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Abstract. Specifications of XML documents typically consist of typing
information (for example, a DTD), and integrity constraints (for exam-
ple, keys and foreign keys). We show that combining the two may lead
to seemingly reasonable specifications that are nevertheless inconsistent:
there is no XML document that both conforms to the DTD and satis-
fies the constraints. We then survey results on the complexity of consis-
tency checking, and show that, depending on the classes of DTDs and
constraints involved, it ranges from linear time to undecidable. Further-
more, we show that for some of the most common classes of specifications
checking consistency is intractable.

1 Introduction

Although a number of dependency formalisms were developed for relational
databases, functional and inclusion dependencies are the ones used most often.
In fact, two subclasses of functional and inclusion dependencies, namely, keys
and foreign keys, are most commonly found in practice. Both are fundamental to
conceptual database design, and are supported by the SQL standard [34]. They
provide a mechanism by which one can uniquely identify a tuple in a relation
and refer to a tuple from another relation. They have proved useful in update
anomaly prevention, query optimization and index design [1, 41].

XML (eXtensible Markup Language [11]) has become the prime standard
for data exchange on the Web. XML data typically originates in databases. If
XML is to represent data currently residing in databases, it should support keys
and foreign keys, which are an essential part of the semantics of the data. A
number of key and foreign key specifications have been proposed for XML, e.g.,
the XML standard (Document Type Definition, DTD) [11], XML Data [31] and
XML Schema [40]. Keys and foreign keys for XML are important in, among
other things, query optimization [37], data integration [7, 8, 22, 27], and in data
transformations between XML and database formats [9, 18, 25, 26, 32, 38, 39].

XML data usually comes with a DTD1 that specifies how a document is
organized. Thus, a specification of an XML document may consist of both a DTD

1 Throughout the chapter, by a DTD we mean its type specification; we ignore its
ID/IDREF constraints since their limitations have been well recognized [12, 24].
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and a set of integrity constraints, such as keys and foreign keys. A legitimate
question then is whether such a specification is consistent, or meaningful: that
is, whether there exists an XML document that both satisfies the constraints
and conforms to the DTD.

In the relational database setting, such a question would have a trivial answer:
one can write arbitrary (primary) key and foreign key specifications in SQL,
without worrying about consistency. However, DTDs (and other schema speci-
fications for XML) are more complex than relational schema: in fact, XML docu-
ments are typically modeled as node-labeled trees, e.g., in XSLT [19], XQuery [10],
XML Schema [40], XPath [20] and DOM [3]. Consequently, DTDs may interact
with keys and foreign keys in a rather nontrivial way, as shown in the following
examples.

Example 1. As a simple example, consider the DTD given below:

<!ELEMENT db (foo)>
<!ELEMENT foo (foo)>

Observe that there exists no finite XML tree conforming to this DTD, and
hence this specification – that consists only of a DTD and no constraints – is
inconsistent. �

Example 2. To illustrate the interaction between XML DTDs and key/foreign
key constraints, consider a DTD D, which specifies a (nonempty) collection of
teachers:

<!ELEMENT teachers (teacher+)>
<!ELEMENT teacher (teach, research)>
<!ELEMENT teach (subject, subject)>

It says that a teacher teaches two subjects. Here we omit the descriptions of
elements whose type is string (i.e., PCDATA in XML).

Assume that each teacher has an attribute name and each subject has an
attribute taught by. Attributes are single-valued. That is, if an attribute l is
defined for an element type τ in a DTD, then in a document conforming to the
DTD, each element of type τ must have a unique l attribute with a string value.
Consider a set of unary key and foreign key constraints, Σ:

teacher .name → teacher ,

subject .taught by → subject ,
subject .taught by ⊆FK teacher .name.

That is, name is a key of teacher elements, taught by is a key of subject
elements and it is also a foreign key referencing name of teacher elements. More
specifically, referring to an XML tree T , the first constraint asserts that two
distinct teacher nodes in T cannot have the same name attribute value: the
(string) value of name attribute uniquely identifies a teacher node. It should
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.  .  .

.  .  .
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teacher

research

“Web DB”

teach
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“Joe”
@name

”XML” @taught by
“Joe”

@taught by“DB”

subject

Fig. 1. An XML tree conforming to D

be mentioned that two notions of equality are used in the definition of keys: we
assume string value equality when comparing name attribute values, and node
identity when it comes to comparing teacher elements. The second key states
that the taught by attribute value uniquely identifies a subject node in T . The
third constraint asserts that for any subject node x, there is a teacher node y
in T such that the taught by attribute value of x equals the name attribute value
of y. Since name is a key of teacher, the taught by attribute of any subject
node refers to a unique teacher node.

Obviously, there exists an XML tree conforming to D, as shown in Figure 1.
However, there is no XML tree that both conforms to D and satisfies Σ. To see
this, let us first define some notation. Given an XML tree T and an element
type τ , we use ext(τ) to denote the set of all the nodes labeled τ in T . Similarly,
given an attribute l of τ , we use ext(τ.l) to denote the set of l attribute values
of all τ elements. Then immediately from Σ follows a set of dependencies:

|ext(teacher .name)| = |ext(teacher)|,
|ext(subject .taught by)| = |ext(subject)|,
|ext(subject .taught by)| ≤ |ext(teacher .name)|,

where | · | is the cardinality of a set. Therefore, we have

|ext(subject)| ≤ |ext(teacher)|. (1)

On the other hand, the DTD D requires that each teacher must teach two
subjects. Since no sharing of nodes is allowed in XML trees and the collection
of teacher elements is nonempty, from D follows:

1 < 2 · |ext(teacher)| = |ext(subject)|. (2)
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Thus |ext(teacher)| < |ext(subject)|. Obviously, (1) and (2) contradict each
other and as an immediate result, there exists no XML document that both
satisfies Σ and conforms to D. In particular, the XML tree in Figure 1 violates
the key subject .taught by → subject . �

This example demonstrates that a DTD may impose dependencies on the
cardinalities of certain sets of objects in XML trees. These cardinality constraints
interact with keys and foreign keys. More specifically, keys and foreign keys
also enforce cardinality constraints that interact with those imposed by DTD.
This makes the consistency analysis of keys and foreign keys for XML far more
intriguing than its relational counterpart.

The constraints in this example are fairly simple: there is an immediate anal-
ogy between such XML constraints and relational keys and foreign keys. There
have been a number of proposals for supporting more powerful keys and foreign
keys for XML (e.g., [11, 12, 40, 31]). Not surprisingly, the interaction between
DTDs and those complicated XML constraints is more involved.

In light of this we are interested in the following family of the consistency (or
satisfiability) problems, where C ranges over classes of integrity constraints:

PROBLEM : SAT(C).
INPUT : A DTD D, a set Σ of C-constraints.
QUESTION : Is there an XML document that conforms to

D and satisfies Σ?

In other words, we want to validate XML specifications statically, at compile-
time. The main reason is twofold: first, complex interactions between DTDs
and constraints are likely to result in inconsistent specifications, and second, an
alternative dynamic approach to validation (simply check a document to see if
it conforms to the DTD and satisfies the constraints) would not tell us whether
repeated failures are due to a bad specification, or problems with the documents.

