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Abstract. In this paper we integrate a history–encoding based methodology for checking dynamic database
integrity constraints into a situation-calculus based specification of relational database updates. By doing this,
we are able to: (1) Answer queries about a whole hypothetical evolution of a database, without having to update
the entire database and keep all the information associated to the generated states, (2) State and prove dynamic
integrity constraints as static integrity constraints, (3). Transform history dependent preconditions for updates into
local preconditions.

The methodology presented here is based on the introduction of operators of predicate past temporal logic
as macros into the specifications, written in the situation calculus, of the dynamics of a database. Temporal
subformulas of a query are treated as auxiliary views with the corresponding specification of their dynamics. An
implementation of hypothetical temporal query answering is presented.
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1. Introduction

In Reiter (1995), as an application of his solution to the frame problem (Reiter, 1991), Ray
Reiter proposed to specify the transaction based updates of a relational database by means
of a particular kind of axioms written in the situation calculus (SC) (McCarthy and Hayes,
1969). In Bertossi et al. (1998) the implementation and the functionalities of SCDBR, a
computational system for doing automated reasoning from and about those specifications
(Bertossi et al., 1998), are reported.

We are motivated by the problem of answering queries about different states1 in the
evolution of a relational database, when the database is virtually updated by the execution
of a sequence of primitive transactions, that are indecomposable and domain dependent
transactions. For example, we want to consider queries of the form “Has it always been
the case that the database has satisfied a given condition C?,” or “Has there been a state
of the database where a certain condition C has been satisfied?,” or “Has the salary of
some employee decreased along the database evolution?.” Reiter raised this problem in the
context of his specifications of transaction based database updates (Reiter, 1995).
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contributions to the logical foundations of the situation calculus.
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Although there is no explicit time in our situation calculus, we call these queries“tempo-
ral queries,” due to their similarity with dynamic integrity constraints (Reiter, 1995), also
called“temporal constraints” (Chomicki, 1995).2 Furthermore, we call these queries“hy-
pothetical” because we start from an initial, physical database at an initial state,S0, and a list
T of primitive transactionsA1, . . . , An, that virtually update the database, producing new
statesS1, . . . , Sn; and we want to answer a query about the generated sequence of states,
without physically updating the whole database accordingly (and possibly keeping the data
for every intermediate state). We are interested in querying this whole virtual evolution of
the database.

The problem of answering this kind of queries was treated in detail in Siu and Bertossi
(1996) and a solution was implemented as reported in Bertossi et al. (1998). Nevertheless that
solution is based on a kind of minimal progression of the database that depends on a detailed
syntactical processing of the axioms of the specification, and the particular syntactical form
of them.

In this paper we reconsider this problem and we propose a new solution that relies on
processing the query itself, rather than the underlying axioms. This is done on the basis of (1)
a formulation of the query in a situation calculus language that contains temporal operators
inspired byfirst order past temporal logic (FOPTL) (Gabbay et al., 1994), (2) a reformulation
of Chomicki’s history encoding methodology for efficiently checking temporal integrity
constraints (Chomicki, 1995), in the context of situation calculus specifications of database
updates, and, in particular, (3) a specification in the situation calculus of the evolution of
new history encoding auxiliary relations that are generated from the query.

It turns out that the methodology we develop for answering queries can be adapted to give
a solution to other reasoning problems. Here we show how to transform dynamic integrity
constraints into static integrity constraints, so that any available methodology for handling
static integrity constraints can be adapted for the dynamic case. In particular, we can take
advantage of our results on automated proving of static integrity constraints (Bertossi et al.,
1996) when dealing with the dynamic case.

The other problem we solve consists in transforming preconditions for action executions
that depend on the history of the database into preconditions that depend on the local,
execution state.

This paper is concerned mainly with the problems of modeling and doing hypothetical
reasoning in databases, a subject that has not received enough attention (but see Bonner,
1990; Bonner and Kifer, 1998; Chen, 1997). We think hypothetical reasoning will become
more and more important in databases that are used for decision support, where“what if”
questions are relevant, as the ones emerging in on-line analytical processing (OLAP) and
datawarehousing (Chaudhuri and Dayal, 1997). To have computational tools that can be
used to explore different courses of action without having to commit to any of them; in
particular, without having to physically update the database, is likely to be very important
in many applications of information systems, specially in the presence of rich primitive
transactions, like ours, that may affect several tables at the same time.

This paper is structured as follows. In Section 2 we briefly describe the situation calculus
based specifications of database updates. In Section 2.1, we introduce temporal queries and
constraints in a situation calculus framework. In Section 3.1 we introduce our language
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for posing temporal queries. In Section 3.2 we introduce the elements we need to evaluate
queries, in particular, the specification of the dynamics of the auxiliary, history encod-
ing, views; and we address the problem of answering the hypothetical temporal queries.
In Section 4 we apply the machinery developed in previous sections to the problem of
transforming dynamic integrity constraints into static integrity constraints. In Section 5 we
apply our methodology to the problem of transforming history dependent transactions, i.e.
transactions whose preconditions are temporal, into transactions with local conditions. In
Section 6 we sketch some possible extensions of the methodologies introduced in the pre-
vious sections. In Section 7 we compare our work with other approaches in the literature,
we comment on further work, and draw some conclusions. In Appendix A, we illustrate our
implementation of the developed methodology. In Appendix B some proofs are given.

2. Specifying the database dynamics

We will show the main ingredients of a specification in the situation calculus of transaction
based database updates, as proposed in Reiter (1995). The SC is a family of languages
of many sorted predicate logic used to represent knowledge and reason about dynamic
domains that are subject to discrete changes caused by action executions. In its languages,
we find domain individuals, states and primitive transactions, i.e. domain specific and
indecomposable transactions, that we will also call“actions,” and which are at the same
first order level. In consequence,first order quantification over all these sorts of individuals
is possible. They are usually denoted by∀x̄,∀s,∀a respectively.

Among others wefind the following advantages in using the SC as a specification lan-
guage: (1) It has a clear and well understood semantics. (2) Everything already done in
the literature with respect to applications of predicate logic to DBs can be done here, in
particular, all static and extensional aspects of databases and query languages are included.
(3) Dynamic aspects can be integrated at the same object level, in particular, it is possible
to specify how the database evolves as transactions are executed. (4) It is possible to rea-
son in an automated manner from the specification and to extract algorithms for different
computational tasks from it. (5) In particular, it is possible to reason explicitly about DB
transactions and their effects. (6) In this form, it is possible to extend the functionality of
usual commercial DBMSs.

In every SC language wefind a constant for an initial state,S0, a function symbol,do,
so thatdo(a, s) denotes the successor state that results from the execution of actiona
at states. We alsofind a predicate,Poss(a, s), with the intended meaning that actiona is
possible at states. In a particular SC language we willfind function names for parameterized
primitive transactions (actions),A(x̄), and names for tables,F(x̄, s), that is, predicates with
a single state argument3. If T is a sequence of action termsA1, . . . , An, to be executed
in that order, we abbreviate the situationdo(An, do(An−1, do(. . .do(A1, s), . . .)) with
do([ A1, . . . , An], s) or simplydo(T, s).

As in Lin and Reiter (1994), we will assume that the followingfoundational axioms of
the situation calculusunderlie any database specification4: (1) Unique Names Axioms for
Actions: Ai (x̄) = Aj (ȳ), for all different action namesAi , Aj ; ∀(x̄, ȳ)[ Ai (x̄) = Aj (ȳ) ⊃
x̄ = ȳ]. (2) Unique Names Axioms for States:S0 �= do(a, s),do(a1, s1) = do(a2, s2) ⊃
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a1 = a2 ∧ s1 = s2. (3) For some reasoning tasks we need an Induction Axiom on States:
∀P[( P(S0) ∧ ∀s∀a(P(s) ⊃ P(do(a, s))) ⊃ ∀s P(s)].

A specification of the transaction based updates on a particular database will contain the
following axioms: (4) A set,�0, of SC sentences that do not mention any state term other
than S0. This is knowledge about the initial state, and state independent knowledge. (5)
Action Precondition Axioms: For each action nameA, a precondition axiom of the form

∀(x̄, s)[Poss(A(x̄), s) ≡ πA(x̄, s)], (1)

whereπA(x̄, s) is a SC formula that issimple in s, that is, it contains no state term other
thans, in particular, nodo symbol, no quantifications on states, and no occurrences of the
Posspredicate (Reiter, 1995). (6) Successor State Axioms (SSAs): For every tableF(x̄, s),
an axiom of the form

∀(a, s)Poss(a, s) ⊃ ∀x̄[F(x̄,do(a, s)) ≡ �F (x̄,a, s)], (2)

where�F is a formula simple ins, in particular, it does not contain thedosymbol. Provided
there is complete knowledge at the initial state, as is usually the case in relational databases,
this axiom completely determines the contents of tableF at an arbitrary legal database state,
i.e. reached fromS0 by afinite sequence of transactions that are possible at their execution
states. We are usually interested in reasoning about the states that are accessible in this
form from the initial situation. For this purpose, anaccessibility relationon states,≤, can
be defined on the basis of the induction axiom by means of the conditions:¬s < S0, s <
do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′.

