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Abstract

We discuss incremental validation of XML documents
with respect to DTDs and XML Schema definitions. We con-
sider insertions and deletions of subtrees, as opposed to leaf
nodes only, and we also consider the validation of ID and
IDREF attributes. For arbitrary schemas, we give a worst-
case �������	� time and linear space algorithm, and show
that it often is far superior to revalidation from scratch. We
present two classes of schemas, which capture most real-
life DTDs, and show that they admit a logarithmic time
incremental validation algorithm that, in many cases, re-
quires only constant auxiliary space. We then discuss an
implementation of these algorithms that is independent of,
and can be customized for different storage mechanisms
for XML. Finally, we present extensive experimental results
showing that our approach is highly efficient and scalable.

1. Introduction

The problems of storing and querying XML documents
have attracted a great deal of interest. Other aspects of XML
data management, however, have not yet been satisfactorily
explored; among them is the problem of checking that docu-
ments are valid with respect to their specifications, and that
they remain valid after updates. Both integrity checking and
incremental integrity checking are classical topics in the re-
lational setting (see, e.g., [6, 5] and references therein). In
the XML context, researchers are just beginning to look at
update languages [17], validation [14], and incremental val-
idation of specifications [11, 16]. In this paper, we propose
and evaluate efficient incremental validation algorithms for
XML data.

One popular form of XML document specification is the
Document Type Definition (DTD). A DTD 
 is a gram-
mar that defines a set of documents ���
�� ; each document
in ����
�� is said to be valid with respect to 
 . The val-
idation problem is: given a DTD 
 and an XML docu-
ment � , is it the case that �������
�� ? When a valid doc-

ument is updated, it must be revalidated; let U be some
update operation. The incremental validation problem is:
given �������
�� , is it the case that �������������
�� ?

We start by discussing the validation problem with re-
spect to DTDs in Section 2. We assume, following the XML
standard, that the regular expressions used in DTDs are 1-
unambiguous; informally, this means that documents can be
parsed with a single symbol lookahead. Although the liter-
ature tends to view XML documents as trees, the existence
of node identifiers (called ID attributes) and references to
identifiers (called IDREF attributes) turns these trees into
graphs. We separate the validation problem into two parts:
validating the structural constraints imposed by the DTD,
which amounts to parsing; and validating the attribute con-
straints, which amounts to checking that the ID attributes
specified in the DTD have unique values across the docu-
ment and that the IDREF references do not dangle.

In Section 3, we show that both structural and attribute
constraints can be validated in � �!���"�#�$�%� time and linear
space. Then we show that, not surprisingly, incremental val-
idation can be highly beneficial by avoiding complete reval-
idation after each update. We start by giving a general in-
cremental validation algorithm with respect to a reasonable
class of updates; although the worst-case bounds on the al-
gorithm match those of revalidation, we argue why it is
likely to perform better than revalidation in practice. We
then present two classes of DTDs, called 1,2-conflict-free
(1,2-CF) and conflict-free (CF), for which incremental vali-
dation can be done efficiently in practice.

The class of 1,2-CF DTDs is defined by regular expres-
sions in which no two different occurrences of a symbol
in the expression match string positions that occur at dis-
tance 1 and 2 from a position matched by some other sym-
bol in the expression. For example, the 1-unambiguous reg-
ular expression &'��(#) *+(+� is not 1,2-CF because the first ( ap-
pears immediately after the & in the string &,( , and the sec-
ond ( appears at distance 2 from the & in the string &-*+( . The
definition of CF DTDs further restricts this, by disallowing
repeated symbols in the regular expressions. The time com-
plexity of incremental validation for both classes is essen-



tially logarithmic, per update; the space complexity differs
for these classes: 1,2-CF DTDs require linear space, while
CF DTDs only require constant auxiliary space.

The definitions of 1,2-CF and CF DTDs are somewhat
technical, and it is natural to ask how common such DTDs
are. The empirical evidence to date [4] suggests that in
fact most DTDs found on the web belong to the class of
CF DTDs (and thus 1,2-CF as well). Also, as we show in
Section 3, our approach applies to a large subset of XML
Schema [20] as well.

Section 4 describes an implementation of our algorithms
and discusses how they could be coupled with storage
mechanisms for XML. In Section 5 we present experimen-
tal results on our prototype implementation. We show that
the advantages of incremental over complete revalidation
are substantial. Finally, we discuss related work in Section 6
and conclude in Section 7.

In summary, the contributions of this paper are: an anal-
ysis of incremental validation of XML documents with re-
spect to DTDs and XML Schema specifications, including
structural as well as ID/IDREF constraints; the introduc-
tion of two restricted classes of DTDs that allow very ef-
ficient incremental validation; practical methods for incre-
mental validation of documents; and an extensive experi-
mental evaluation that shows the feasibility of incremental
validation for “realistic” DTDs.

2. DTDs and regular expressions

As mentioned in the Introduction, DTDs specify two
kinds of constraints: structural constraints, given by ele-
ment declaration rules, and attribute constraints, given by
attribute declaration rules. (See [19] for details.) We treat
validation of these two kinds of constraints separately.