This chapter presents the complexity of the consistency analysis of XML
specifications. We consider DTDs and a variety of XML keys and foreign keys
commonly encountered in real-life XML specifications.

The next section gives a brief introduction to XML DTDs and XML docu-
ments. It is followed by the definitions of two basic forms of XML constraints,
namely, absolute constraints that hold in the entire document, and relative con-
straints that only hold in a part of the document. Section 4 is devoted to the
consistency analyses of XML specifications with absolute constraints, and Sec-
tion 5 considers relative constraints. Extensions of the basic XML constraints
by means of path expressions (regular expressions and XPath [20]), such as
constraints proposed by XML Schema [40], are treated in Section 6. Finally,
Section 7 identifies open problems for further study, and provides references to
the original papers.
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2 DTDs and XML Trees

In this section, we present a formalism of XML DTDs [11] and review the XML
tree model.

Document Type Definition. We formalize the notion of DTDs as follows
(cf. [11, 15, 35, 23]).

Definition 1. A DTD (Document Type Definition) is defined to be D = (E, A,
P , R, r), where:

– E is a finite set of element types;
– A is a finite set of attributes, disjoint from E;
– for each τ ∈ E, P (τ) is a regular expression α, called the element type

definition of τ :

α ::= S | τ ′ | ε | α|α | α, α | α∗,

where S denotes the string type, τ ′ ∈ E, ε is the empty word, and “|”, “,”
and “∗” denote union, concatenation, and the Kleene closure, respectively.
In this chapter we also use the following shorthands: α+ for (α, α∗) and α?
for (ε|α). We refer to the set of E types appearing in P (τ) as the alphabet
of P (τ).

– for each τ ∈ E, R(τ) is a set of attributes in A;
– r ∈ E and is called the element type of the root. �

We normally denote element types by τ and attributes by l, and assume that
r does not appear in P (τ) for any τ ∈ E. We also assume that each τ in E \ {r}
is connected to r, i.e., either τ appears in P (r), or it appears in P (τ ′) for some
τ ′ that is connected to r.

Example 3. Let us consider the DTD D given in Example 2. In our formalism,
D can be represented as (E, A, P, R, r), where E = {teachers, teacher , teach,
research, subject}, A = {name, taught by}, r = teachers and P , R are as follows:

P (teachers) = teacher+ R(teachers) = ∅
P (teacher) = teach, research R(teacher) = {name}
P (teach) = subject , subject R(teach) = ∅
P (subject) = S R(subject) = {taught by}
P (research) = S R(research) = ∅

�

XML Trees. An XML document is typically modeled as a node-labeled tree.
Below we describe valid XML documents w.r.t. a DTD, along the same lines as
XQuery [10], XML Schema [40] and DOM [3].

Definition 2. Let D = (E, A, P, R, r) be a DTD. An XML tree T conforming
to D, written T |= D, is defined to be (V, lab, ele, att, val, root), where
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– V is a finite set of nodes;
– lab is a function that maps each node in V to a label in E ∪ A ∪ {S}; a node

v ∈ V is called an element of type τ if lab(v) = τ and τ ∈ E, an attribute
if lab(v) ∈ A, and a text node if lab(v) = S;

– ele is a function that for any τ ∈ E, maps each element v of type τ to a
(possibly empty) list [v1, ..., vn] of elements and text nodes in V such that
lab(v1) . . . lab(vn) is in the regular language defined by P (τ);

– att is a partial function from V ×A to V such that for any v ∈ V and l ∈ A,
att(v, l) is defined iff lab(v) = τ , τ ∈ E and l ∈ R(τ);

– val is a partial function from V to string values such that for any node
v ∈ V , val(v) is defined iff lab(v) = S or lab(v) ∈ A;

– root is the root of T : root ∈ V and lab(root) = r.

For any node v ∈ V , if ele(v) is defined, then the nodes v′ in ele(v) are
called the subelements of v. For any l ∈ A, if att(v, l) = v′, then v′ is called an
attribute of v. In either case we say that there is a parent-child edge from v to
v′. The subelements and attributes of v are called its children. The graph defined
by the parent-child relation is required to be a rooted tree. �

Intuitively, V is the set of nodes of the tree T . The mapping lab labels every
node of V with a symbol (tag) from E ∪ A ∪ {S}. Text nodes and attributes are
leaves. For an element x of type τ , the functions ele and att define the children
of x, which are partitioned into subelements and attributes according to P (τ)
and R(τ) in the DTD D. The subelements of x are ordered and their labels
satisfy the regular expression P (τ). In contrast, its attributes are unordered and
are identified by their labels (names). The function val assigns string values
to attributes and text nodes. We consider single-valued attributes. That is, if
l ∈ R(τ) then every element of type τ has a unique l attribute with a string
value. Since T has a tree structure, sharing of nodes is not allowed in T .

For example, Figure 1 depicts an XML tree valid w.r.t. the DTD given in
Example 2.

Our model is simpler than the models of XQuery [10] and XML Schema [40]
as DTDs support only one basic type (PCDATA or string) and do not have com-
plex type constructs. Furthermore, we do not have nodes representing names-
paces, processing instructions and references. These simplifications allow us to
concentrate on the essence of the DTD/constraint interaction. It should further
be noticed that they do not affect the lower bounds results in the chapter. It is
also worth mentioning that we consider ordered XML trees in this paper, but
removal of ordering does not affect the semantics of XML constraints and the
complexity of their consistency and implication analyses.

Notation. In this chapter, we also use the following notation. Referring to an
XML tree T , if x is a τ element in T and l is an attribute in R(τ), then x.l denotes
the l attribute value of x, i.e., x.l = val(att(x, l)). If X is a list [l1, . . . , ln] of
attributes in R(τ), then x[X] = [x.l1, . . . , x.ln]. We write |S| for the cardinality
of a set S.

Given a DTD D = (E, A, P, R, r) and element types τ, τ ′ ∈ E, a string
τ1.τ2. · · · .τn over E is a path in D from τ to τ ′ if τ1 = τ , τn = τ ′ and for
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each i ∈ [2, n], τi is a symbol in the alphabet of P (τi−1). Moreover, we define
Paths(D) = {p | there is τ ∈ E such that p is a path in D from r to τ}.

We say that a DTD is non-recursive if Paths(D) is finite, and recursive oth-
erwise. We also say that D is a no-star DTD if the Kleene star does not occur in
any regular expression P (τ) (note that this is a stronger restriction than being
∗-free, which is a well-accepted concept with a standard definition [42]: a regular
expression without the Kleene star yields a finite language, while the language
of a ∗-free regular expression may still be infinite as it allows boolean operators
including complement).

3 Integrity Constraints for XML

We consider two forms of constraints for XML: absolute constraints that hold on
the entire document, denoted by AC, and relative constraints that hold on certain
sub-documents, denoted by RC. Below we define both classes of constraints. A
variation of AC using regular expressions will be defined in Section 6.1.

3.1 Absolute Keys and Foreign Keys

A class of absolute keys and foreign keys, denoted by AC∗,∗
K ,FK (we shall ex-

plain the notation shortly), is defined for element types as follows. An AC∗,∗
K ,FK

constraint ϕ over a DTD D = (E, A, P, R, r) has one of the following forms:

– Key : τ [X] → τ , where τ ∈ E and X is a nonempty set of attributes in R(τ).
An XML tree T satisfies this constraint, denoted by T |= τ [X] → τ , if

∀x, y ∈ ext(τ) (x[X] = y[X] → x = y).