We will denote this specification with�. It includes the initial database�0 and the
definition of the accessibility relation.

Example 1. Consider a database of a company, with the following relations:

Emp(x, s): Personx is an employee of the company when the database is in states.
Ceo(x, s): Personx is a chief executive officer of the company, in the states.
Salary(x, p, s): The salary of the personx is p in the states.

and primitive transactions:

hire(x): Personx is hired by the company.
fire(x): Personx is fired by the company.
promote(x): Personx is promoted to chief executive officer.
changeSalary(x, p): The salary of the personx is changed top dollars.

The specification of the initial database has the the following formulas:

∀x(Emp(x, S0) ≡ x = john∨ x = ernest∨ x = page),

sue�= john, sue�= ernest, sue�= page,

john �= ernest, john �= page,ernest�= page.
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That is, John, Ernest and Page are the only employees of the company at the initial database
state.

The relations in this specification have the following successor state axioms (see (2)):

∀(a, s) Poss(a, s) ⊃ ∀x[Emp(x,do(a, s)) ≡
a = hire(x) ∨ (Emp(x, s) ∧ a �= fire(x))]

∀(a, s) Poss(a, s) ⊃ ∀x[Ceo(x,do(a, s)) ≡
a = promote(x) ∨ (Ceo(x, s) ∧ a �= fire(x))]

∀(a, s) Poss(a, s) ⊃ ∀(x, p)[Salary(x, p,do(a, s)) ≡
a = changeSalary(x, p) ∨ (Salary(x, p′, s) ∧
¬∃p′(a = changeSalary(x, p′) ∧ p �= p′))].

For example, thefirst SSA says thatx is an employee at an arbitrary legal successor state
if he was just hired or he already was an employee and he was notfired in the transition to
the successor state.

Now, assume that we have the following precondition axioms for the actions in the
database.

∀(x, s)[Poss(hire(x), s) ≡ ¬Emp(x, s)].

∀(x, s)[Poss(fire(x), s) ≡ Emp(x, s)].

∀(x, s)[Poss(prompte(x), s) ≡ Emp(x, s) ∧ ¬Ceo(x, s)].

∀(x, p, s)[Poss(changeSalary(x, p), s) ≡ Emp(x, s) ∧
∀p′(Salary(x, p′, s) ⊃ p′ ≤ p)].

The regression operator, R, (Reiter, 1991, 1995) applied to a formula containing a
successor state returns an equivalent formula (with respect to the specification) evaluated
at the preceding state. This is done by using the SSAs. More precisely, if predicateF ,
appearing in a formulaψ , has a SSA like (2), then the operator,R, applied toψ , replaces
each occurrence of an atomic formula of the formF(t̄,do(a, s)) in ψ by�F (t̄,a, s).

The regression operator is implemented in SCDBR, a computational system for reasoning
about and from specifications of database dynamics as presented in this section (Bertossi
et al., 1998).

2.1. Temporal queries and constraints

In the context of such DB specifications, a temporal query is a SC sentenceϕ in which all
the states involved, including quantified states, lie on afinite state pathS0 ≤ S1 ≤ · · · ≤ Sn,
with Si = do(Ai ,do(Ai −1, . . . ,do(A1, S0) . . .)), for a sequence of ground actions terms
A1, . . . , An, for somen. The query is true if and only if� |= ϕ.

Example 2. In Example 1, the temporal query“Has Sue been working in the company
in all states generated by sequence T at S0?” can be expressed in the SC by means of
∀s(S0 ≤ s ≤ Sn ⊃ Emp(sue, s)).
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The following sentence could be also a temporal query

∀(s′, s′′)(S0 ≤ s′ < s′′ ≤ Sn ⊃
∀(x, p′, p′′)((Salary(x, p′, s′) ∧ Salary(x, p′′, s′′)) ⊃ p′ ≤ p′′).

It asks whether the salary has not decreased.

A static integrity constraint is a formula of the form∀s(S0 ≤ s ⊃ ϕ(s)), whereϕ(s) is
simple in the state variables, such that� |= ∀s(S0 ≤ s ⊃ ϕ(s)) is expected to hold (Reiter,
1995; Lin and Reiter, 1994). A dynamic (or temporal) integrity constraint is a SC sentence
ϕ of the form∀s1 · · · ∀sn(C(S0, s1, . . . , sn) ⊃ ϕ(s1, . . . , sn)), that should be entailed by
�. Here,C(S0, s1, . . . , sn) is a formula that imposes a linear order constraint on the states
S0, s1, . . . , sn in terms of the accessibility predicate≤5.

Example 3. The sentence∀s(S0 ≤ s ⊃ ∀p (Salary (sue, p, s) ⊃ p ≥ 4000)) could
be a static integrity constraint, stating that Sue’s salary can not be lower than 4000. The
sentence

∀(s′, s′′)(S0 ≤ s′ < s′′ ⊃
∀(x, p′, p′′)((Salary(x, p′, s′) ∧ Salary(x, p′′, s′′)) ⊃ p′ ≤ p′′). (3)

is a dynamic integrity constraint expressing that a salary never decreases.

In general, we will not have explicit integrity constraints in our specification,�, of the
database dynamics. We expect them to be logical consequences of� (Reiter, 1995; Lin and
Reiter, 1994).

In the next section we will introduce temporal operators as found in past temporal logic
into the situation calculus. With these operators we will formulate queries and constraints,
and their new syntactic form will allow us to process and evaluate them.

3. Answering queries

In Chomicki (1995), the problem of checking temporal constraints stated in FOPTL was
considered. These are constraints that talk about, and relate, different states of the database.
There wefind a sequence of transactions that are physically executed, and in order to
minimize the cost of checking, one progressively updates new defined relations, or auxiliary
views,rα, that correspond to the temporal subformulas,α, in the constraint. These views
encode part of the database evolution up to a current database state. They are defined and
updated in such a way that they store the historical information that is relevant to give an
answer to the query about the satisfaction of the integrity constraint once thefinal (current)
state is reached. Then a new, non-temporal, but local and static query can be posed at the
final state.



HYPOTHETICAL TEMPORAL REASONING 237

In this paper we will combine our reconstruction of Chomicki’s history encoding in the
context of specifications of the dynamics of a database with the possibility, opened by
those specifications, of reasoning about the database evolution without having to phys-
ically update the database. In consequence, we will be in position to do hypothetical
temporal reasoning about the database evolution. We can say that while Chomicki an-
swers the query by positioning at thefinal physical state of the database, we query a
single future, virtual state from the initial, physical state. The fact that we are doing vir-
tual updates makes it possible to apply our methodology to any temporal query, whereas,
in the presence of physical updates, the queries have to befixed, predetermined in
advance6.

3.1. A query language

As discussed in Section 2.1, a temporal query is a sentenceϕ in which all the states
involved, including the quantified states, lie on afinite state pathS0 ≤ S1 ≤ · · · ≤ Sn,

with Si = do(Ai ,do(Ai −1, . . . ,do(A1, S0) . . .)), for a sequence of ground actions terms
A1, . . . , An.

In order to answer this kind of queries on an algorithmic basis, we need to define
them in a precise sense. Thus, we need to define a query language for asking about the
history of a sequence of states. To achieve this, we will introduce in the situation cal-
culus some temporal operators inspired byfirst order past temporal logic, and amacro,
holds. With these new elements we will be in position to represent an important class
of temporal queries. Nevertheless, if desired, the application ofholds to a formula with
temporal operators could be always rewritten into a usual situation calculus
formula.

The SC contains predicates with a state as an argument. For example, we useP(a, s)
to state thata is an element of tableP in the states. We may eliminate the situation term
from predicateP, and use a new meta-predicate,holds, and writeholds(P(a), s) with
the same meaning as before. Actually, we would like to extend the application ofholds
to more complex formulas, derived from SC formulas, but keeping the state dependency in
the second argument ofholds.

Definition 1. A formulaϕ is state suppressed(anss-formula) if it is constructed as usual
from state independent predicates, state dependent predicates (i.e. database tables orfluents)
with the state argument supressed, boolean connectives, andfirst order quantifications on
domain individuals.