As customary, the structural constraints of DTDs are ab-
stracted as extended context-free grammars, that is, context-
free grammars where the right hand side of each produc-
tion contains a regular expression. An XML document is
valid with respect to the structural constraints of a DTD if
its abstraction as a tree represents a derivation tree of the ex-
tended CFG corresponding to that DTD. Unlike structural
constrains which deal with the labels of nodes in the XML
tree, attribute constraints deal with the values of (attribute)
nodes. In particular, one can specify uniqueness of certain
attributes and inclusion dependencies among them.

2.1. Validation of structural constraints

Elements are declared in a DTD by rules of the form
<!ELEMENT l * >, which specify that valid elements of
type1 l have content conforming to * , which is called

1 Elements with the same label have the same type in DTDs [19].

a content model; five content models are defined in the
XML standard. The validation of the #PCDATA, ANY and
EMPTY content models can be done trivially. Of greater in-
terest to us is the validation of element and mixed content
models.

An element . has element content if it has only other el-
ements (i.e., child elements) as its content. An element con-
tent model is specified by a regular expression / whose vo-
cabulary is the set of element labels declared in the DTD.
The validity of elements under this content model is decided
as follows: an element . whose content model is defined by/ is valid if and only if the string formed by concatenat-
ing the tags of its children belongs to ���/0� , the language
denoted by / .

An element 1 has mixed content if it has both text (i.e.,
#PCDATA) and other elements as its content. A mixed con-
tent model is specified by a regular expression that matches� #PCDATA �2)Name �43#�43 , where Name can be any element
label declared in the DTD [19]. It is easy to see that the
validation of mixed content models also amounts to testing
membership in regular languages, if we denote occurrences
of #PCDATA content by a special symbol. Thus, without
loss of generality, we focus on validation of element con-
tent models only throughout the paper.

An XML document is valid with respect to the struc-
tural constraints of a DTD if all elements in the document
are valid.

The standard procedure for testing membership in a reg-
ular language is to simulate the automaton that accepts the
language on the input strings. For an input string of length� and an automaton with 5 states, such simulation can be
done in time � �!�%5768� and � ��5867� space if the automaton is
non-deterministic, and in � ���%58� time and constant space if
the automaton is deterministic [7]. If the language is de-
scribed by a regular expression, as is the case with DTDs,
one has to produce the corresponding automaton for per-
forming the simulations, and there are standard procedures
for doing so as well [7].

2.2. 1-unambiguous regular expressions

The specification of XML DTDs restricts the regular ex-
pressions used for defining element content models to be
1-unambiguous [3]. Informally, a regular expression is 1-
unambiguous if one can uniquely match an occurrence of
a symbol in the regular expression to a character in the in-
put string without looking beyond that character. In other
words, 1-unambiguous regular expression require a looka-
head of one symbol only.

Let 9 be a finite alphabet of symbols. Our regular ex-
pressions are given by the grammar / := :;)�&<)=/�) / )/>/?)>/A@ , where & ranges over 9 , with : being the empty



string, and /�) /CB4/0/CB4/A@ being the union, concatenation,
and the Kleene star, respectively.

We use the definition of 1-unambiguous expressions
from [3]. First, we mark symbols with subscripts to indi-
cate different occurrences of the same symbol in a regular
expression. For instance, a marking of the regular expres-
sion &'��(D)E*+(F� is &E�G(+HD)'*+( 6 � . For expression / , we denote
its marking by /0I . Each subscripted symbol is called a posi-
tion; we denote by JLK7M���/0� the set of all positions in regular
expression / . For a given position 1 , N��!1'� denotes the cor-
responding (unmarked) symbol in 9 . Finally, the subscript-
ing method used is such that if OP)RQ or OSQ are regular ex-
pressions, then JTKRM���O>� and JTKRM���Q>� are disjoint.

Note that we can view a marked regular expression /UI as
a regular expression over the alphabet of subscripted sym-
bols JTKRM���/U� , such that each subscripted symbol occurs at
most once in /0I .
Definition 1 A regular expression / is 1-unambiguous if
and only if for all words V , W , X over the subscripted
alphabet JTKRM���/0� and all 1%B4Y in JLK7M���/0� , the conditionsVZ1ZWZB4VZY-X[�D����/>I\� and 1^]_ Y imply N���1E�`]_ N��!YT� .

In other words, for each word X denoted by a 1-
unambiguous regular expression / , there is exactly
one marked word in ����/0Ia� that corresponds to X , and
this word can be constructed incrementally by examin-
ing the next symbol of X .

2.2.1. The Glushkov automaton of a regular expression.
One way of representing regular expressions by finite au-
tomata was proposed by Glushkov [21]. In the Glushkov
automaton of a regular expression / , states correspond to
positions of / and transitions connect those positions that
can be consecutive in a word in ���/UI\� .