– Foreign key : τ1[X] ⊆FK τ2[Y ], where τ1, τ2 ∈ E, X and Y are nonempty lists
of attributes in R(τ1) and R(τ2), respectively, and |X| = |Y |. This constraint
is satisfied by a tree T , denoted by T |= τ1[X] ⊆FK τ2[Y ], if T |= τ2[Y ] → τ2,
and in addition

∀x ∈ ext(τ1) ∃ y ∈ ext(τ2) (x[X] = y[Y ]).

That is, τ [X] → τ says that the X-attribute values of a τ element uniquely
identify the element in ext(τ), and τ1[X] ⊆FK τ2[Y ] says that the Y -attribute
values of a τ2 element uniquely identify the element in ext(τ2) and the list of
X-attribute values of every τ1 node in T must match the list of Y -attribute
values of some τ2 node in T . We use two notions of equality to define keys: value
equality is assumed when comparing attributes, and node identity is used when
comparing elements. We shall use the same symbol ‘=’ for both, as it will never
lead to ambiguity. It is worth remarking that keys and foreign keys are defined
in terms of XML attributes, which are of the string type and can not be null
values.
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Constraints of AC∗,∗
K ,FK are generally referred to as multi-attribute constraints

as they may be defined with multiple attributes. An AC∗,∗
K ,FK constraint is said to

be unary if it is defined in terms of a single attribute; that is, |X| = |Y | = 1 in the
above definition. In that case, we write τ.l → τ for unary keys, and τ1.l1 ⊆FK
τ2.l2 for unary foreign keys. For example, the set of constraints considered in
Example 2 are unary. As in relational databases, we also consider primary keys:
for each element type, at most one key can be defined.

Example 4. To illustrate keys and foreign keys of AC∗,∗
K ,FK , let us consider a

DTD D1 = (E1, A1, P1, R1, r1), where E1 = {school , course, student , subject ,
enroll , name}, A1 = {student id , course no, dept}, r1 = school and P1, R1 are
as follows:

P1(school) = course∗, student∗ R1(school) = ∅
P1(course) = subject , enroll∗ R1(course) = {dept , course no}
P1(student) = name R1(student) = {student id}
P1(subject) = S R1(subject) = ∅
P1(enroll) = ε R1(enroll) = {student id}
P1(name) = S R1(name) = ∅
Typical AC∗,∗

K ,FK constraints over D1 include:

student .student id → student ,
course[dept , course no] → course,

enroll .student id ⊆FK student .student id ,

The first two constraints are keys in AC∗,∗
K ,FK and the last constraint is a

foreign key. The first and the last constraint are unary. �

We shall use the following notation for subclasses of AC∗,∗
K ,FK : subscripts

K and FK denote keys and foreign keys, respectively. When the primary key
restriction is imposed, we use subscript PK instead of K. The superscript ‘∗’
denotes multi-attribute, and ‘1’ means unary. The first of these superscripts
refers to keys, and the second to foreign keys.

In this chapter we shall be dealing with the following subclasses of AC∗,∗
K ,FK :

– AC∗,1
K ,FK is the class of multi-attribute keys and unary foreign keys;

– AC∗,1
PK ,FK is the class of primary multi-attribute keys and unary foreign keys;

– AC1,1
K ,FK is the class of unary keys and unary foreign keys;

– AC1,1
PK ,FK is the class of primary unary keys and unary foreign keys;

– AC∗
K is the class of multi-attribute keys.

Since every foreign key implicitly contains a key, the class AC1,∗
K ,FK of unary

keys and multi-attributes foreign keys is equal to AC∗,∗
K ,FK . Thus, we do not

consider AC1,∗
K ,FK in this chapter.
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3.2 Relative Keys and Foreign Keys

Since XML documents are hierarchically structured, one may be interested in
the entire document as well as in its sub-documents. The latter gives rise to
relative integrity constraints [12, 13], that only hold on certain sub-documents.
Below we define relative keys and foreign keys. Recall that we use RC to denote
various classes of such constraints. We use the notation x ≺ y when x and y are
two nodes in an XML tree and y is a descendant of x.

A class of relative keys and foreign keys, denoted by RC∗,∗
K ,FK , is defined as

follows. An RC∗,∗
K ,FK constraint ϕ over a DTD D = (E, A, P, R, r) has one of

the following forms:

– Relative key : τ(τ1[X] → τ1), where τ, τ1 ∈ E and X is a nonempty set of
attributes in R(τ1). It says that relative to each node x of element type τ ,
the set of attributes X is a key for all the τ1 nodes that are descendants of
x. That is, if a tree T conforms to D, then T |= ϕ if

∀x ∈ ext(τ) ∀ y, z ∈ ext(τ1)
(
(x ≺ y) ∧ (x ≺ z) ∧ y[X] = z[X] → y = z

)
.

– Relative foreign key : τ(τ1[X] ⊆FK τ2[Y ]), where τ, τ1, τ2 ∈ E, X and Y are
nonempty lists of attributes in R(τ1) and R(τ2), respectively, and |X| = |Y |.
It indicates that for each x in ext(τ), X is a foreign key of descendants of x
of type τ1 that references a key Y of τ2-descendants of x. That is, T satisfies
ϕ, denoted by T |= τ(τ1[X] ⊆FK τ2[Y ]), if T |= τ(τ2[Y ] → τ2) and T satisfies

∀ x ∈ ext(τ) ∀ y ∈ ext(τ1)
(
(x ≺ y) →

∃ z ∈ ext(τ2) ((x ≺ z) ∧ y[X] = z[Y ])
)
.

Here τ is called the context type of ϕ. Note that absolute constraints are a
special case of relative constraints when τ = r: i.e., r(τ [X] → τ) is the usual
absolute key. As in the case of absolute constraints, a relative constraint is said
to be unary if it is defined in terms of a single attribute; that is, |X| = |Y | = 1 in
the above definition. In that case, we write τ(τ1.l → τ) for relative unary keys,
and τ(τ1.l1 ⊆FK τ2.l2) for relative unary foreign keys.

Example 5. Let us consider an XML document that for each country lists its
administrative subdivisions (e.g., into provinces or states), as well as capitals of
provinces. A DTD is given below and an XML document conforming to it is
depicted in Figure 2.

<!ELEMENT db (country+)>
<!ELEMENT country (province+, capital)>
<!ELEMENT province (capital)>

Each country has a nonempty sequence of provinces and a capital, and for
each province we specify its capital. Each country and province has an attribute
name.

Now suppose we want to define keys for countries and provinces. One can
state that country name is a key for country elements. It is also tempting to
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.  .  .

.  .  . .  .  .
capital

capital

province

capital

province capital@name
“Belgium”

country

db

country

@name
“Limburg”

“Maastricht”

“Brussels”
“Limburg”

@name

“Hasselt”

“Amsterdam”

“Holland”
@name

Fig. 2. An XML document storing information about countries and their administra-
tive subdivisions

say that name is a key for province, but this may not be the case. The example
in Figure 2 clearly shows that. Which Limburg one is interested in probably
depends on whether one’s interests are in database theory, or in the history of
the European Union. To overcome this problem, we define name to be a key for
province relative to a country; indeed, it is extremely unlikely that two provinces
of the same country would have the same name. Thus, our constraints are:

country.name → country,

country(province.name → province).