For example, the following is an ss-formula:∀x∃p(Ceo(x) ∧ Emp(x, p) ⊃ p ≥ 5000).7

The state arguments have been suppressed from the tables. Predicateholdswill have an ss-
formula in itsfirst argument, and a state in the second argument. This would makeholds a
second order predicate. We can go back tofirst order expressions by consideringholds as a
macro, as an abbreviation, as something that can be rewritten into an expression of the orig-
inal situation calculus. Thus,holds(ϕ, s) whereϕ is an ss-formula, is defined recursively
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as follows:

holds(t1 ∗ t2, s) := t1 ∗ t2, for terms for individualst1, t2, and
∗ ∈ {<,>,≤,≥,=, �=}.

holds(P(x̄), s) := P(x̄), if P is a state independent predicate
holds(F(x̄), s) := F(x̄, s), if F is a predicate for a database table
holds(¬ϕ, s) := ¬holds(ϕ, s)
holds(ϕ ∧ ψ, s) := holds(ϕ, s) ∧ holds(ψ, s)
holds(ϕ ∨ ψ, s) := holds(ϕ, s) ∨ holds(ψ, s)
holds(ϕ ⊃ ψ, s) := holds(ϕ, s) ⊃ holds(ψ, s)
holds(ϕ ≡ ψ, s) := holds(ϕ, s) ≡ holds(ψ, s)
holds(∃xϕ, s) := ∃xholds(ϕ, s), if x is a variable for domain individuals
holds(∀xϕ, s) := ∀xholds(ϕ, s), if x is a variable for domain individuals.

An advantage of using the macroholds is that we can extend the class of formulas
ϕ in holds(ϕ, s) in such a way that they contain new, temporal operators that represent
subformulas with some useful, natural and common quantification over states. In addition,
we can make thefinal, evaluation state,s, explicit. For example, we want to represent in a
compact and distinguishable way the formula∀s′(S0 ≤ s′ < s ⊃ P(a, s′)) which says thata
is an element of tableP in every state previous tos, without using an explicit quantification
over states. For doing this, we introduce a logical temporal operator,�, defined by

holds(� P(a), s) := ∀s′(S0 ≤ s′ < s ⊃ holds(P(a), s′)).

More precisely, for posing temporal queries, we will introduce in the SC the four typical
temporal operators offirst order past temporal logic, the same operators considered in
(Chomicki, 1995). The intended meanings of them are: (a)•ϕ for “ϕ was true at the previous
moment of time”. (b)ϕ sinceψ for “ψ was true at some time in the past and from that time
on,ϕ has been true”. (c)�ϕ for “Sometime in the pastϕ was true”. (d) �ϕ for “Always in
the pastϕ was true”.8

They will be introduced as macros though, via theholds predicate. In consequence, the
class of ss-formulas (Definition 1) has to be extended by means of the extra rule: Ifϕ,ψ

are ss-formulas, then•ϕ, ϕ sinceψ,�ϕ, �ϕ are also ss-formulas.
The combinations ofholds and the temporal operators are defined by the following

macros, that can be rewritten as SC formulas as follows:

holds(•ϕ, s) := ∃(a, s′)(s = do(a, s′) ∧ holds(ϕ, s′))
holds(ϕ sinceψ, s) := ∃s′(S0 ≤ s′ < s ∧ holds(ψ, s′)∧

∀s′′(s′ < s′′ ≤ s ⊃ holds(ϕ, s′′)))
holds(�ϕ, s) := ∃s′(S0 ≤ s′ < s ∧ holds(ϕ, s′))
holds(�ϕ, s) := ∀s′(S0 ≤ s′ < s ⊃ holds(ϕ, s′)).

This is a recursive definition. In it, ϕ andψ are formulas that may include connec-
tives¬,∨,∧,⊃ and≡; quantification over domain individuals; and operators•, since, �
and�.
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From now on, our temporal query language will consist of the formulas we just defined.
More precisely, our temporal queries will be of the form

holds(ϕ,do(T, S0))?, (4)

whereϕ is an ss-formula andT is a sequence of ground actions.
Formulaϕ in (4) will possibly contain temporal operators, that is, it may contain subfor-

mulas starting with an application of a temporal operator. In Section 3.2, to each of these
subformulas,α, we will associate a new, auxiliary, history encoding view,Rα. Next, for these
views we will derive specifications of their dynamics, and use them in the process of query
answering. Before doing this, we present some examples of temporal queries expressed in
terms of the new operators.

Example 4. We can express the queries shown in Example 2 as follows.“Has sue been
working in the company in all states generated by a sequence of actions T at S0?”:
holds(Emp(sue) ∧ � Emp(sue), do(T, S0)). “Is is true that the salaries have never de-
creased along the states generated by action sequence T executed at S0?”:

holds(∀(x, p′, p′′)((Salary(x, p′′) ∧ �Salary(x, p′) ⊃ p′ ≤ p′′) ∧
� (Salary(x, p′′) ∧ �Salary(x, p′) ⊃ p′ ≤ p′′)),do(T, S0)).

Example 5. The query“Was Joe hired as an employee of a lower rank before becoming
a Chief Executive Officer (CEO) in all states generated by a sequence of actions T at S0?”
can be expressed by the formula

holds(� (Emp( joe) ∧ ¬Ceo( joe)) ∧ Emp( joe) ∧ Ceo( joe) ∨
[Emp( joe) ∧ Ceo( joe)]since

[Emp( joe) ∧ Ceo( joe) ∧ � (Emp( joe) ∧ ¬Ceo( joe))],do(T, S0))

Example 6. The query“Is there anybody who has always been working in the company
(along the execution of the sequence of actions T from S0)?” can be expressed by the formula

holds(∃x(Emp(x) ∧ � Emp(x)),do(T, S0)).

With the temporal operators we can express an interesting and natural class of temporal
queries. The introduction of the temporal operators cannot be a substitute for the whole
expressive power of the situation calculus (Abiteboul et al., 1996), nevertheless we can
express with them the queries we need in most common practical applications.

3.2. Evaluating the query

Our starting point consists of a SC specification� as in Section 2, and a queryholds (ϕ, S),
whereϕ is an ss-sentence, possibly containing temporal operators, to be evaluated at the
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final stateS = do(T, S0). As expected, this formula implicitly refers to the states between
S0 andS.

In order to answer the query, we will construct a new SC specification�H that extends
�, and a new SC sentence,H(ϕ, S), such that the answer to the original query,� |=
holds(ϕ, S)?, coincides with the answer obtained from the evaluation ofH(ϕ, S) with
respect to�H . The new sentence,H(ϕ, S), refers only to the stateS, and�H contains
a specification of the dynamics of some new, history encoding, auxiliary relations that
correspond to the temporal subformulas inϕ. Being in this new scenario, we can use any
algorithm for answering queries that refer to a single, future state of the database.

First we will generateH(ϕ, S), for an ss-formulaϕ and ground stateS. Next, we will
show how to generate�H .

1. If ϕ is of the form t1 ∗ t2, where t1 and t2 are terms (for domain individuals) and
∗ ∈ {<,>,≤,≥,=, �=}, thenH(ϕ, S) := ϕ.

2. If ϕ is of the formP(t̄), whereP is a state independent predicate, thenH(ϕ, S) := P(t̄).
3. If ϕ is of the formF(t̄), whereF is a predicate for a database table, thenH(ϕ, S) :=

F(t̄, S).
4. If ϕ is ¬ψ , thenH(ϕ, S) := ¬H(ψ, S).
5. H(ψ ∗ θ, S) := H(ψ, S) ∗ H(θ, S), where∗ is any of the usual binary propositional

connectives.
6. H(Qxϕ, S) := QxH(ϕ, S), whereQ is any of the usualfirst order quantifiers.
7. If ϕ is •ψ(x̄),�ψ(x̄) or �ψ(x̄), whereψ does not contain any of the operators•, since,

� and�, thenH(ϕ, S) := Rϕ(x̄, S), whereRϕ is a new table name.
8. If ϕ(x̄) is ψ(x̄) sinceθ (x̄), whereψ(x̄) andθ (x̄) do not include any of the operators•,

since, � and�, thenH(ϕ, S) := Rϕ(x̄, S), whereRϕ is a new table name.

By bottom-up transformation of a formulaϕ that appears in the macrosholds, we can
always obtain such a formulaH(ϕ, S). Notice that this is a SC formula that is simple in the
stateS, i.e. it talks about an isolated state,S.

Now, we will specify the dynamics of the new tables introduced in the last two cases in
the inductive definition above by means of appropriate SSAs:

(a) Letα(x̄) be of the form•ψ(x̄). This formula is true at a given state iffψ(x̄) is true at the
previous state. Then, the new tableRα(x̄, s) has the following SSA:∀(a, s)Poss(a, s) ⊃
∀x̄(Rα(x̄,do(a, s)) ≡ H(ψ(x̄), s)). At the initial stateα(x̄) is false for each̄x, because
S0 has no predecessor state, so we specify∀x̄¬Rα(x̄, S0).