First we define, for each regular expression / , the setsb	c MedF��/0� , the set of positions that appear as the first sym-
bol of some word in ���/0I"� ; f�gRMed+��/0� , similarly for last posi-
tions; and hFKifaf�KRj0��/CBk1'� , the set of positions that appear im-
mediately after position 1 in some word in ���/UI\� . For tech-
nical reasons we define a “virtual” position lmB4ln]��JTKRMo��/U� ,
and hFKifaf�KRjU��/CB4l%� _ b$c MedF��/0� .
Definition 2 The Glushkov automaton Q>p _��q Be9�B4rRB2s+tiB2O>� of a regular expression / is defined as fol-
lows:

1. q _ JTKRM���/U�vuxw8sytiz ;
2. For &{�|9 , letr,��syt#B2&-� _ wy1}) 1�� b$c M~dF��/0�eB4N���1E� _ &Zz ;
3. For 1|�{JLK7Mo��/0�FB4&���9 , letr,�!1�B4&,� _ w8Yv) Y{� hFKRfaf"KRjU��/CBk1'�eB4N��!YT� _ &Zz ;
4. O _P� f�g7Med+��/0�vuxw8sytizoB if �U�����/0� ,f�g7Med+��/0�eB otherwise

It is known [21] that for any regular expression / ,���/0� _ ����QSp$� .
Note that there is a 1-1 correspondence between states

in the Glushkov automaton and positions in the regular ex-
pression.

The Glushkov automaton provides a characterization of
1-unambiguous regular expressions:

Proposition 1 ([3]) A regular expression / is 1-unambigu-
ous if and only if its Glushkov automaton Q is determinis-
tic.

As it turns out, the Glushkov automaton can be com-
puted in time quadratic in the size of the expression, and
for 1-unambiguous regular expressions the size of the au-
tomaton is linear in the size of the expression. Thus, test-
ing whether a regular expression is 1-unambiguous can be
done in quadratic time [3].

For the rest of paper we will assume that every regular
expression is 1-unambiguous.

Extended Transition Function. As customary, we extend
the transition function to operate on strings rather than sin-
gle symbols. Let Q _ ��qCB~9�B4riB4syt#B4O>� be a DFA. The func-
tion �r maps a string X in 9�@ into the state of Q after read-
ing X . We represent strings by their symbols X H��y�+� X�� , with
the understanding that a string is empty if �D��� . Then �r
is defined inductively by �r,��:e� _ s t , and �rT��X H}�+�+� X��k� _r,� �r,��X�H �+�y� X ��� H+�eBkX � � . Clearly, X�������/0� iff �r,�!X����DO .

2.3. Validation of attribute constraints

Attribute specifications in a DTD are declared by rules
of the form <!ATTLIST l � H � H%�'H��+�y� �o�S��� � � >, spec-
ifying that elements of type l may have an attribute labeled�o� of type ��� and participation constraint � �4B+��������� .
The type of an attribute & must be one of the following: ID,
IDREF, IDREFS, enumeration or CDATA. Type CDATA
specifies that the value of & is text, while enumeration types
explicitly define the set of values that & can assume. Again,
the validation of attributes of such types can be done triv-
ially. The ID, IDREF and IDREFS types are used for iden-
tifying and establishing references among elements within
a document and require more validation effort.

In a valid XML document the following must hold: (1)
the values of all ID attributes are unique, (2) the value of
each IDREF attribute must be equal to the value of some ID
attribute. The IDREFS type is just a multivalued version of
the IDREF type; that is, an IDREFS attribute can be viewed
as a set of attributes with the same label.

The participation constraint of an attribute is either #RE-
QUIRED or #IMPLIED. If an attribute is #REQUIRED,
then it must be defined for all elements of type l. Check-
ing the validity of participation constraints is also trivial,
thus we will not consider such constraints further.



2.4. XML Schema specifications

XML Schema [20] is another popular language for defin-
ing XML specifications proposed by the W3C, which ex-
tends DTDs in several ways. The most notable extension is
the decoupling of element labels and element content mod-
els. In a DTD, there can be only one content model specified
for elements of a given label; that is, there can be only one
regular expression associated with each label in the DTD.
In XML Schema, on the other hand, one can specify differ-
ent content models for elements of the same label depend-
ing on the context in which the element occurs. Note that el-
ement content models in XML Schema are also defined by
1-unambiguous regular expressions [20].

In XML Schema, the context of an element is determined
by the label of the element and the context of the parent of
the element. For instance, we could specify that * elements
have �RH as their content model whenever they are children of& elements, and � 6 as their content model whenever they are
children of ( elements. This limited notion of context makes
the validation of XML Schema specifications very similar
to the validation of DTDs: the only distinction is that, in or-
der to decide which content model to use, one has to con-
sider the context in which the elements appear.

The attribute constraints defined in XML Schema are
also a superset of those in DTDs. In particular, XML
Schema also defines ID and IDREF attributes, with the
same semantics as in DTDs. Therefore, our work ap-
plies directly to this subset of XML Schema. For clarity of
exposition, we will refer to DTDs only throughout the pa-
per.