The first constraint is like those we have encountered before: it is an ab-
solute key, which applies to the entire document. The second one is a relative
constraint which is specified for sub-documents rooted at country elements. It
asserts that for each country, name is a key of province elements. Note that
relative constraints are somewhat related to the notion of keys for weak entities
in relational databases (cf. [41]). �

Following the notation for AC, we denote subclasses of RC as follows:

– RC∗,1
K ,FK : the class of relative multi-attribute keys and unary foreign keys;

– RC∗,1
PK ,FK : the class of relative primary multi-attribute keys and unary for-

eign keys;
– RC1,1

K ,FK : the class of relative unary keys and unary foreign keys;
– RC1,1

PK ,FK : the class of relative primary unary keys and unary foreign keys;
– RC∗

K : the class of relative multi-attribute keys.

As in the case of absolute constraints, every relative foreign key implicitly
contains a relative key and, hence, the class RC1,∗

K ,FK of unary keys and multi-
attributes foreign keys is equal to RC∗,∗

K ,FK . Thus, there is no need to consider
RC1,∗

K ,FK .
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4 Consistency of Absolute Keys and Foreign Keys

In this section we study the complexity of the consistency problem for absolute
keys and foreign keys. We show that, in general, this problem is undecidable,
and we identify several special cases of the problem that are decidable.

4.1 Undecidability of Consistency

The following result shows that in general it is not possible to verify statically
whether an XML specification is consistent.

Theorem 1. SAT(AC∗,∗
K ,FK ) is undecidable. �

This theorem was proved in [23] by showing that the implication problem
associated with keys and foreign keys in relational databases is undecidable, and
then reducing (the complement of) the implication problem to the consistency
problem for AC∗,∗

K ,FK constraints.
Given this negative result, it is desirable to find some restrictions on AC∗,∗

K ,FK
that lead to decidable cases. We identify several of these classes in the next
subsections.

4.2 Multi-attribute Keys

The reason for the undecidability of SAT(AC∗,∗
K ,FK ) is that the implication prob-

lem for functional and inclusion dependencies in relational databases can be
reduced to it [23]. However, this implication problem is known to be decidable
– in fact, in cubic time – for single-attribute inclusion dependencies [21], thus
giving us hope to get decidability for multi-attribute keys and unary foreign
keys.

While the decidability of the consistency problem for AC∗,1
K ,FK is still an open

problem, a closely-related problem, the consistency problem for multi-attribute
primary keys and unary foreign keys, SAT(AC∗,1

PK ,FK ), has shown to be decidable
[4]. Recall that a set Σ of AC∗,1

K ,FK constraints is said to be primary if for
each element type τ , there is at most one key in Σ defined for τ elements.
The decidability of SAT(AC∗,1

PK ,FK ) is shown by proving that, complexity-wise,
the problem is equivalent to a certain extension of integer linear programming
studied in [33]:

PROBLEM : PDE (Prequadratic Diophantine Equations).
INPUT : An integer n × m matrix A, a vector b ∈ Z

n, and a
set E ⊆ {1, . . . , m} × {1, . . . , m} × {1, . . . , m}.

QUESTION : Is there a vector x ∈ N
m such that Ax ≤ b and

xi ≤ xj · xk for all (i, j, k) ∈ E?

Note that for E = ∅, this is exactly the integer linear programming prob-
lem [36]. Thus, PDE can be thought of as integer linear programming extended
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with inequalities of the form x ≤ y · z among variables. It is therefore NP-hard,
and [33] proved an NEXPTIME upper bound for PDE. The exact complexity of
the problem remains unknown.

Recall that two problems P1 and P2 are polynomially equivalent if there
are PTIME reductions from P1 to P2 and vice versa. It is shown in [4] that
SAT(AC∗,1

PK ,FK ) and PDE are polynomially equivalent. The following theorem is
an immediate consequence of this result.

Theorem 2. SAT(AC∗,1
PK ,FK ) is NP-hard, and can be solved in NEXPTIME. �

Obviously the exact complexity of SAT(AC∗,1
PK ,FK ) cannot be obtained with-

out resolving the corresponding question for PDE, which appears to be quite
hard [33].

The result of Theorem 2 can be generalized to disjoint AC∗,1
K ,FK constraints:

that is, a set Σ of AC∗,1
K ,FK constraints in which for any two keys τ [X] → τ and

τ [Y ] → τ (on the same element type τ) in Σ, X ∩ Y = ∅. The proof of Theorem
2 applies almost verbatim to show the following.

Corollary 1. The restriction of SAT(AC∗,1
K ,FK ) to disjoint constraints is NP-

hard, and can be solved in NEXPTIME. �

4.3 Unary Keys and Foreign Keys

One important subclass of AC∗,∗
K ,FK is AC1,1

K ,FK , the class of unary keys and
unary foreign keys. A cursory examination of existing XML specifications reveals
that most keys and foreign keys are single-attribute constraints, i.e., unary. In
particular, in XML DTDs, one can only specify unary constraints with ID and
IDREF attributes.

The exact complexity of SAT(AC1,1
K ,FK ) was established in [23] by showing

that this problem is polynomially equivalent to linear integer programming [36]:

PROBLEM : Linear Integer Programming.
INPUT : An integer n × m matrix A and vector b ∈ Z

n.
QUESTION : Is there a vector x ∈ N

m such that Ax ≤ b?

Given that linear integer programming is known to be NP-complete, the
following theorem is an immediate consequence of the polynomial equivalence of
the two problems.

Theorem 3. SAT(AC1,1
K ,FK ) is NP-complete. �

Since all the flavors of the consistency problem presented so far are in-
tractable, we next want to find suitable restrictions that admit polynomial-time
algorithms. For instance, one might think that the primary key restriction would
simplify the consistency analysis of AC1,1

K ,FK constraints. Unfortunately, as shown
in [23], this is not the case.

Theorem 4. SAT(AC1,1
PK ,FK ) remains NP-complete. �
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A more natural way of putting restrictions appears to be by specifying what
kinds of regular expressions are allowed in the DTDs. However, the hardness re-
sult can be proved even for DTDs with neither recursion nor the Kleene star [23].
In the rest of this section, we show that the hardness result for SAT(AC1,1

K ,FK )
is very robust, and withstands severe restrictions on constraints and DTDs:
namely, a bound on the total number of constraints, and a bound on the depth
of the DTD. However, imposing both of these bounds simultaneously makes
SAT(AC1,1

K ,FK ) tractable.
Recall that for a non-recursive DTD D, the set Paths(D) is finite. We define

the depth of a non-recursive DTD D as maxp∈Paths(D) length(p), denoted by
Depth(D). By a depth-d SAT(AC1,1

K ,FK ) we mean the restriction of SAT(AC1,1
K ,FK )

to pairs (D, Σ) with Depth(D) ≤ d. By a k-constraint SAT(AC1,1
K ,FK ) we mean

the restriction of the consistency problem to pairs (D, Σ) where |Σ| ≤ k. A
k-constraint depth-d SAT(AC1,1

K ,FK ) is a restriction to (D, Σ) with |Σ| ≤ k and
Depth(D) ≤ d. The following theorem was proved in [4].