(b) Letα(x̄) be of the formψ(x̄) sinceθ (x̄). This formula is true at a states, with predecessor
states′, iff (ψ sinceθ ) was true ats′ andψ is still true ats, orψ became true ats and
θ became true ats′. This is equivalent to saying that ((ψ sinceθ ) ∨ θ ) is true ats′ and
ψ is true ats. Then, forRα(x̄, s) it holds:

∀(a, s)Poss(a, s) ⊃ ∀x̄(Rα(x̄,do(a, s)) ≡
H(ψ(x̄),do(a, s)) ∧ (Rα(x̄, s) ∨ H(θ (x̄), s))).

This is not a SSA of the form (2), because there is ado(a, s) term in one of the formulas
on the RHS. But we can get rid of it applying Reiter’s regression operatorR, that
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takes a formula, instantiated at a successor state of the formdo(a, s), into a formula
instantiated at the previous state,s (see Section 2). So, we obtain:

∀(a, s)Poss(a, s) ⊃ ∀x̄(Rα(x̄,do(a, s)) ≡
R[H(ψ(x̄),do(a, s)))] ∧ (Rα(x̄, s) ∨ H(θ (x̄), s))).

Notice that the application of the regression operator leaves the RHS of the equivalence
above as a simple formula ins. Also notice that whenα is a sentence, then the SC
formula Rα(s) becomes a situation dependent propositional predicate. Finally, we also
specify∀x̄¬Rα(x̄, S0).

(c) Letα(x̄) be of the form�ψ(x̄). Given that�ψ(x̄) := true sinceψ(x̄), the new table
Rα has the specification:

∀x̄¬Rα(x̄, S0),

∀(a, s)Poss(a, s) ⊃ ∀x̄(Rα(x̄,do(a, s)) ≡ H(ψ(x̄), s) ∨ Rα(x̄, s)).

Let β(x̄) be of the form�ψ(x̄). Since�ψ(x̄) := ¬�¬ψ(x̄), Rβ has the specification:

∀x̄ Rβ(x̄, S0)

∀(a, s)Poss(a, s) ⊃ ∀x̄(Rβ(x̄,do(a, s)) ≡ H(ψ(x̄), s) ∧ Rβ(x̄, s)).

Example 7. Assume that the original specification� contains the following SSA for the
tableP(x, s):

∀(a, s)Poss(a, s) ⊃ ∀x(P(x,do(a, s)) ≡ a = A(x) ∨ (P(x, s) ∧ a �= B(x))).

We want to evaluate the query∃x(P(x) since�Q(x)) at stateS = do(T, S0). If β is�Q(x),
then we introduce a new tableRβ with SSA:

∀(a, s)Poss(a, s) ⊃ ∀x(Rβ(x,do(a, s)) ≡ Rβ(x, s) ∨ Q(x, s)).

Introducing Rβ in the query, we obtain∃x(P(x) since Rβ(x)). If the formula inside the
quantifier isα(x), for the new tableRα we have

∀(a, s)Poss(a, s) ⊃ ∀x(Rα(x,do(a, s)) ≡
R[ P(x,do(a, s))] ∧ (Rα(x, s) ∨ Rβ(x, s))).

ReplacingR[ P(x,do(a, s))] by the RHS of the SSA forP, we obtain the following SSA
for Rα:

∀(a, s)Poss(a, s) ⊃ ∀x(Rα(x,do(a, s)) ≡
(a = A(x) ∨ (P(x, s) ∧ a �= B(x))) ∧ (Rα(x, s) ∨ Rβ(x, s))).

The new query is∃x Rα(x, S).
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The following proposition shows why we can useH and�H to answer queries about a
specification�, constructed by usingholds.

Proposition 1. Let� be a SC specification and T a legal sequence of ground actions9,

then� |= holds(ϕ,do(T, S0)) if and only if�H |= H(ϕ,do(T, S0)).

Notice thatholds (ϕ,do(T, S0)) is instantiated at thefinal statedo(T, S0), and this is the
only state mentioned in the formula. So, we can see that we have transformed our problem
of answering a temporal query with respect to a virtually updated database into thetemporal
projection problemof AI (Hanks and McDermott, 1986), that is, the problem of querying
a future state obtained by the execution of a sequence of actions. To solve this problem
we may apply some existing techniques for Reiter like specifications, e.g. Reiter’s query
regression (Reiter, 1995), minimal rolling forward of the database based on information
that is relevant to the query (Bertossi et al., 1998; Siu and Bertossi, 1996), or even full
progression of the database (Lin and Reiter, 1997). All these methodologies are supported
by the database reasoner SCDBR (Bertossi et al., 1998).

Example 8. We want to know if there is someone who has always been working in
the company, in all states generated by the execution of the sequences of actionsT =
[hire(sue), fire( john)] from the initial situation. So, we are asking whether

� |= holds(∃x(Emp(x) ∧ � Emp(x)),do(T, S0)).

Applying our methodology we obtain the new SC query

∃x(Emp(x,do(T, S0)) ∧ Rα(x,do(T, S0))),

and the original specification extended to�H by adding∀x Rα(x, S0) and

∀(a, s)Poss(a, s) ⊃ ∀x(Rα(x,do(a, s)) ≡ Emp(x, s) ∧ Rα(x, s)).

Then we ask if�H |= ∃x(Emp(x,do(T, S0)) ∧ Rα(x,do(T, S0))). Now the query is simple
in thefinal statedo(T, S0).

Running the regression operator twice on the RHS and simplifying the resulting steps by
means of the unique names axioms for actions, we obtain the following query to be posed
to the initial databaseD0:

∃x((x = sue∧ Emp(x, S0)) ∧ x �= john∧ Emp(x, S0) ∧ Rα(x, S0)).

Simplifying Rα(x, S0) to true, we obtain the equivalent query

Emp(sue, S0) ∨ ∃x(x �= john∧ Emp(x, S0)).

SCDBR can answer this query by calling a conventional DBMS on the initial database, or
a Prolog program if the initial database is a Prolog database.
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The implementation in SCDBR of the methodology we have presented so far is described
in Appendix A.

4. Transforming dynamic integrity constraints

In Section 2 we defined a Static Integrity Constraint (SIC) as a formula of the form∀s(S0 ≤
s ⊃ ϕ(s)), whereϕ(s) was a formula simple ins. By using the macroholds we can extend
this definition by saying that a static integrity constraint is a formula of the form

∀s(S0 ≤ s ⊃ holds(ϕ, s)). (5)

If ϕ is a formula that does not include operators•, since,� and�, then the previous formula
is a static integrity constraint of the form showed in Section 2. Ifϕ includes these operators,
then it can represent a more complex kind of integrity constraint. In fact, by means of this
operators it is possible to represent several Dynamic Integrity Constraints (DICs). Thus, by
using the equivalence between macrosholds andH it is possible to transform a dynamic
constraint in one specification into a static constraint in another specification.

Therefore, we can use our methodology to transform DICs into SICs. Actually, the
work in Chomicki (1995) has to do withcheckingDICs statically. In our case, with our
reformulation of Chomicki’s methodology in terms of a specification of the dynamics of the
history encoding relations, we can rewrite DICs as SC sentences expressing SICs, which can
beprovenas such from the (extended) specification of the database dynamics. In particular,
we can use theorem proving techniques for proving SICs by automated induction, like
the ones presented in Bertossi et al. (1996), in order to automatically prove DICs from
the specification of the database dynamics. The following proposition formalizes the idea
showed above.

Proposition 2. Given a SC specification�. If �H is constructed from� as shown in
Section3.2, then

� |= ∀s(S0 ≤ s ⊃ holds(ϕ, s)) iff �H |= ∀s(S0 ≤ s ⊃ H(ϕ, s)).

Example 9. Let� be the specification in Example 1 andψ be the DIC (3) expressing that
an employee’s salary cannot decrease, that must hold in every legal current states of the
DB. That is, as a sentence, it must follow from�.

We can express this integrity constraint in our extended formalism as follows:

∀s(S0 ≤ s ⊃
holds(∀(e, p′, p′′)((�Salary(e,p′) ∧ Salary(e,p′′)) ⊃ p′ ≤ p′′) ∧

�((�Salary(e,p′) ∧ Salary(e,p′′)) ⊃ p′ ≤ p′′), s)) (6)

If α(e, p′) is �Salary(e, p′), we create a tableRα with specification:

∀(e, p′)¬Rα(e, p′, S0),

∀(a, s)Poss(a, s) ⊃ ∀(e, p′)(Rα(e, p′,do(a, s)) ≡
Rα(e, p′, s) ∨ Salary(e,p′, s)). (7)
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IntroducingRα in thefirst argument ofholds in (6) we obtain:

∀(e, p′, p′′)(((Rα(e, p′) ∧ Salary(e,p′′)) ⊃ p′ ≤ p′′) ∧
� ((Rα(e, p′) ∧ Salary(e,p′′)) ⊃ p′ ≤ p′′)). (8)

If β(e, p′, p′′) is the subformula�((Rα(e, p′)∧Salary(e,p′′)) ⊃ p′ ≤ p′′),we create a table
Rβ with specification

∀(e, p′, p′′)Rβ(e, p′, p′′, S0),

∀(a, s)Poss(a, s) ⊃ ∀(e, p′, p′′)(Rβ(e, p′, p′′,do(a, s)) ≡
Rβ(e, p′, p′′, s) ∧ ((Rα(e, p′, s) ∧ Salary(e,p′′, s)) ⊃ p′ ≤ p′′)). (9)

IntroducingRβ in (8), we obtain

∀(e, p′, p′′)(((Rα(e, p′, s) ∧ Salary(e,p′′, s)) ⊃ p′ ≤ p′′) ∧ Rβ(e,p,p′′s)).