3. Incremental validation

We now turn our attention to the incremental validation
problem. That is, given an XML document � , valid with re-
spect to a DTD 
 , and an update operation U, is U �!��� valid
with respect to 
 ? Before we do that, we first introduce
some notation, state some assumptions and briefly consider
the problem of static validation. Static validation becomes a
concern when updating XML documents since practical up-
date languages will inevitably allow the insertions of sub-
trees, which must be (statically) validated.

It turns out that the complexity of validating structural
constraints in a DTD depends on whether one navigates the
documents using a pointer structure (i.e., a DOM-like in-
terface) or as a string (i.e., in a SAX-like interface) [14].
This discrepancy is important to us for the following rea-
sons. We assume the document will be stored in a database
that provides indexed access to elements in the document,
as in DOM. However, the SAX interface seems more rea-
sonable for statically validating those XML trees being in-
serted in the document, since it does not require one to ma-

terialize the entire tree in memory prior to validation. We
assume that the documents are stored as in DOM, and that
the subtrees being inserted are statically validated using a
SAX-like interface.

Notation and assumptions. Let � be an XML document
and 
 be a DTD. Throughout the paper we use � _ ) ��) ,� _ ) 
x) , and we denote by � the height of � ; note that� _ � ���%� .

We make the following assumptions about the data struc-
tures used for storing the documents: given an address of a
node � in � , we have logarithmic access and update time
(on � ) to � ; the parent of � ; the label of � ; the left and right
siblings of � ; and the first and last children of � . With re-
spect to the DTDs, we assume that the time to determine
the next state of an automaton, given a state and a symbol is
logarithmic on

�
.

Under the standard complexity model for incremental re-
computation [5, 12, 9], the complexity per update is the
complexity of recomputing both the result and the auxil-
iary data from the input, the update, and the old result and
auxiliary data. We will consider as data the documents (i.e.,
element labels, element ordering information, etc.) and the
DTDs.

3.1. The complexity of validating XML docu-
ments: the static case

We now briefly present the complexity for the static ver-
sion of the problem; i.e., given a DTD 
 and an XML doc-
ument � , is it the case that �������
�� ?

Static validation of structural constraints can be done as
follows. In the SAX model, elements in the XML document
are “visited” in depth-first search order, thus we have to val-
idate � ���E� elements simultaneously; i.e., simulate one au-
tomaton for each “open” element. Therefore, static valida-
tion amounts to advancing states in the automata as we see
the closing tags of elements. Using a stack to keep the cur-
rent states of the automata being simulated, the complexity
of static validation using SAX is � ���`�"�#� � � time and space.
For the DOM model, we can validate each element at a time,
at a cost of � �!�	�!�"�#�������"�#� � �k� time and � �!�"�#�����^�"�#� � �
space. Note that it is possible to build a DOM-like repre-
sentation of a document while performing a SAX valida-
tion, at the added � �!�"�#���%� cost for each insertion into the
data structures.

For validation of attribute constraints, checking that ID
attribute values are unique and that there are no dangling
references can be done in � ���������	�%� time using linear
space. It is not hard to see that these are worst-case opti-
mal space and time bounds.



3.2. Update operations

To talk about incremental validation, we need an update
language. Proposing a proper update language for XML is
outside the goals of this paper. Instead, we present a mini-
mal set of operations, consisting basically of insertions and
deletions of subtrees. We point out that, as was the case with
static validation, incremental validation of the #PCDATA,
EMPTY and ANY content models is trivial. Thus, we focus
on incremental validation of elements whose content mod-
els are specified by 1-unambiguous regular expressions. We
use the following update primitives:� Append(� , Y ), where both � and Y are elements, results

in inserting Y as the last child of � ;� InsertBefore( 1 , Y ), where both 1 and Y are elements,
results in inserting Y as the immediate left sibling of1 ; this operation is not defined if 1 is the root of the
document being updated;� Delete( 1 ), where 1 is an element, results in deleting 1
from the document. We assume that 1 is not the root of
the document (note that if 1 is the root then the opera-
tion is trivially valid).

The cost of insertion operations has three components:
statically validating the subtrees being inserted, incremen-
tally validating the document resulting from the insertion,
and updating the document to reflect the insertion. In gen-
eral, only structural constraints can be validated statically
on the subtree alone, since the validity of ID and IDREF at-
tributes is defined with respect to the entire document. As
discussed earlier, the cost of statically validating the struc-
tural constraints of an XML tree Y is � �4) Y )������ � � and the
cost of inserting Y into the document is � �4) Yv)¡�"�#���%� .

With respect to deletes, the costs are: incrementally vali-
dating the document resulting from the deletion, and updat-
ing the document to reflect the operation. The cost of delet-
ing a subtree Y from the document is � �4) Y )������$�%� . In the re-
mainder, we consider the complexity of incremental valida-
tion of the document only. In other words, we assume that
all subtrees being inserted are structurally valid.