Theorem 5. For non-recursive no-star DTDs:

a) both k-constraint SAT(AC1,1
K ,FK ) and depth-d SAT(AC1,1

K ,FK ) are NP-hard, for
k ≥ 2 and d ≥ 2.

b) for any fixed k, d > 0, the k-constraint depth-d SAT(AC1,1
K ,FK ) is solvable in

NLOGSPACE. �

4.4 Linear Time Decidable Cases

While the general consistency problem is undecidable, it is possible to identify
some decidable cases of low complexity. The first one is checking whether a DTD
has a valid XML tree. This is a special case of the consistency problem, namely,
when the given set of AC∗,∗

K ,FK constraints is empty. A more interesting special
case involves keys only.

It was shown in [23] that the problem of verifying whether a given DTD
has a valid XML tree can be reduced to the emptiness problem for a context
free grammar. Given that this reduction can be computed in linear time and
the emptiness problem for a context free grammar can be solved in linear time
(cf. [30]), the problem of checking whether a DTD has a valid XML tree can
be solved in linear time. It was also shown in [23] that given any DTD D and
any set Σ of keys in AC∗

K over D, Σ can be satisfied by an XML tree valid
w.r.t. D if and only if D has a valid XML tree. Thus, the following theorem is
a consequence of our previous discussion.

Theorem 6. The following problems are decidable in linear time:

a) Given any DTD D, whether there exists an XML tree valid w.r.t. D.
b) SAT(AC∗

K). �



28 M. Arenas, W. Fan, and L. Libkin

4.5 The Implication Problem

Another classical problem, which is closely related to the consistency problem,
is the implication problem for a class of constraints C, denoted by Impl(C). Here,
we consider it in the presence of DTDs. We write (D, Σ) � φ if for every XML
tree T , T |= D and T |= Σ imply T |= φ. The implication problem Impl(C) is to
determine, given any DTD D and any set Σ ∪ {φ} of C constraints, whether or
not (D, Σ) � φ.

The simple result below gives us lower bounds for the complexity of impli-
cation, if we know the complexity of the consistency problem. Recall that for a
complexity class K, coK stands for {P̄ | P ∈ K}.

Proposition 1. For any class C of XML constraints that contains AC1,1
PK ,FK , if

SAT(C) is K-hard for some complexity class K that contains DLOGSPACE, then
Impl(C) is coK-hard. �

Along the same lines as Section 4.3 one can define k-constraint Impl(AC1,1
K ,FK )

and depth-d Impl(AC1,1
K ,FK ). Proposition 1 in fact remains intact under the depth-

d and the k-constraint restrictions for d ≥ 2 and k ≥ 2. It has also been
shown [23] that Impl(AC∗

K) is decidable in linear time. From these and the lower-
bounds established for the consistency problem, we derive:

SAT(AC1,1
K ,FK )

Undecidable
SAT(AC∗,∗

K ,FK )

SAT(AC∗,1
K ,FK )

SAT(AC∗,1
PK ,FK )SAT(AC∗

K)

SAT(AC1,1
PK ,FK )depth-d SAT(AC1,1

K ,FK )

k-constraint depth-d SAT(AC1,1
K ,FK )

NP-complete
k-constraint SAT(AC1,1

K ,FK )

LINEAR TIME NP-complete

NP-complete NP-complete

NLOGSPACE

NP-hard, in NEXPTIME

NP-hard

Fig. 3. A summary of the known complexity bounds for the consistency problem for
absolute keys and foreign keys
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Corollary 2. For the implication problem for XML constraints,

– Impl(AC∗,∗
K ,FK ) is undecidable;

– both k-constraint Impl(AC1,1
K ,FK ) and depth-d Impl(AC1,1

K ,FK ) are coNP-hard
for d ≥ 2 and k ≥ 2, and so is Impl(AC∗,1

PK ,FK );
– Impl(AC∗,1

PK ,FK ) is coNP-hard, and so are Impl(AC∗,1
K ,FK ) (and its restriction

to disjoint constraints) and Impl(AC1,1
PK ,FK );

– Impl(AC∗
K) is in linear time. �

4.6 Summary

Figure 3 shows a summary of the lower and upper bounds for the consis-
tency problem for absolute keys and foreign keys. Note that in many cases
we have matching lower and upper bounds. Also notice that for k-constraint
SAT(AC1,1

K ,FK ), depth-d SAT(AC1,1
K ,FK ) and k-constraint depth-d SAT(AC1,1

K ,FK )
we are only considering non-recursive no-star DTDs.

5 Consistency of Relative Keys and Foreign Keys

In this section we study the consistency problem for relative keys and foreign
keys. Relative constraints appear to be quite useful for capturing information
about (hierarchical) XML documents that cannot possibly be specified by abso-
lute constraints. However, it turns out that the complexity of their consistency
analysis is, in general, higher than the complexity of the consistency problem
for absolute constraints. In particular, we show that even for relative unary con-
straints the consistency problem is undecidable. In light of this negative result,
we also identify some special cases of this problem that are decidable.

5.1 Undecidability of Consistency Analysis

Given that RC∗,∗
K ,FK contains AC∗,∗

K ,FK as a proper subclass, from Theorem 1 we
obtain the following corollary.

Corollary 3. SAT(RC∗,∗
K ,FK ) is undecidable. �

Since SAT(AC∗,1
PK ,FK ), the consistency problem associated with absolute multi-

attribute keys and unary foreign keys, is decidable, one would be tempted to think
that SAT(RC∗,1

PK ,FK ), the consistency problem for relative multi-attribute keys
and unary foreign keys, is also decidable. Even more, given that SAT(AC1,1

K ,FK )
is NP-complete, one would be tempted to believe that SAT(RC1,1

K ,FK ), the consis-
tency problem for relative unary keys and foreign keys, must be decidable. How-
ever, it was shown in [4] that SAT(RC1,1

K ,FK ) is not decidable, even if the primary
key restriction is imposed.

Theorem 7. SAT(RC1,1
PK ,FK ) is undecidable. �
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chapter*
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@title
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(a) A hierarchical structure (b) A non-hierarchical structure

Fig. 4. Two schemas for storing data in a library

This undecidability was established by reduction from the Hilbert’s 10th problem
[29], a well known undecidable problem.

Corollary 4. SAT(RC∗,1
K ,FK ), SAT(RC∗,1

PK ,FK ) and SAT(RC1,1
K ,FK ) are undecid-

able. �

5.2 Decidable Hierarchical Constraints

Often, relative constraints for XML documents have a hierarchical structure.
For example, to store information about books we can use the structure given
in Figure 4 (a), with four relative constraints:

library(book .isbn → book), (3)
book(author .name → author), (4)
book(chapter .number → chapter), (5)
chapter(section.title → section). (6)

(3) says that isbn is a key for books, (4) says that two distinct authors of the
same book cannot have the same name and (5) says that two distinct chapters
of the same book cannot have the same number. Constraint (6) asserts that two
distinct sections of the same chapter cannot have the same title.

