
situation calculus.

3. They can be seen as usual database tables whose entries have an additional state stamp that is not stored in

the extensional databases. In the knowledge representation literature they are usualtyloels! States
are used for distinguishing the successive snapshots of the database.

4. In this paper, &database spditatiori always means a spéigation of the dynamics of a database.

5. Dynamic integrity constraints are usually of this form, but the results we will present in this paper still hold

if we admit more involved quarfications on several states, related by the accessibility relation.

6. Thisis not a limitation if, as in Chomicki (1995), one is interested in sfikeel dynamic integrity constraints

only, but not in arbitrary temporal queries, as we are.
7. We should use new predicates, &gp(., .) instead oEmp(., ., .), but there should be no confusion.
. The last two operators can befited in terms of théirst two by (¢ := Truesincey, andOyp = =0—gp.
9. We say that a sequence of actiohs= [Ay, ..., Ay] is legal if PosgA1,), PosgA,, do(A1, S)), - -,
PosgAn, do([Aq, ..., An-1], S)).

10. Notice that, for dixed value o, R, (X, t, do(a, s)) could be true for many values tfif () was true many
times in the past.

11. Our methodology allows us to have B something more general than a relational database, e.g. an initial
database containing more compliésst order formulas. Nevertheless, as shown in Lin et al. (1997) pro-
gressing the database of this case, in particular, the historical auxiliary views, might become a very complex
process.

[ee]

References

Abiteboul, S., Herr, L., and Van der Bussche, J. (1996). Temporal versus First-Order Logic to Query Temporal
Databases. Ifroc. ACM Symposium on Principles of Database Systems (PEBP®p. 49-57).

258 ARENAS AND BERTOSSI

Arenas, M. and Bertossi, L. (1998). Hypothetical Temporal Reasoning with History Encoding. In G. De Giacomo
and D. Nardi (Eds.)Proc. ESSLLI-98 Workshop on Reasoning about Actions: Foundations and Applications
(pp. 1-15). Saarbruecken.

Arenas, M. and Bertossi, L. (1998). Hypothetical Temporal Queries in Databases. In A. Borgida, V.
Chaudhuri, and M. Staudt (Eds.Rroc. 5th International Workshop on Knowledge Representation
meets Databases (KRD#B): Innovative Application Programming and Query Interfadep. 4.14.8).
http://sunsite.informatik.rwthaachen.de/Publications/CEUR-WS/Vol-10/. ACM SIGMOD/PODS 98, Seattle.

Arenas, M. and Bertossi, L. (1998). The Dynamics of Database Views. In H. Decker, B. Freitag, M. Kifer, and A.
Voronkov (Eds.),Transactions and Change in Logic Databagep. 197226). Springer, LNCS 1472.

Arenas, M., Bertossi, L., and Pinto, J. (1998). Representation of Temporal Knowledge in the Situation Calculus.
Available at http://www.scs.carleton.edbertossi/papers/mtl.ps.

Baier, J. and Pinto, J. (1998). Non-Instantaneous Actions and Concurrency in the Situation Calculus (Extended
Abstract). In G. De Giacomo and D. Nardi (EdDroc. ESSLLI-98 Workshop on Reasoning about Actions:
Foundations and ApplicationSaarbruecken.

Bertossi, L., Arenas, M., and Ferretti, C. SCDBR. (1998). An Automated Reasoner fofi&ptémis of Database
UpdatesJournal of Intelligent Information Syster0(3), 253280.

Bertossi, L., Pinto, J., Saez, P., Kapur, D., and Subramaniam, M. (1996). Automating Proofs of Integrity Constraints
in the Situation Calculus. In Z.W. Ras and M. Michalewiccz (Edsayndations of Intelligent Syster(isp.
212-222). Lecture Notes Affiicial Intelligence 1079, Springer.

Bonner, A. (1990). Hypothetical Datalog: Complexity and Expressititbeoretical Computer Sciencé6(1),

3-51.

Bonner, A. (1999). Worlow, Transactions, and Datalog. Rroc. ACM Symposium on Principles of Database
Systems (PODS9) (pp. 294-305).

Bonner, A. and Kifer, M. (1998). Transaction Logic Programming. In J. Chomicki and G. Saake (Edgcs
for Databases and Information SysterB®rdrecht: Kluwer Academic Publishers.