One important observation that should be made here is
that the incremental validation concerns only the content of
the element where the update takes place. For example, after
an Append(� , Y ) operation only the content of � needs to be
revalidated. Therefore, one can expect that even a full reval-
idation of the content of � after that operation should out-
perform revalidation from scratch of the entire document.

3.3. Incremental validation of structural con-
straints: the general case

Assume that / is a 1-unambiguous regular expression
that defines the content of some element � , and Q is the

Glushkov automaton of / . Let X _ X`H �+�y� X�¢ be the string
formed by concatenating the labels of the children of � . For
clarity of exposition, we will refer to the � -th child of � as
the � -th symbol in X (i.e., X�� ). Assume that the document is
valid (i.e., X£������/0� ) before the update. The problem then
is to determine whether X�I , the updated version of X , be-
longs to ���/U� .

Our approach is as follows. Together with the � -th child
of � , we store the value of �r,�!XH �+�+� X � � for the automaton
that validates the content model of � ; note that this requires
an auxiliary storage of size � ���`�"�#� � � . Whenever an up-
date operation modifies X , we check whether we can mod-
ify the stored values of �r,�!XH �y�+� X`� accordingly, in a way
that it still yields an accepting computation. It is easy to see
that X�I$�����Q>� if and only if this procedure succeeds. We
now discuss the complexity of doing so.

3.3.1. Appends and deletions at the end. The cases
where the updates occur at the last child of an element
are very simple. For example, in an Append(� , Y ) opera-
tion, X I _ X H��y�+� X ¢ Yx������/0� iff r,� �r,�!X H}�y�+� X ¢ �FBkYT����O .
Checking such condition can be done as follows. Find-
ing �r,��X�H �+�y� X�¢i� can be done in � �!�"�#���%� time, and deter-
mining whether r,�y�rT��XH �+�y� X�¢i�eB4YT� �¤O requires � ������� � �
time; thus, the cost of incremental validation of ap-
pends is � �������$���^����� � � time.

The validation after a Delete( 1 ) operation when 1 _ X ¢
requires only checking whether �r,�!X H}�y�+� X ¢ � H ���£O and
can be handled in � �!�"�#�$�{�^����� � � time as well.

3.3.2. Arbitrary insertions and deletions. Now con-
sider the incremental validation after a Delete( 1 ) opera-
tion, where 1 _ X � Bk�>�¦¥ . In this case, note we need not
recompute �r,�!XH �y�+� X�§8�FBG¨<�©��ª«� ; it suffices to revali-
date X���¬ H}�+�y� X ¢ starting from r,� �rT�!X H��y�+� X���� H �eB4X��"¬ H � .
This can be further improved by checking if at any pointX��B4®x¯°� , the new �r function has the same value as the
one previously computed; since we started with a string in���/0� , this would indicate that X�I is in ����/0� as well.

Dealing with the InsertBefore( 1 , Y ) operation is similar,
as only the part of the string after the insertion needs to be
revalidated. Thus, the algorithms for both deletion and in-
sertion require � �4) XU)��!�"�#���x�=�"�#� � �4� time; however, note) XA) _ � ���%� .

This bound is tight: consider the marked regular expres-
sion &E�G( H 3 ) *+( 6 3i� , and assume X _ &-*+( �+�y� ( and that we
delete the * from X . Initially, all ( ’s in X match state ( 6 ;
however, the deletion requires that all ( ’s now match ( H .
A similar argument applies for inserting a * when X _&,( �+�+� ( .



3.4. Incremental validation of structural con-
straints for restricted DTDs

We now introduce two classes of DTDs for which the
incremental validation can be done very efficiently. The
intuition for introducing our restricted DTDs is as fol-
lows. Consider again the example of the regular expres-
sion &E�G( H 3 ) *+( 6 3i� for which the insertion or deletion of a* might require the re-validation of the entire string. This
happens because there are two positions in the regular ex-
pression ( (yH and ( 6 ) which are “close” and correspond to
the same symbol. Thus, inserting or deleting a * element re-
sults in “flipping” all (yH ’s into ( 6 ’s or vice-versa. To avoid
this problem, we limit the proximity in which positions cor-
responding to the same symbol may occur in the regular ex-
pression.

3.4.1. 1,2-conflict-free DTDs. Let / be a regular expres-
sion over an alphabet 9 . Recall that for a position 1 in / ,hFKRfaf�Kij0��/CB41E� is the set of positions in / that can follow 1
in some path through / . We define hFKRfaf�Kij 6 ��/CB41E� as wyY��JTKRM���/0�)i±,² �ChFKRfaf�Kij0��/{Bk1E� such that Y�� hFKifaf�KRjU��/CB2²o�ez .
Definition 3 / is a 1,2-conflict-free regular expression if
(1) / is 1-unambiguous; (2) for every 1�BkY'B4²��^JTKRM���/0�muwyl}z , if Y³�´hFKRfaf"KRj0��/CBk1'� and ²´�´hFKifaf�KRj 6 ��/CBk1'� , thenN��!YT� _ N���²-�´µ Y _ ² .

A DTD 
 is 1,2-conflict free (1,2-CF) if every regular
expression in 
 , defining an element content model, is 1,2-
conflict-free.