This specification has a hierarchical structure: there are three context types
(library, book, and chapter), and if a constraint restricts one of them, then it does
not impose a restriction on the others. For instance, (3) imposes a restriction
on the children of library, but it does not restrict the children of book. To verify
if there is an XML document conforming to this schema, we can separately
solve three consistency problems for absolute constraints: one for the subschema
containing the element types library, book and isbn; another for book, author,
name, chapter and number; and the last one for chapter, section, and title.
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On the other hand, the example in Figure 4 (b) does not have a hierarchical
structure. In this case, author info stores information about the authors of books,
and, therefore, the following relative foreign key is included:

library(author .name ⊆FK author info.name).

In this case, nodes of type author are restricted from context types library
and book. Thus, we cannot separate the consistency problems for nodes of types
library and book.

The notion of hierarchical relative constraints was introduced in [4]. Below
we introduce this notion via the notion of hierarchical DTDs and sets of rela-
tive constraints. Then, we show that the consistency problem for these kinds of
DTDs and sets of constraints is decidable and show that under some additional
restrictions, it is PSPACE-complete.

Let D = (E, A, P, R, r) be a non-recursive DTD and Σ be a set of RC1,1
K ,FK -

constraints over D. We say that τ ∈ E is a restricted type if τ = r or τ is the
context type of some Σ-constraint. A restricted node in an XML tree is a node
whose type is a restricted type. The scope of a restricted node x is the subtree
rooted at x consisting of: (1) all element nodes y that are reachable from x by
following some path τ1.τ2. · · · .τn (n ≥ 2) such that for every i ∈ [2, n − 1], τi

is not a restricted type, and (2) all the attributes of the nodes mentioned in
(1). For instance, a node of type book in the example shown in Figure 4 (a) is
a restricted node and its scope includes a node of type book and some nodes of
types author, name, chapter and number.

Given two restricted types τ1 and τ2, we say that τ1, τ2 are a conflicting pair
in (D, Σ) if the scopes of the nodes of types τ1 and τ2 are related by a foreign
key. Formally, τ1, τ2 ∈ E are a conflicting pair in (D, Σ) iff τ1 �= τ2 and (1) there
is a path in D from τ1 to τ2 and τ2 is the context type of some constraint in Σ;
and (2) there is τ3 ∈ E such that τ2 �= τ3 and there exists a path in D from τ2 to
τ3 and for some τ4 ∈ E, either τ1(τ3.l3 ⊆FK τ4.l4) or τ1(τ4.l4 ⊆FK τ3.l3) is in Σ.
As an example, library and book in Figure 4 (b) are a conflicting pair, whereas
they are not in Figure 4 (a).

If a specification (D, Σ) does not contain conflicting pairs, then (D, Σ) is said
to be hierarchical [4]. We define the language HRC1,1

K ,FK as {(D, Σ) | D is a non-
recursive DTD, Σ is a set of RC1,1

K ,FK -constraints and (D, Σ) is hierarchical}. In
this case, the input of SAT(HRC1,1

K ,FK ) is (D, Σ) ∈ HRC1,1
K ,FK , and the problem

is to determine whether there is an XML tree conforming to D and satisfying Σ.
It was shown in [4] that if a HRC1,1

K ,FK -specification is consistent, then a
tree conforming to D and satisfying Σ can be constructed hierarchically, never
looking at more than the scope of a single restricted node. More precisely, it was
shown in [4] that:

Theorem 8. SAT(HRC1,1
K ,FK ) is PSPACE-hard. The problem can be solved in

EXPSPACE. �

The exponential space upper bound can be lowered by imposing some further
conditions on the “geometry” of constraints involved: namely, that for any inclu-
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sion constraint τ(τ1.l1 ⊆FK τ2.l2), τ1.l1 and τ2.l2 are not too far from each other.
Formally, let D be a non-recursive DTD and Σ a set of RC1,1

K ,FK -constraints over
D such that (D, Σ) is hierarchical. Given d > 1, (D, Σ) is d-local if, whenever
τ1, τ2 are restricted types, τ2 is a descendant of τ1 and no other node on a path
from τ1 to τ2 is a context type of a Σ-constraint, then the length of that path is
at most d.

Let d-HRC1,1
K ,FK be the language {(D, Σ) | (D, Σ) ∈ HRC1,1

K ,FK and is d-
local}. It was shown in [4] that:

Theorem 9. For any d > 1, SAT(d-HRC1,1
K ,FK ) is PSPACE-complete. �

5.3 A Linear Time Decidable Case

As in the case of absolute keys, it can be shown that given any DTD D and any
set Σ of keys in RC∗

K over D, Σ can be satisfied by an XML tree valid w.r.t. D
if and only if D has a valid XML tree. Thus, the following theorem is analogous
to Theorem 6.

Theorem 10. SAT(RC∗
K) can be solved in linear time. �

SAT(RC1,1
K ,FK )

SAT(RC∗,1
K ,FK )

SAT(RC∗,1
PK ,FK )SAT(RC∗

K)

SAT(RC∗,∗
K ,FK )

SAT(RC1,1
PK ,FK )SAT(HRC1,1

K ,FK )

SAT(d-HRC1,1
K ,FK )

Undecidable

Undecidable

Undecidable UndecidableLINEAR TIME

UndecidablePSPACE-hard, in EXPSPACE

PSPACE-complete

Fig. 5. A summary of the complexity bounds for the consistency problem for relative
keys and foreign keys
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For implication of relative constraints, note that RC1,1
PK ,FK and HRC1,1

K ,FK

contain AC1,1
PK ,FK . Thus from Proposition 1 and the lower-bounds for consistency

analyses presented above. we derive:

Corollary 5. For implication of relative constraints,

– Impl(RC1,1
PK ,FK ) is undecidable, and so are Impl(RC∗,1

K ,FK ), Impl(RC∗,1
PK ,FK ),

Impl(RC1,1
K ,FK ) and Impl(AC∗,1

PK ,FK );
– Impl(HRC1,1

K ,FK ) is PSPACE-hard. �

5.4 Summary

Figure 5 shows a summary of the complexity for the consistency problem for
relative keys and foreign keys.

6 Consistency of Path-Expression Constraints

All the XML constraints that we have seen so far are defined for element types
and in terms of attributes. As XML data is hierarchically structured, it is com-
mon to find path expressions in query languages for XML (e.g., XQuery [10],
XSLT [19]). For the same reason, one is often interested in constraints specified
with path expressions, either regular expressions [12, 13] or XPath [20] expres-
sions [40]. In this section, we consider two classes of XML constraints defined
with path expressions, namely, an extension of absolute constraints with regular
expressions, and the class of constraints proposed by XML Schema [40] that is
an extension of absolute constraints with XPath expressions.

6.1 Consistency of Regular Expression Constraints

To capture the hierarchical nature of XML data, we extend AC∗,∗
K ,FK to define

absolute constraints on a collection of elements identified by a regular path
expression.

We define a regular (path) expression over a DTD D = (E, A, P, R, r) as
follows:

β ::= ε | τ | | β.β | β ∪ β | β∗,

where ε denotes the empty word, τ is an element type in E, ‘ ’ stands for wildcard
that matches any symbol in E and ‘.’, ‘∪’ and ‘∗’ denote concatenation, union
and Kleene closure, respectively. We assume that β is of the form r.β′ where β′

does not include r; thus, ‘ ’ is just a shorthand for E \ {r}. A regular expression
defines a language over the alphabet E, which will be denoted by β as well.