Chaudhuri, S. and Dayal, U. (1997). An Overview of Datawarehousing and OLAP TechnalBllySIGMOD
Record 26(1), 65-74.

Chen, W. (1997). Programming with Logical Queries, Bulk Updates, and Hypothetical Read&fifgTrans-
actions on Data and Knowledge Engineer;igg4), 587#599.

Chittaro, L. and Montanari, A. (2000). Temporal Representation and Reasoningficialrtntelligence: Issues
and ApproachesAnnals of Mathematics and Afitiial Intelligence 28(14), 47-106.

Chomicki, J. (1995). Eicient Checking of Temporal Integrity Constraints Using Bounded History Encoding.
ACM Transactions on Database Syste@({2), 149-186.

Chomicki, J., Lobo, J., and Naqvi, S.A. (2000). A Logic Programming Approach tdliCoRResolution in
Policy Management. IRrinciples of Knowledge Representation and Reasoning: Proceedings of the Seventh
International Conference (KR000) Morgan Kaufmann (pp. 121.32).

Davulcu, H., Kifer, M., Ramakrishnan, C.R., and Ramakrishnan, I.V. (1998). Logic Based Modeling and Analysis
of Workflows. InProc. ACM Symposium on Principles of Database Systems (PIBP@®p. 25-33).

Gabbay, D., Hodkinson, I., and Reynolds, M. (199mporal Logic: Mathematical Foundations and Computa-
tional Aspects\ol. 1, Oxford University Press.

Hanks, S. and McDermott, D. (1986). Default Reasoning, Nonmontonic Logics, and the Frame ProBis. In
National Conference on Afical Intelligence(pp. 328-333).

Levesque, H., Reiter, R., Lesperance, Y., Lin, F., and Scherl, S. (1997). GOLOG. A Logic Programming Language
for Dynamic DomainsJournal of Logic Programming, Special Issue on Reasoning about Action and Ghange
31(1-3), 59-84.

Lin, F. and Reiter, R. (1994). State Constraints Revisifledrnal of Logic and Computation. Special Issue on
Action and Processed(5), 655678.

Lin, F. and Reiter, R. (1997). How to Progress a Databadéicial Intelligence 92(1/2), 13+167.

McCarthy, J. and Hayes, P. (1969). Some Philosophical Problems from the Standpoinfioiattitelligence.

In B. Meltzer and D. Michie (Eds.Machine Intelligence4, 463-502. Edinburgh University Press, Edinburgh,
Scotland.

Pinto, J. (1894). Temporal Reasoning in the Situational Calculus. PhD Thesis, Department of Computer Science,

University of Toronto, Canada.

HYPOTHETICAL TEMPORAL REASONING 259

Reiter, R. (1984). Towards a Logical Reconstruction of Relational Database Theory. In J. Mylopoulos and J.
Schmidt (Eds.)On Conceptual Modelling: Perspectives from ficial Intelligence, Databases and Program-
ming Language§pp. 191233). Berlin: Springer-Verlag.

Reiter, R. (1991). The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Com-
pleteness Result for Goal Regression. In V. Lifschitz (Béjificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCartfpp. 359-380). Academic Press.

Reiter, R. (1995). On Specifying Database Updalearnal of Logic Programming25(1), 5391.

Reiter, R. (1996). Natural Actions, Concurrency and Continuous Time in the Situation CalcuRisndiples
of Knowledge Representation and Reasoning: Proceedings of the Fifth International Conferer@),(B&n
Mateo, CA: Morgan Kaufmann.

Reiter, R. (1998). Sequential, Temporal GOLOG PFrinciples of Knowledge Representation and Reasoning:
Proceedings of the Sixth International Conference’ @8} (pp. 547556). San Mateo, CA: Morgan Kaufmann.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Sys-
tems. Cambridge, MA: MIT Press.

Siu, B. and Bertossi, L. (1996). Answering Historical Queries in Databases (extended abstract). In M.V. Zelkowitz
and P. Straub (Eds Proc. XVI International Conference of the Chilean Computer Science Society (S6)CC
(pp. 56-66). Valdivia.

Snodgrass, R. and Ahn, I. (1986). Temporal Databd&&E Computer35-42.

Trajcevski, G., Baral, Ch., and Lobo, J. (2000). Formalizing (and Reasoning About) théi Sgenis of Work-
flows. InProc. CooplSpp. +17.