Thus, the original DIC holds in every state if and only if the specification�H , consisting
of � plus (7) and (9), entails the SIC:

∀s(S0 ≤ s ⊃ ∀(e, p′, p′′)
(((Rα(e, p′, s) ∧ Salary(e,p′′, s)) ⊃ p′ ≤ p′′) ∧ Rβ(e,p′,p′′, s))). (10)

The IC (10) can be split into the twobinary static integrity constraints∀s(S0 ≤s ⊃
∀(e, p′, p′′)((Salary(e,p′′, s) ∧ ¬p′ ≤ p′′) ⊃ ¬Rα(e,p′, s))) and∀s(S0 ≤ s ⊃ ∀(e, p′, p′′)
Rβ(e, p′, p′′, s)). As shown in Pinto (1994) and Bertossi et al. (1998), these constraints
can be compiled into the specification of the extended database dynamics, in this case,
modifying the original SSAs for the new tablesRα andRβ .

5. History dependent transactions

As we saw in Section 2, the formalism for specifying DB updates contains preconditions
for action executions that depend on the current state of the database, only. Many concepts
and algorithms that have originated from this formalism are based on this kind of local
action precondition axioms (APAs). Nevertheless, there are natural scenarios in which the
conditions for executing an action should depend on a longer history of the database. For
example, in a voters database we might have the following APA for actionvote

∀(x, y, s)(Poss(vote(x, y), s) ≡ ∃n(Age(x,n, s) ∧ n ≥ 18)∧
Candidate(y, s) ∧ ∀s′(S0 ≤ s′ ≤ s ⊃ ¬InJail(x, s′))). (11)

That is,x can vote fory as long asy is a candidate,x is not younger than 18, andx has
never been in jail. This is a history dependent transaction.
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We can use the macrosholds to represent this kind of actions. In fact, we can extend the
definition of action preconditions as follows:

∀(x̄, s)(Poss(A(x̄), s) ≡ holds(ψ(x̄), s)). (12)

If ψ includes some of the operators•, since, � or �, we have a history dependent action.
We can use the machinery developed so far for transforming history dependent transac-

tions into local transactions. To do this we only need to construct a new specification�′
H

from �H , in its turn obtained fromH(ψ(x̄), s) as before, but with the original APA (12)
replaced by the new APA:

∀(x̄, s)(Poss(A(x̄), s) ≡ H(ψ(x̄), s)),

which is of the form (1). As before, the new specification contains SSAs for the auxiliary
tables introduced by the construction ofH(ψ(x̄), s).

Proposition 3. Let� be a SC specification containing a history dependent APA for action
A and let�H be the new SC specification containing SSAs for the auxiliary relations and
the old APA replaced by the new, local one. If PossH and≤H are the possibility predicate
and accessibility relation defined on the basis of the new APA, then it holds:
(a) For every ground state term S, and ground action term of the form A(c̄),

� |= S0 ≤ S ⊃ Poss(A(c̄), S) iff �H |= S0 ≤H S ⊃ PossH (A(c̄), S).

(b) For every ground state term S,

� |= S0 ≤ S iff �H |= S0 ≤H S.

The proposition says that at every accessible state, actionA is possible in the old sense
if and only if it is possible in the new sense and that both specifications define the same
accessible states.

Example 10. We can apply the methodology to the voters example. In (11), the original
APA for vote(x, y) can be expressed by means of the macrosholds as follows:

∀(x, y, s)(Poss(vote(x, y), s) ≡ holds(∃n(Age(x,n) ∧ n ≥ 18)∧
Candidate(y) ∧ ¬InJail(x) ∧ �¬InJail(x), s)) (13)

In consequence, we generate a new specification�′
H , extending�, that includes now:

1. A new tableRα(x, s) that contains, at states, the peoplex that have not been in jail
before states, whose specification consists of

∀x Rα(x, S0),

∀(a, s)Poss(a, s) ⊃ ∀x(Rα(x,do(a, s)) ≡ Rα(x, s) ∧ ¬InJail(x, s)).
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2. The original APA for actionA replaced by

∀(x, y, s)(Poss(vote(x, y), s) ≡ ∃n(Age(x,n, s) ∧ n ≥ 18)∧
Candidate(y, s) ∧ ¬InJail(x, s) ∧ Rα(x), s)).

6. Possible extensions

6.1. Explicit time

In Chomicki (1995), explicit time was also included to extend history encoding and deal
with real-time issues. In Arenas et al. (1998d) it is shown how to extend our methodology
by introducing explicit time in the database. This can be done by considering time as a
new parameter for actions (Reiter, 1996). In this way, situations will have their associated
times. Here we given only some hints on how explicit time can be accommodated into our
framework.

As before, primitive actions will be denoted with function symbols, but now with one
extra parameter of a new, temporal sortT . Thus, a termborrow(book, t1) would denote the
instantaneous action of borrowing a book at timet1. We also include a new functiontime
from actions toT , such that, for each action functionA(x, t), timesatisfies the axiomtime
(A(x, t)) = t . Therefore, ifborrow(book, t1) is an action term, then we would havetime
(borrow(book, t1)) = t1. We also need a function,start, from situations to times, such
thatstart(s) is the starting time for situations. Since actions are instantaneous, we require
thatstart(do(a, s)) = time(a) (Reiter, 1998). Nevertheless, situations may have a duration
(Baier and Pinto, 1998).

The specification of the accessibility relation between situations,<, has to be modified
by the axiom

s1 < do(a, s2) ≡ Poss(a, s2) ∧ s1 ≤ s2 ∧ start(s2) ≤ time(a).

According to this characterization,s1 < s2 is true if all the actions that lead froms1 to s2

are possible in the intermediate situations where they are performed, and their times are in
the right order.

We also have to modify the unique names axioms as follows:

a(x1, . . . , xn, t) �= a′(y1, . . . , ym, t ′).
a(x1, . . . , xn, t) = a(y1, . . . , ym, t ′) ⊃ x1 = y1 ∧ · · · ∧ xn = yn ∧ t = t ′.

In the temporal extension of the situation calculus we willfind temporal atomic formulas of
the formt1 ∼ t2, wheret1 andt2 are temporal terms and∼ ∈ {=, �=, <,>,≤,≥}. We also
have more complex temporal formulas of the form� ∼cψ , wherec is a nonnegative integer,
stating that formulaψ is true in some previous time, and the previous and present times are
subject to the constraint∼ c. For example, if the time unit is a day, then� =5¬Emp(sue)
states thatfive days agosuewas not an employee of the company. More precisely, we define:

holds(� ∼cψ, s) := ∃s′(S0 ≤ s′ < s ∧ (start(s) − start(s′)) ∼ c ∧
holds(ψ, s′)).
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For example, sinceholds(Emp(sue), s) = Emp(sue, s), we have

holds(� =5¬Emp(sue), s) := ∃s′(S0 ≤ s′ < s ∧
(start(s) − start(s′)) = 5 ∧ ¬Emp(sue, s′)).

For a temporal formulaϕ(x̄) of the form�∼cψ(x̄), whereψ is a non-temporal formula,
the formulaH (ϕ(x̄), S) (see Section 3.2) is∃t(Rϕ(x̄, t, S) ∧ t ∼ c), whereRϕ is new table.
We use the temporal parametert in Rϕ to store the amount of time that has elapsed since
ψ(x̄) was true. Thus, ifψ(x̄) is true ats, then at statedo(a, s), in t we storetime(a)−start(s).
Moreover, if Rϕ(x̄, t ′, s) is true, and thereforeψ(x̄) was truet ′ units of time ago at some
state previous tos, at statedo(a, s), in t we storet ′ + time(a) − start(s).10 In consequence,
Rϕ(x̄, t, s) has the following successor state axiom:

∀(a, s)Poss(a, s) ⊃ ∀(x̄, t)(Rϕ(x̄, t,do(a, s)) ≡
(H(ψ(x̄), s) ∧ t = (time(a) − start(s))) ∨
∃t ′(Rϕ(x̄, t ′, s) ∧ t = t ′ + time(a) − start(s))).