Recall that a path in a DTD is a list of E symbols, that is, a string in E∗. Any
pair of nodes x, y in an XML tree T with y a descendant of x uniquely determines
the path, denoted by ρ(x, y), from x to y. We say that y is reachable from x by
following a regular expression β over D, denoted by T |= β(x, y), iff ρ(x, y) ∈ β.
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For any fixed T , let nodes(β) stand for the set of nodes reachable from the root
by following the regular expression β: nodes(β) = {y | T |= β(root, y)}. Note
that for any element type τ ∈ E, nodes(r. ∗.τ) = ext(τ).

We now define the class ACreg
K ,FK of XML keys and foreign keys with reg-

ular expressions. Here we only consider unary constraints. An XML ACreg
K ,FK

constraint ϕ over a DTD D = (E, A, P, R, r) has one of the following forms:

– Key : β.τ.l → β.τ , where τ ∈ E, l ∈ R(τ) and β is a regular expression over
D. An XML tree T satisfies this constraint, denoted by T |= β.τ.l → β.τ , if

∀x, y ∈ nodes(β.τ) (x.l = y.l → x = y).

– Foreign key : β1.τ1.l1 ⊆FK β2.τ2.l2, where τ1, τ2 ∈ E, l1 ∈ R(τ1), l2 ∈ R(τ2)
and β1, β2 are regular expressions over D. An XML tree T satisfies this
constraint, denoted by T |= β1.τ1.l1 ⊆FK β2.τ2.l2, if T |= β2.τ2.l2 → β2.τ2
and

∀x ∈ nodes(β1.τ1) ∃ y ∈ nodes(β2.τ2) (x.l1 = y.l2).

In other words, an ACreg
K ,FK constraint β.τ.l → β.τ defines a key for the

set nodes(β.τ) of elements, i.e., all the elements reachable via the regular path
expression β.τ ; similarly, an ACreg

K ,FK constraint of the form β1.τ1.l1 ⊆FK β2.τ2.l2
defines a foreign key for the set nodes(β1.τ1) of elements that references elements
in the set nodes(β2.τ2).

Example 6. Consider the XML document depicted in Figure 6, which conforms
to the following DTD for schools:

<!ELEMENT r (students, courses, faculty, labs)>
<!ELEMENT students (student+)>
<!ELEMENT courses (cs340, cs108, cs434)>
<!ELEMENT faculty (prof+)>
<!ELEMENT labs (dbLab, pcLab)>
<!ELEMENT student (record)> /* similarly for prof
<!ELEMENT cs434 (takenBy+)> /* similarly for cs340, cs108
<!ELEMENT dbLab (acc+)> /* similarly for pcLab

Here we omit the descriptions of elements whose type is string (PCDATA).
Assume that each record element has an attribute id, each takenBy has an at-
tribute sid (for student id), and each acc (account) has an attribute num. One
may impose the following constraints over the DTD of that document:

r. ∗.(student ∪ prof ).record .id → r. ∗.(student ∪ prof ).record ,

r. ∗.cs434 .takenBy .sid ⊆FK r. ∗.student .record .id ,

r. ∗.dbLab.acc.num ⊆FK r. ∗.cs434 .takenBy .sid .

The first constraint says that id is a key for all records of students and pro-
fessors. The other constraints specify foreign keys, which assert that cs434 can
only be taken by students, and only students who are taking cs434 can have an
account in the database lab. �
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. . .. . .. . . . . .
. . .

. . .

record

@id

acc accrecordtakenBy takenBy

@num @num@id@sid @sid

r

courses labsfacultystudents

studentstudent dbLab pcLabprofprofcs108cs340 cs434

Fig. 6. An XML document

Both an upper and a lower bound for SAT(ACreg
K ,FK ) were established in

[4]. The lower bound already indicates that the problem is perhaps infeasible
in practice, even for very simple DTDs. Finding the precise complexity of the
problem remains open, and does not appear to be easy. In fact, even the current
proof of the upper bound is quite involved, and relies on combining the techniques
from [23] for coding DTDs and constraints as integer linear inequalities, and
from [2] for reasoning about constraints given by regular expressions by using
the product automaton for all the expressions involved in the constraints.

Theorem 11. SAT(ACreg
K ,FK ) is PSPACE-hard, and can be solved in NEXP-

TIME. �
The PSPACE-hardness of SAT(ACreg

K ,FK ) can be proved even for non-recursive
DTDs without the Kleene star [4].

Observe that ACreg
K ,FK is a proper extension of the class AC1,1

K ,FK of unary
constraints: substituting r. ∗.τ for τ in AC1,1

K ,FK constraints yields equivalent
ACreg

K ,FK constraints. Similarly, an extension of multi-attribute AC∗,∗
K ,FK con-

straints can be defined in terms of regular expressions, denoted by ACreg(∗,∗)
K ,FK .

The undecidability of the consistency problem for ACreg(∗,∗)
K ,FK is immediate from

Theorem 1.

For the implication analysis of regular-expression constraints, from Proposi-
tion 1 it follows immediately:

Corollary 6. Impl(ACreg
K ,FK ) is PSPACE-hard, and Impl(ACreg(∗,∗)

K ,FK ) is undecid-
able.

Observe that there are practical ACreg
K ,FK constraints that are not expressible

in AC1,1
K ,FK , e.g., the foreign keys given in Example 6 are not definable in AC1,1

K ,FK .
In other words, ACreg

K ,FK is strictly more expressive than AC1,1
K ,FK .
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6.2 Consistency of XML Schema Specifications

All the results shown so far are for DTDs and keys and foreign keys. These
days, the prime standard for specifying XML data is XML Schema [40]. It is
a rather rich language that supports specifications of both types and integrity
constraints. Its types subsume DTDs [11], and its constraints – even keys and
foreign keys – have a slightly different semantics from what has been primarily
studied in the database literature. In this section we investigate specifications
that consist of a DTD and a set of constraints with the semantics proposed by
XML Schema. We show that this little change of semantics complicates things
considerably, as far as consistency checking is concerned.

Example 7. Recall that given any DTD D and any set Σ of keys in AC∗
K (RC∗

K)
over D, Σ can be satisfied by an XML tree valid w.r.t. D if and only if D
has a valid XML tree. Thus, any XML specification (D, Σ) where D is non-
recursive and Σ is a set of keys in AC∗

K (RC∗
K) is consistent. We show here that

a specification in XML Schema may not be consistent even for non-recursive
DTDs in the absence of foreign keys.

Consider the following specification S = (D, Σ) for biomedical data, where
D is the following DTD:

<!ELEMENT seq (clone+)>
<!ELEMENT clone (DNA, gene)>
<!ELEMENT gene (DNA)>

and Σ contains only one key:

seq .clone. ∗.DNA → seq .clone.

The DTD describes a nonempty sequence of clone elements: each clone has a
DNA subelement and a gene subelement, and gene in turn has a DNA subelement,
while DNA carries text data (PCDATA). The key in Σ attempts to enforce the
following semantic information: there exist no two clone elements that have the
same DNA no matter where the DNA appears as their descendant. We note that the
syntax of XML Schema constraints (to be formally introduced later) is different
from the syntax for XML constraints presented so far in that it allows a regular
expression ( ∗.DNA in our example) to be the identifier of an element type.