Next, we show how to do the incremental validation for
1,2-CF DTDs. Let / be a 1-unambiguous regular expres-
sion and X _ XH �+�+� X�¢P�¶���/0� . We say that X is � -
contractible under / ( �n�¸·��#B2¥-¹ ) if it is possible to re-
move X � from X without affecting the computation of the
Glushkov automaton for / . Formally, X is � -contractible
if �r,��X�H �+�y� X �!� HeX �"¬ H8� _ �r,�!XH �+�+� X ��� HFX � X �"¬ H8� . We say
that X is �~B4& -expansible under / , where & is a symbol
in the alphabet of / , if it is possible to insert & in the � -
th position of X without affecting the computation of the
Glushkov automaton for / . Formally, X is �~B4& -expansible
if �r,�!X H}�y�+� X���� H &oX��G� _ �r,�!X�º �y�+� X���� H X��G� .

The following theorem shows that incremental valida-
tion of 1,2-conflict-free regular expression can be reduced
to the problem of checking either � -contractibility (for dele-
tions) or �~B4& -extensibility (for insertions).

Theorem 1 Let / be a 1,2-conflict free regular expression
and X _ XH �y�+� X�¢A�����/U� .

1. If XI _ X H}�y�+� X���� H X��"¬ Hm�+�+� X ¢ , then X�Iv�����/0� iff X
is � -contractible under / .

2. If X�I _ XH �+�y� X ��� H+&�X � �+�+� X�¢ , then XI$�»����/0� iff X
is �~B4& -expansible under / .

Testing for � -contractibility for a deterministic Glushkov au-
tomaton can be done as follows. Assume that / is a 1-
unambiguous regular expression and X _ X H}�y�+� X ¢ is a
string in ����/0� such that �r,�!X H��y�+� X���� H � _ s . To check
whether X is � -contractible, we just need to verify thatr,��s-B4X��"¬ H � _ r,��r,��s-B4X��¡�FBkX���¬ H � . Note that, given X�� , find-
ing s , and X��"¬ H are both �����	� operations; testing the � -
contractibility condition amounts to two lookups in the tran-
sition function, at a cost of �"�#� � time each. Thus, the total
cost is � �������$���;�"�#� � � time. Checking �2B2& -expansibility
can be done in a similar manner.

In summary, we have the following.

Corollary 1 The per-update complexity of the incremental
validation of XML documents with respect to 1,2-conflict
free DTDs is � �!�"�#�����=����� � � time and � �!���"�#� � � auxil-
iary space.

Note that for the restricted case of updates at the leaves
(like those studied in [11]), and for fixed DTDs, the com-
plexity of our algorithms matches that of [11]. However, the
constants involved in our time and space bounds are much
smaller than those in [11].

3.4.2. Conflict-free DTDs. We now focus on a further re-
stricted form of 1,2-conflict free DTDs for which the incre-
mental validation can be done without the need for auxil-
iary space. The condition we impose on the DTDs is simply
that the regular expressions have no repeated symbols.

Definition 4 / is a conflict-free regular expression if: (1)/ is 1-unambiguous, and (2) for every Y'B4²¼��JLK7M���/0� ,N���Y,� _ N���²-� iff Y _ ² . A DTD 
 is conflict-free if all reg-
ular expressions in 
 are conflict-free.

A recent study [4] shows that most “real” DTDs define
only EMPTY, ANY and conflict-free regular expressions as
content models for elements.

Evidently, CF expressions are also 1,2-CF. Moreover,
note that for CF regular expressions we have that JLK7Mo��/0� _9 . Consequently, there is a 1-1 mapping between symbols
in X and states in the Glushkov automaton of Q . Thus, test-
ing for � -contractibility or �~B4& -expansibility under CF regu-
lar expressions can be done by inspecting X��� H and X��"¬ H ,
which eliminates the necessity of precomputing and stor-
ing the values of �r for the incremental validation. There-
fore, we have the following:

Corollary 2 The incremental validation of XML documents
with respect to CF DTDs can be done with the same time
complexity as in Corollary 1, and with only constant auxil-
iary space.
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Figure 1. XML document with a single ele-
ment reference.

3.5. Incremental validation of attribute con-
straints

We now briefly describe the incremental validation of the
attribute constraints, focusing on ID and IDREF attributes,
since the validation of all other types is trivial. An update
operation is valid if after its execution the following hold:� No two distinct elements have the same value for their

ID attribute;� No IDREF attribute refers to a non-existing ID value
(i.e., there are no “dangling” references in the docu-
ment).

Checking the validity after Append(� , Y ) or
InsertBefore( 1 , Y ) operations amounts to verifying
that no two ID attributes are the same, and every IDREF at-
tribute in Y refers to some values (either in Y or the rest
of the document). Both are easily achieved by main-
taining a data structure on the set of ID attribute val-
ues, that allows both logarithmic lookup and insertion.
In this case the incremental validation of attribute con-
straints takes � �2) Yv)¡�"�#�$�%� time and linear auxiliary space.