At the initial state we define Rϕ by ∀(x̄, t)¬Rϕ(x̄, t, S0).
With this extension to explicit time, now it is possible to express a metric temporal

precondition for the actionfire saying that it is possible tofire an employee if he/she has
been working at least 30 days in the company:

∀(x, s)(Poss( fire(x), s) ≡ holds(¬�<30¬Emp(x), s)).

As before, this precondition can be changed by a new one referring to the execution state
only: if ϕ(x) is �<30¬Emp(x), then

∀(x, s)(Poss( fire(x), s) ≡ ¬∃t(Rϕ(x, t, s) ∧ t < 30)),

where the new tableRϕ is defined by

∀(a, s)Poss(a, s) ⊃ ∀(x, t)(Rϕ(x̄, t,do(a, s)) ≡
(¬Emp(x), s) ∧ t = (time(a) − start(s))) ∨
∃t ′(Rϕ(x, t ′, s) ∧ t = t ′ + time(a) − start(s))).

6.2. Open queries

In this paper, we have just considered queries that are sentences, that is without free vari-
ables. We think this kind of queries is more likely to occur in hypothetical reasoning,
in the sense that they deal with global properties of an hypothetical state of the world.
Nevertheless, our methodology can be easily applied to open queries that should return
database tuples as answers. Those tuples can be retrieved from the domain elements ap-
pearing in the transaction log and from the initial database. This can be done, again, by means
of the regression operator that is able to handle free variables. The formulas resulting in the
process can be easily simplified taking advantage of the unique names axioms before the
final evaluation process (cf. Bertossi et al., 1998 and Appendix A).
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6.3. Regular expression queries

In this paper we have considered a wide, but restricted class of historical queries, namely
those that can be constructed on the basis of the usualfirst order past temporal logic
operators. In Abiteboul et al. (1996), predicate calculus and extended temporal logic (ETL)
were compared in terms of expressive power for temporal databases. ETL is a proper
extension offirst order past temporal logic by means of formulas that are constructed on
the basis of regular expressions. History encoding and our methodology can be extended
to include regular expression queries onfinite transaction logs.

7. Discussion and conclusions

Among the contributions in this paper wefind the following: (1) An embedding and repre-
sentation of the operators offirst order past temporal logic in the situation calculus. (2) An
extension of methodology presented in Chomicki (1995) to check dynamic integrity con-
straints to the case in which there is a specification of the evolution of the database. (3) A
methodology for doing hypothetical reasoning along a virtual evolution of the database ob-
tained by the execution of domain specific primitive transactions, whereas (Chomicki, 1995)
concentrates onfixed integrity constraints and physical and usual updates of the database.
(4) A general solution to the problem of answering temporal queries in the context of Reiter’s
specifications of database updates, and this solution works both in a progressive as in a re-
gressive way. (5) A general transformation mechanism of dynamic integrity constraints
into static integrity constraints, in a context like Reiter’s, where both kind of constraints
are expected to be logical consequences of the specification. (6) A general mechanism for
transforming history dependent preconditions for action executions into preconditions to be
evaluated at the execution state. (7) An implementation of all these methodologies. (8) An
extension of all the previous results and techniques to the case of explicit time or metric
temporal logic.

Preliminary versions of this work can be found in Arenas and Bertossi (1998a, 1998b).
In thefirst case, no temporal operators were considered, and temporal queries were much
more complex than here. In the second case, explicit use offirst order past temporal logic
and translations between it and the SC was made. The current version combines the best of
the two approaches.

We think that the methodologies developed here for relational databases could be applied
in other scenarios as well, e.g. (1) Hypothetical reasoning in workflows (Bonner, 1999;
Davulcu, 1998; Trajcevski et al., 2000), (2) Reasoning from and about policies (Chomicki
et al., 2000), and (3) Temporal reasoning in AI in general (Chittaro and Montanari, 2000).

7.1. Complexity issues

As already described, in Chomicki (1995) a procedure for checking temporal integrity
constraints is presented. It is based on the idea of history encoding, that we have captured
and used in the situation calculus framework. The history encoding methodology presented
in Chomicki (1995) turns out to be polynomially bounded in the sense that given an integrity
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constraint to be checked, the number of auxiliary relations to be introduced does not depend
on the lengthn of the transaction log, and the amount of historical information stored in
the union of the auxiliary relations does not depend onn, but is bounded by a polynomial
evaluated on the amount of data in the initial database plus the domain values appearing in
the transaction log (the history) and the constraint.

In our SC context, we may have domain defined primitive actions, possibly appearing
in transaction logs, that could have the instantaneous effect of inserting a huge amount of
data in several database relations at the same time. If we restrict ourselves to most common
situation in which those primitive actions are of the forminsertP(x̄), x̄ into table P and
deleteP(x̄), that inserts̄x from tableP, respectively, then we still have polynomially bounded
history encoding in the sense that the number of auxiliary relations depends on the temporal
queryholds (ϕ, Sn) and not on the lengthn of the transaction logA1, . . . , An (producing
statesS1, . . . , Sn), and the amount of data stored in the union of them is bounded by a
polynomial on the number of domain values appearing in the initial relational database�0

plus A1, . . . , An andϕ.11

This situation and analysis is relevant for efficiently answering historical queries by
means of a physical progression of the database, in particular, through materialization of the
auxiliary views (see Section 3.2). Nevertheless, if we want to answers the query by appealing
to a solution of the temporal projection problem via query regression (see Section 3.2), and
thus avoiding the materalization of the historical views, we have to analyze things in a
different way.

In the regression based approach, the number of auxiliary historical relations does not
depend on the length of the transaction log, but on the original query only. The amount of
data potentially stored in those relations is no longer relevant since they are not materialized.
The problem is that in a general situation, the regression of a given formula may become
exponentially long wrt the original query (Reiter, 2001), and thus leading to exponential time
to evaluate the regressed query. Nevertheless, there are situations in which this evaluation
can be done in polynomial time. This is the case ofcontext-freesuccessor state axioms
(Reiter, 2001). Those are axioms in which there are no conditions on the database at the
execution state for the actions to have their desiredeffects(there might be preconditions for
theirexecutions, but they do not appear explicitly in the SSAs). This is a common situation
in databases, in particular, when only actions of the forminsertP(x̄) anddeleteP(x̄) are
considered.

Our running example (Example 1) contains context-free SSAs only. For example, the
SSA forEmpis

∀(a, s)Poss(a, s) ⊃ ∀x[Emp(x,do(a, s)) ≡
a = hire(x) ∨ (Emp(x, s) ∧ a �= fire(x))].

Here, actiona = hire(x) will have the effect of havingx inserted intoEmpat the succe-
sor state, without any condition. Nevertheless, this action does have a precondition to be
executed, namely:

∀(x, s)[Poss(hire(x), s) ≡ ¬Emp(x, s)].
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Notice that the query to be regressed will contain some auxiliary relations, which have
derived SSAs that will be used by the regression operator. It is an interesting subject for
further investigation tofind conditions under which the derived SSAs will be context-free
when the SSAs for the original database are context-free. For this purpose, some syntactic
techniques introduced in Arenas and Bertossi (1998c) could be useful. In general, the
complexity of regression based query answering in knowledge representation and databases
requires further research.

7.2. Related work

There has been some work done on hypothetical reasoning in databases. In Bonner (1990),
a datalog language, Hypothetical Datalog, that allows both database specification and hypo-
thetical reasoning, is presented. There, special rules for hypothetical reasoning are included
in the datalog specification. These rules contain predicates with a sort of annotations indi-
cating that the predicate will be true if certain tuple is deleted or inserted into the database.
Then, the kind of reasoning they allow is of the form“Would that predicate be true if these
properties are added/included?.” The final virtual state is evaluated. It is also possible to
specify a sort of hypothetical predicates, whose truth depends on the execution of future
add/delete transactions. Hypothetical Datalog also benefits from the possibility of specify-
ing recursive predicates. The queries than can be posed at the hypothetical state are limited
by the datalog formalism. In Bonner (1990) other related formalisms for hypothetical rea-
soning in databases are discussed.

In Chen (1997) a language that can be considered as an extension of Hypothetical Data-
log is presented. More complex database updates are integrated into the language, more
precisely, as predicates in the rules. In addition, hypothetical reasoning with respect to a
particular predicate,L, can be done by evaluating an auxiliary predicate,�L. This predicate
is evaluated asL, except for the fact that the updates that appear in the rules that have to do
with L are not committed. After evaluation, the database goes back to the current physical
state.

The more interesting and more powerful logic programming formalism than the two
above for specifying and executing updates is Transaction Logic Programming (Bonner
and Kifer, 1998). It also allows doing hypothetical reasoning. As discussed in Bertossi et al.
(1998), Transaction Logic and the Situation Calculus can complement each other well. In
the situation calculus it is possible to specify primitive transactions, in particular, giving
an account of the frame problem for this kind of transactions; and transaction logic can be
used to specify more complex transactions.