This specification is inconsistent. XML Schema requires that for any XML
document satisfying a key, the identifier (that is, ∗.DNA in our example) must
exist and be unique. However, as depicted in Fig. 7, in any XML document that
conforms to the DTD D, a clone element must have two DNA descendants. Thus,
it violates the uniqueness requirement of the key in Σ. �

The goal of this section is to show that the interaction of types with integrity
constraints under the XML Schema semantics is more complicated than under
the usual semantics for XML constraints. To focus on the nature of the interac-
tion and to simplify the discussion, we first consider XML Schema specifications
in which the type is a DTD and the constraints are absolute keys. We show that
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gene

DNA DNA

clone clone

DNA geneDNA

. . .

seq

Fig. 7. An XML document conforming to the DTD D shown in Example 7

keys of XML Schema already suffice to demonstrate the complications caused
by the interaction between types and constraints.

Before showing the main result of the section, we need to define the syntax
and semantics of absolute keys for XML Schema specifications. Given a DTD
D = (E, A, P, R, r), a key over D is a constraint of the form

P [Q1, . . . , Qn] → P, (7)

where n ≥ 1 and P , Q1, . . . , Qn are regular expressions over the alphabet E ∪A.
If n = 1, then the key is called unary and is denoted by P.Q1 → P . Expression
P is called the selector of the key and is a regular expression conforming to the
following BNF grammar [40] (abusing the XPath syntax):

selector ::= path | path ∪ selector
path ::= r. ∗.sequence
sequence ::= τ | | sequence.sequence

Here τ ∈ E and ∗ represents any possible finite sequence of node labels. The
expressions Q1, . . . , Qn are called the fields of the key and are regular expressions
conforming to the following BNF grammar [40]:

field ::= path | path ∪ field
path ::= ∗.sequence.last | sequence.last
sequence ::= ε | τ | | sequence.sequence
last ::= τ | | @l | @

Here @ is a wildcard that matches any attribute and @l ∈ A. This grammar
differs from the one above in allowing the final step to match an attribute node.

Definition 3. Given an XML tree T = (V, lab, ele, att, val, root), T satisfies
the constraint P [Q1, . . . , Qn] → P , denoted by T |= P [Q1, . . . , Qn] → P , if

1) For each x ∈ nodes(P ) and i ∈ [1, n], there is exactly one node yi such that
T |= Qi(x, yi). Furthermore, lab(yi) ∈ A or lab(yi) = S.

2) For each x1, x2 ∈ nodes(P ), if y1
i , y2

i are the only nodes such that T |=
Qi(x1, y

1
i ) and T |= Qi(x2, y

2
i ) (i = 1, . . . , n), and val(y1

i ) = val(y2
i ) for

every i ∈ [1, n], then x1 = x2. �
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That is, P [Q1, . . . , Qn] → P defines a key for the set nodes(P ) of elements,
i.e., the nodes reachable from the root by following path P , by asserting that
the values of Q1, . . . , Qn uniquely identify the elements in nodes(P ). It further
asserts that starting from each element in nodes(P ) there is a unique label path
conforming to the regular expression Qi (i ∈ [1, n]).

Observe that condition 1 in the previous definition requires the uniqueness
and existence of the fields involved. For example, the XML tree depicted in Fig. 7
does not satisfy the key seq .clone. ∗.DNA → seq .clone because the uniqueness
condition imposed by the key is violated. Uniqueness conditions are required by
the XML Schema semantics, but they are not present in various earlier proposals
for XML keys coming from the database community [12, 13, 23, 4].

Since SAT(AC∗
K) and SAT(RC∗

K), the consistency problems for absolute and
relative keys, respectively, are decidable in linear time, one would be tempted
to think that the consistency problem for keys under the XML Schema seman-
tics can be solved efficiently. Somewhat surprisingly, it was shown in [5] that
this is not the case; the uniqueness and existence condition makes the problem
intractable, even for unary keys and very simple DTDs:

Theorem 12. The consistency problem is NP-hard for unary keys of the form
(7), even for non-recursive no-star DTDs. �

This result shows that the interaction of types and constraints under the
XML Schema semantics is so intricate that the consistency check of XML Schema
specifications is infeasible.

7 Selected Topics and Bibliographic Remarks

This chapter has shown that the consistency analysis of XML specifications with
DTDs and constraints (keys, foreign keys) introduces new challenges and is in
sharp contrast with its trivial counterpart for relational databases. Indeed, in
the presence of foreign keys, compile-time verification of consistency for XML
specifications is usually infeasible: the complexity ranges from NP-hard to unde-
cidable. Worse still, the semantics of XML-Schema constraints makes the con-
sistency analysis of specifications even more intricate.

These negative results suggest that one develops efficient approximate al-
gorithms for static checking of XML specifications. One open question is to
find performance guarantees for the approximate algorithms to prevent excessive
overkill of consistent specifications. The techniques of [4, 5, 23] for establishing
the complexity results of this chapter may help develop such performance guar-
antees; they may also help study consistency of individual XML specifications
with types and constraints.

Another open problem is to close the complexity gaps. However, these are
by no means trivial: for example, SAT(AC∗,1

PK ,FK ) was proved to be equivalent
to a problem related to Diophantine equations whose exact complexity remains
unknown. In the cases of SAT(ACreg

K ,FK ) and SAT(HRC1,1
K ,FK ), we think that it is
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more likely that our lower bounds correspond to the exact complexity of those
problems. However, the algorithms are quite involved, and we do not yet see a
way to simplify them to prove the matching upper bounds.

Bibliographic Notes. The complexity results of this chapter are taken from [4,
5, 23]: the results for the consistency analysis of absolute constraints were mostly
established by [23]; relative constraints were studied in [4]; and a full treatment
of XML-Schema specifications was given in [5].

Keys, foreign keys and the more general inclusion and functional dependen-
cies have been well studied for relational databases (cf. [1]). The interaction be-
tween cardinality constraints and database schemas has been studied for object-
oriented [16, 17] and extended relational data models [28]. These interactions
are quite different from what we explore in this chapter because XML DTDs are
defined in terms of extended context free grammars and they yield cardinality
constraints more complex than those studied for traditional databases.

A number of specifications for XML keys and foreign keys have been pro-
posed, e.g., XML Schema [40], XML-Data [31]. The notion of relative constraints
was introduced by [12], which was further studied in [13]. It is worth remarking
that although through the use of ID attributes in a DTD [11], one can uniquely
identify an element within an XML document, it is not clear that ID attributes
are intended to be used as keys rather than internal “pointers”. For example,
ID attributes are not scoped. In contrast to keys, they are unique within the
entire document rather than among a designated set of elements. As a result,
one cannot, for example, allow a student (element) and a person (element) to
use the same SSN as an ID. Moreover using ID attributes as keys means that
we are limiting ourselves to unary keys. Finally, one can specify at most one ID
attribute for an element type, while in practice one may want more than one
key.

Other constraints for semi-structured data were studied in, e.g., [2, 14]. In
particular, [14] also studied the interaction between path constraints and tra-
ditional database schemas, which are quite different from XML constraints and
DTDs considered here. Functional dependencies, an extension of XML keys, were
recently proposed to define a normal form for XML documents [6].
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