3.5.1. Deletions. Checking the validity after a Delete( 1 )
operation is more challenging. One has to check whether
the subtree rooted at 1 contains a node that has an ID at-
tribute referenced by some other node that is not a descen-
dant of 1 . To illustrate the problem, consider the XML tree
in Figure 1, in which there is only one IDREF reference
from element & to element ( . Let * be the closest common
ancestor of & and ( . It is easy to see that the removal of
any element in the path *+( , except for * itself (i.e., the ele-
ments shown as hollow nodes in the figure), results in dan-
gling references in the document. Put more precisely:

Definition 5 Let &EB2(RB4* be nodes in an XML tree s.t. & has
an IDREF attribute that references ( , and * is their clos-
est common ancestor. The &EB2( -reference path is the path re-
sulting from removing * from the *�½¸( path.

It is easy to see that a Delete( 1 ) operation results in dan-
gling references if and only if 1 lies in some reference path
in the document. This also applies for the cases when * is
equal to & or ( in Definition 5. Thus, the incremental valida-
tion of attribute constraints can be done as follows. Since a
node can be in several reference paths, we store a reference
counter for each node in the tree (which requires � ���`�"�#�$�%�
auxiliary space). Whenever an IDREF is inserted, we incre-
ment the reference counters for all nodes in the correspond-
ing reference path; conversely, these counters are decre-
mented whenever an IDREF attribute is removed.

In this way, checking whether Delete( 1 ) yields dan-
gling references amounts to checking whether the reference
counter of 1 is equal to 0, and can be done in � �!�"�#���%� time.
The costs for inserting/removing an IDREF attribute now
has to take into account the number of reference counters
that need to be incremented/decremented (which is � ���E� ),
which yields a cost of � ���������	�%� time for each operation.
Thus, the final cost for checking IDREF attribute constraints
is � �2) Yv) ���"�#�	�%� . The empirical evidence to date shows that
the vast majority of XML documents found on the web are
shallow [8].

4. Implementation

In this section we present a prototype implementation of
our algorithms, and discuss how our methods could be cou-
pled with storage methods for XML. Our implementation
was done in C++; we used the Berkeley DB2 libraries for
storage, and the Xerces SAX parser3 for “shredding” the
documents and loading them into our data structures.

We assign a unique type identifier to each occurrence of
an element label in the DTD (or XML Schema specifica-
tion) taking the context into account; we use integers to rep-
resent element types. Also, we rewrite the regular expres-
sions in the DTD in terms of element types, as opposed to
labels. By doing so, we not only capture the context infor-
mation, but also avoid costly string comparisons when sim-
ulating the automata.

4.1. Data structures

Figure 2 shows the data structures we use. The fields
shown in bold are keys for the corresponding relations; all
such relations are indexed by their keys. The underlined at-
tributes are index fields for the relations that have no keys.

The structure of the XML documents is captured by the
following relations. The element relation stores, for each
element, the id of its parent, its type, the value of its ref-
erence counter (see Section 3.5.1), and the value of �r for

2 Available at http://www.sleepycat.com.
3 Available at http://xml.apache.org.



element (B-tree): ¾ id, p id, type, ref cnt, state ¿
LS (B-tree): ¾ id, id left ¿
RS (B-tree): ¾ id, id right ¿
FLC (B-tree): ¾ id, id first, id last ¿
ID (Hash table): ¾ value, id ¿
IDR (Hash table): ¾ id, value ¿
IDREF (Hash table): ¾ id, id begin, id end ¿
transition (B-tree): ¾ p type, from, to, type, label ¿

Figure 2. Data structures used in our imple-
mentation.

that element assigned during the static validation (see Sec-
tion 3.3). LS and RS store the ordering of the elements in
the document: given an element id, LS (respect., RS) stores
the id of the left (respect., right) sibling of that element. The
FLC relation gives the ids of the first and last children of a
given element.

With respect to ID and IDREF attributes, the ID relation
stores the id of the elements given the value of the corre-
sponding ID attribute. The IDR relation holds the inverse re-
lation of ID, and is necessary when removing elements from
the document that contain ID attributes. Finally, the IDREF
relation stores, for each node that contains an IDREF at-
tribute, the begin and end points of the corresponding ref-
erence path; we use the ( element as the starting point of a&ZB~( - reference path (recall Figure 1). In this way, navigat-
ing the path amounts to finding the start element and recur-
sively finding its ancestors, until we reach the end of the
path.

The last relation in Figure 2, transition, stores the tran-
sition functions of all automata defined in the DTD. In or-
der to store all transition functions in a single relation, we
add the type of the element whose content model is given
by the regular expression as part of the key for that rela-
tion (the p type column). As usual, each transition is iden-
tified by a pair of states (from and to), and a symbol (type).