In our case, instead, we restrict ourselves to relational databases (as opposed to deductive
databases), but we have arbitrary domain specific transactions which are specified in the SC
formalism. The hypothetical situation is created by virtually executing explicit transactions
of this kind. Actually, Reiter’s formalism is a language for reasoning about action executions
(but not for executing actions); this makes it perfect for hypothetical reasoning.

We are in position to query the whole database evolution, with involved relationships
between the generated states; for this we take advantage of the existence of explicit states
in our formalism and quantifications over them. Our query language, both for trajectories
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and particular states is much more expressive. We do not need extra rules or auxiliary
predicates for doing hypothetical reasoning; we just use the specification of our database,
in particular, we will not get to the situation of having to introduce new rules and predicates
in the program which we might have initially forgotten.

With the formalism we have, as it is, we do not have the possibility of introducing
recursive predicates. Nevertheless, recursion could be introduced as macros as done in
Golog (Levesque et al., 1997), a situation calculus based logic programming language for
high level robot programming. Introducing predicates whose truth depends on future states
does not seem to be a problem in our formalism, because quantifications on states and the
dooperator should allow doing this.

The problem of answering hypothetical historical queries in the context of the situation
calculus specifications of database updates was posed in Reiter (1995), where also some
particular cases were treated. Further work on this problem is presented in Reiter (2001), but
essentially the case ofcontext-freesuccessor state axioms is considered. Our methodology,
being much more general, provides the same formulas to be evaluated against the initial
database in those cases, but can be applied to a wider range of queries.

Appendix A: Implementation

We have added to the automated reasoner, SCDBR, the functionality of generating the new
SC formula and specification, including the application of the regression operator (Bertossi
et al., 1998). The reasoner is implemented in PROLOG.

Example 11. Let us consider the formula

holds(�p(v1) since�q(v1), s). (14)

To evaluate it, we need to considerH(�p(v1) since�q(v1), s) in an extended specification
�H . To do this, we will use some of the procedures of SCDBR.

|?- i p(diamond p(v1) since box q(v1), F),
tl initial(F, s, I1, [F2,F3,F4], , [F5,F6,F7]),
p i([F2,F3,F4,F5,F6,F7], [I2,I3,I4,I5,I6,I7]).

I1= r 0(v1,s),
I2= forall(v1):(neg r 0(v1,s0)),
I3= forall(v1):(neg r 0 sl(v1,s0)),
I4= forall(v1):(neg r 0 sr(v1,s0)),
I5= forall(a):(poss(a,s) => (r 0(v1,do(a,s)) <=>

(r 0 sl(v1,s) v p(v1,s)) &
(r 0(v1,s) v neg r 0 sr(v1,s)))),

I6= forall(a):(poss(a,s) => (r 0 sl(v1,do(a,s)) <=>
r 0 sl(v1,s) v p(v1,s))),

I7= forall(a):(poss(a,s) => (r 0 sr(v1,do(a,s)) <=>
r 0 sr(v1,s) v neg q(v1,s)))
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Here, wefirst introduced (14) by means of the predicatei p. This predicate stores it inFas
�p(v1) since¬�¬q(v1), that corresponds to its internal representation. Next, the predicate
tl initial was applied onF, obtaining: (a)H(�p(v1) since¬�¬q(v1), s), which is stored
in I1; (b) the list of the initial state formulas for the generated auxiliary tables, which
are stored inF2, F3 andF4; (c) the list of the successor state axioms for the generated
auxiliary tables, which are stored inF5, F6 andF7. Finally, the predicatep i was applied
for translating (b) and (c), written in the internal representation, intoI2, I3, I4, I5,
I6 andI7, written in infix notation.

From the SCDBR’s invocation, we can see thatr 0(v1, s) is equal toH(�p(v1) since
¬�¬q(v1), s). For producing this formula, the system generated three auxiliary tables
r 0, r 0 sl andr 0 sr, with the following initial state definitions:

∀v1(¬r 0(v1, S0)),∀v1(¬r 0 sl(v1, S0)),∀v1(¬r 0 sr(v1, S0));

and with the following SSAs axioms:

Poss(a, s) ⊃ (r 0(v1,do(a, s)) ≡
(r 0 sl(v1, s) ∨ p(v1, s)) ∧ (r 0(v1, s) ∨ ¬r 0 sr(v1, s))),

Poss(a, s) ⊃ (r 0 sl(v1,do(a, s)) ≡ r 0 sl(v1, s) ∨ p(v1, s)),

Poss(a, s) ⊃ (r 0 sr(v1,do(a, s)) ≡ r 0 sr(v1, s) ∨ ¬q(v1, s)).

If we run the regression procedure in SCDBR to solve the temporal projection problem,
we will eventually obtain a query to be posed to the initial database. SCDBR can answer
this query by calling a conventional DBMS (actually, ORACLE) or a PROLOG program or
a theorem prover (OTTER), depending on the kind of initial, physical database available.

Example 12. Let us consider the specification shown in Example 1. We want to know the
list of the employees who have always been working in the company, in all states generated
by the execution of the sequence of actionsT = [hire(sue), fire( john)] from the initial
situation. Thus, we are asking

holds(Emp(x) ∧ �Emp(x),do(T, S0)). (15)

We can answer this query by means of the following invocation of SCDBR

|?- i p(emp(x) & box emp(x),F),tl initial(F,do(fire(john),
do(hire(sue),s0)), F1, [F2], I, [F3]), p i(F1, F6),
p i(F2, F7), p i(F3, F8), reg n(F1, 2, F4),
prune una(F4, F5), p i(F5, F9), prolog initial(F5, I).

Transforming Query into Prolog Goal...Done.

[[x,ernest]]
[[x,page]]

F6 = emp(x,do(fire(john),do(hire(sue),s0))) &
neg r 0 r(x,do(fire(john),do(hire(sue),s0))),
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F7 = forall(x):(neg r 0 r(x,s0)),
F8 = forall(a):(poss(a,s)=> (r 0 r(x,do(a,s)) <=>

r 0 r(x,s)v neg emp(x,s))),
F9 = ((sue e

q x v emp(x,s0)) & neg john eq x)

& neg((r 0 r(x, s0) v neg emp(x, s0)) v
neg (sue e

q x v emp(x,s0)))

As in Example 11, we use the predicatetl initial for generatingH(Emp(x) ∧
�Emp(x),do(T, S0)). More precisely, the system generatesH(Emp(x) ∧ ¬�¬Emp(x),
do(T, S0)) in F6:

Emp(x,do( fire( john),do(hire(sue), S0))) ∧
¬r 0 r (x,do( fire( john),do(hire(sue), S0))), (16)

which includes the auxiliary tabler 0 r . For this table, the system also generates the fol-
lowing formula describing its initial state

∀x(¬r 0 r (x, S0)), (17)

and the following SSA

Poss(a, s) ⊃ (r 0 r (x,do(a, s)) ≡ (r 0 r (x, s) ∨ ¬Emp(x, s))). (18)

In consequence, for answering (15) and (16) needs to be answered with respect to the
company database plus the information in (17) and (18).

As we see in the invocation, the procedurereg n is used for applying twice the regression
operator on (16). After that, by means of the predicateprune una, the resulting formula is
simplified on the basis of the unique name axioms for actions. So, the following formula
F9 is generated to be posed against the initial database state

((sue= x ∨ Emp(x, S0)) ∧ ¬john = x) ∧
¬((r 0 r (x, S0) ∨ ¬Emp(x, S0)) ∨ ¬(sue= x ∨ Emp(x, S0))). (19)

If the (initial) database of the company is a PROLOG database, we answer to (19) by means
of the procedureprolog initial, which uses PROLOG as query language. In this way,
we obtain the following tuples as answer to the query:

x = ernest∨ x = page.

As described in Bertossi et al. (1998), SCDBR can be interfaced with a RDBMS.

Example 13. We have an ORACLE database with information about the employees in
the company at the initial state. We execute the list of transactions [fire( john), fire(ernest)].
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Now we want to know all the employees who have worked for the company from the initial
state on:

holds(Emp(x) ∨ �Emp(x),do(T, S0))

and has to be posed at the statedo(T, S0).
We can ask SCDBR to generate a new query in SQL to be posed against the initial

relational database:

|?- i p(emp(x) v diamond emp(x), F), tl initial(F,
do(fire(ernest),do(hire(john),s0)), F1, [F2], I,[F3]),
p i(F1, F6), p i(F2, F7), p i(F3, F8), reg n(F1,2,F4),
prune una(F4,F5),p i(F5,F9),ora sql(F5).

[[page],[john],[ernest]]

HereF5 stands for afirst order query that the predicateora sql transforms, via a lower
level predicate, into a SQL query to be posed to the ORACLE database. After that,ora sql
prints the answer. In this case, we obtain:x = page∨ x = john∨ x = ernest.

Appendix B: Proofs and intermediate results

Lemma 1. Letϕ(x̄) andψ(x̄) be formulas that do not include operators•, since,�and�,
and�H a SCspecification constructed from aSCspecification� as was showed in Sec-
tion 3.2. Then

�H |= ∀s(S0 ≤ s ⊃ ∀x̄(holds(•ϕ(x̄), s) ≡ H(•ϕ(x̄), s)))

�H |= ∀s(S0 ≤ s ⊃ ∀x̄(holds(�ϕ(x̄), s) ≡ H(�ϕ(x̄), s)))

�H |= ∀s(S0 ≤ s ⊃ ∀x̄(holds(�ϕ(x̄), s) ≡ H(�ϕ(x̄), s)))

�H |= ∀s(S0 ≤ s ⊃ ∀x̄(holds(ϕ(x̄) sinceψ(x̄), s) ≡
H(ϕ(x̄) sinceψ(x̄), s)))

Proof: It is necessary to prove this lemma for operators• andsince.We are going to do
this by induction on states. Firstly, we consider the operator•. If α(x̄) = •ϕ(x̄), then:

holds(α(x̄), s) = ∃(a, s′)(s = do(a, s′) ∧ holds(ϕ(x̄), s′)),
H(α(x̄), s) = Rα(x̄, s)

whereRα is defined as follows:

∀x̄¬Rα(x̄, S0)

∀(a, s)Poss(a, s) ⊃ ∀x̄(Rα(x̄,do(a, s)) ≡ H(ϕ(x̄), s))



HYPOTHETICAL TEMPORAL REASONING 255

In this case, we have that by unique name for statesholds(α(x̄), S0) is false for every value
of x̄. Thus, by definition of Rα we conclude that:

�H |= ∀x̄(holds(α(x̄), S0) ≡ H(α(x̄), S0))).

Let us suppose that for a given stateS, such thatS0 ≤ S, we have that:

�H |= ∀x̄(holds(α(x̄), S) ≡ H(α(x̄), S))).

Let A a be ground action such thatPoss(A, S) is true in S. In this case, we know that
holds(α(x̄),do(A, S)) = ∃(a, s′)(do(A, S) = do(a, s′) ∧ holds(ϕ(x̄), s′)) and H(α(x̄),do
(A, S)) = Rα(x̄,do(A, S)). Thus, by taking into account unique name for states and the
SSA of Rα we conclude that:

holds(α(x̄),do(A, S)) ≡ holds(ϕ(x̄), S),

H(α(x̄),do(A, S)) ≡ H(ϕ(x̄), S).

Given thatϕ(x̄) does not include operators•, since,� and�, we have thatholds(ϕ(x̄), s) =
H(ϕ(x̄), s). Therefore

�H |= ∀x̄(holds(α(x̄),do(A, S)) ≡ H(α(x̄),do(A, S)))).

Secondly, we are going to considersince. If α(x̄) = ϕ(x̄) sinceψ(x̄), then

holds(ϕ(x̄) sinceψ(x̄), s) = ∃s′(S0 ≤ s′ < s ∧ holds(ψ(x̄), s′) ∧
∀s′′(s′ < s′′ ≤ s ⊃ holds(ϕ(x̄), s′′))),

H(ϕ(x̄) sinceψ(x̄), s) = Rα(x̄, s).

whereRα is defined as follows:

∀x̄¬Rα(x̄, S0)

∀(a, s)Poss(a, s) ⊃ ∀x̄(Rα(x̄,do(a, s)) ≡
R[H(ϕ(x̄),do(a, s))] ∧ (Rα(x̄, s) ∨ H(ψ(x̄), s))

Given that there is no states′ such thats′ < S0, holds(α(x̄), S0) is false for every value of
x̄. Thus, by definition of Rα we conclude that:

�H |= ∀x̄(holds(α(x̄), S0) ≡ H(α(x̄), S0)))

Let us suppose that for a given stateS, such thatS0 ≤ S, we have that:

�H |= ∀x̄(holds(α(x̄), S) ≡ H(α(x̄), S))). (20)
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Let A a ground action such thatPoss(A, S) is true inS. In this case, we know that:

holds(ϕ(x̄) sinceψ(x̄),do(A, S)) = ∃s′(S0 ≤ s′ < do(A, S) ∧
holds(ψ(x̄), s′) ∧ ∀s′′(s′ < s′′ ≤ do(A, S) ⊃ holds(ϕ(x̄), s′′))).

But, this formula is equivalent to

∃s′(S0 ≤ s′ < S∧ holds(ψ(x̄), s′) ∧
∀s′′(s′ < s′′ ≤ do(A, S) ⊃ holds(ϕ(x̄), s′′))) ∨

(holds(ψ(x̄), S) ∧ holds(ϕ(x̄),do(A, S)))

which is equivalent to

∃s′(S0 ≤ s′ < S∧ holds(ψ(x̄), s′) ∧
∀s′′(s′ < s′′ ≤ S ⊃ holds(ϕ(x̄), s′′))) ∧ holds(ϕ(x̄),do(A, S)) ∨

(holds(ψ(x̄), S) ∧ holds(ϕ(x̄),do(A, S))),

Thus, by definition of holds we conclude thatholds(α(x̄),do(A, S)) is equivalent to

(holds(α(x̄), S) ∧ holds(ϕ(x̄),do(A, S))) ∨
(holds(ψ(x̄), S) ∧ holds(ϕ(x̄),do(A, S)))

But, by (20) we conclude that

�H |= ∀x̄(holds(α(x̄),do(A, S)) ≡
holds(ϕ(x̄),do(A, S)) ∧ (H(α(x̄), S) ∨ holds(ψ(x̄), S)).

Given thatϕ(x̄) and ψ(x̄) do not include operators•, since,� and �, we have that
holds(ϕ(x̄), s) = H(ϕ(x̄), s) andholds(ψ(x̄), s) = H(ψ(x̄), s). Therefore

�H |= ∀x̄(holds(α(x̄),do(A, S)) ≡
H(ϕ(x̄),do(A, S)) ∧ (H(α(x̄), S) ∨ H(ψ(x̄), S)).

Finally, give thatPoss(A, S) is true inS, we have that

�H |= ∀x̄(H(ϕ(x̄) sinceψ(x̄),do(A, S)) ≡
R[H(ϕ(x̄),do(A, S))] ∧ (Rα(x̄, S) ∨ H(ψ(x̄), S))),

and

�H |= ∀x̄(H(ϕ(x̄),do(A, S)) ≡ R[H(ϕ(x̄),do(A, S))]).
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Therefore

�H |= ∀x̄(holds(α(x̄),do(A, S)) ≡ H(α(x̄),do(A, S))).

Proof of Proposition 1: By Lemma (1) and taking into account that� |= holds(ϕ,do
(T, S0)) if and only if�H |= holds(ϕ,do(T, S0)).
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Notes

1. In this paper we do not make any distinction between states and situations.
2. Sometimes, in the literature, they are called“historical queries,” but this name may cause confusions with

work done by the temporal databases community that calls“historical” the queries about valid time, rather
than about transaction time (Snodgrass and Ahn, 1986), which can be better associated to the situations of the
situation calculus.

3. They can be seen as usual database tables whose entries have an additional state stamp that is not stored in
the extensional databases. In the knowledge representation literature they are usually called“fluents.” States
are used for distinguishing the successive snapshots of the database.

4. In this paper, a“database specification” always means a specification of the dynamics of a database.
5. Dynamic integrity constraints are usually of this form, but the results we will present in this paper still hold

if we admit more involved quantifications on several states, related by the accessibility relation.
6. This is not a limitation if, as in Chomicki (1995), one is interested in somefixed dynamic integrity constraints

only, but not in arbitrary temporal queries, as we are.
7. We should use new predicates, sayEmp(., .) instead ofEmp(., ., .), but there should be no confusion.
8. The last two operators can be defined in terms of thefirst two by♦ϕ := Truesinceϕ, and�ϕ := ¬♦¬ϕ.
9. We say that a sequence of actionsT = [ A1, . . . , An] is legal if Poss(A1, S0), Poss(A2, do(A1, S0)), . . . ,

Poss(An, do([ A1, . . . , An−1], S0)).
10. Notice that, for afixed value of̄x, Rϕ(x̄, t,do(a, s)) could be true for many values oft , if ψ(x̄) was true many

times in the past.
11. Our methodology allows us to have as�0 something more general than a relational database, e.g. an initial

database containing more complexfirst order formulas. Nevertheless, as shown in Lin et al. (1997) pro-
gressing the database of this case, in particular, the historical auxiliary views, might become a very complex
process.
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