The type of an element being inserted is determined by
its label and the type of its parent (which specifies the con-
text of the insertion). Thus, in order to perform insertions,
we proceed as follows. Let À denote the set of element
types in the DTD; we maintain the mapping Á�Â#À^Ã�9�ÄÅÀ
which gives the type of an element of a given label de-
pending on the type of its parent. We materialize Á by sim-
ply adding an extra column (label) to the transition rela-
tion; note that we do not add extra tuples by doing so, since
the functional dependency w p type,type z0ÄÆw label z holds.
Also, note we gain in performance, since we avoid extra ta-
ble lookups for each insert and append operation.

<!ELEMENT catalog (book+,review+)>
<!ELEMENT book (title,author+,price)>
<!ATTLIST book isbn ID #REQUIRED

genres CDATA #IMPLIED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ATTLIST price currency CDATA #IMPLIED>
<!ELEMENT review (user,p*)>
<!ATTLIST review isbn IDREF #REQUIRED

rating CDATA #REQUIRED
date CDATA #IMPLIED>

<!ELEMENT user (#PCDATA)>
<!ELEMENT p (#PCDATA)>

Figure 3. Catalog DTD.

4.2. Integration with other systems

We conclude this section with a brief discussion of how
our algorithms could be used by XML data management
systems. We consider two scenarios for integration: imple-
menting the algorithms inside the storage engine; or using
them as an external service to the storage manager.

Obviously, implementing the algorithms in the storage
engine has the potential for better performance, provided
that the data structures used by the storage engine allow
the access patterns we use. In this regard, we note that, as
shown in this section, our algorithms can be implemented
using standard data structures. Also, all the information we
use from the documents is “essential”, in the sense that it
is reasonable to expect any storage mechanism for XML
will capture them; therefore, the storage overhead of our
algorithms will be essentially storing the values of �r . An-
other good reason for implementing these algorithms inside
the storage engine is to avoid having duplicate information
about the structure of the document.

The second approach seems more appealing for DTD-
aware relational mappings of XML documents (e.g.,
[1]), in which the relational schema (i.e., the data struc-
tures) is not uniform across all DTDs. However, we note
that the validity of certain simple content models (e.g.,
name(first,last)) can be enforced directly by the re-
lational schema. Thus, our algorithms could be used
to provide incremental validation only for those con-
tent models which cannot be captured directly by the
relational schema. In this scenario, an update opera-
tion would only be processed by the storage engine af-
ter it is incrementally validated using our algorithms. In
order for this scheme to work, a 1-1 correspondence be-
tween element identifiers in both systems is required;
however, this should not represent a problem in prac-
tice.



Book Validation Database
Size

elements
Elements

time size

64K 50 1.1K 22 ms 144K
512K 400 9K 73 ms 548K
4M 3.2K 73K 386 ms 3.75M

32M 25.6K 583K 2.9 s 29.2M
256M 204K 4.6M 24.2 s 234M

2G 1.6M 37M 479 s 1.9G

Table 1. Catalog datasets used.

5. Experimental analysis

We now present the results of a preliminary experimen-
tal analysis of our algorithms. We ran two sets of experi-
ments: in the first, we used synthetic documents describ-
ing book catalogs and conforming to the CF DTD in Fig-
ure 3;for the second set, we used documents conforming to
the XMark benchmark [13]. All tests were run on a Pen-
tium 4 2.4GHz machine with 1G of RAM, 20G of disk and
running Linux. All results reported here were obtained us-
ing a memory buffer of 4MB (this was the default value set
by Berkeley DB).

We use the following conventions for presenting the re-
sults. The times for validation from scratch (of the contents
of the element being modified) are reported as Full, while
the times for the incremental methods are reported as Incr.
We compare the times for validation of CF, 1,2-CF and ar-
bitrary regular expressions separately.

All times are reported in microseconds and all graphs
are in log-log scale. In general, each workload in our ex-
periments consists of 120 operations of the same type (e.g.,
valid insertions). We ran the first 20 operations as a “warm-
up” procedure, and report the average time of the remaining
100 operations.

5.1. Catalog experiments

For these experiments, we used 6 documents varying in
size from 64KB to 2GB. The size of the documents is a
function of the number of books in the catalog: on aver-
age there are 3 reviews per book; the number of authors
per book is uniformly distributed in the interval ·��#B+�8ÇR¹ ; the
number of p elements per review follows a normal distri-
bution with mean 3 and variance 2; and the length of the
PCDATA values for each p follows an exponential distribu-
tion with mean 100. The isbn values used as ID and IDREF
are 10-digit long strings. Table 1 shows, for each document:
the number of book elements; the total number of elements;
the time for static validation; and the size of all data struc-
tures materialized. We performed experiments to measure
the revalidation and the update times for the catalog docu-
ments.

Revalidation times. The goal of these experiments is to
show the performance of our approach on a per-operation
basis. By using a CF DTD we are able to run all valida-
tion methods and, thus, compare the advantages of incre-
mental validation over full revalidation.

Figure 4 summarizes the behavior of our algorithms for
incremental validation of structural constraints for the cat-
alog documents. The workloads are as follows. Half of the
operations we perform modify the content of the catalog el-
ement (i.e., modify a long string), while the other half mod-
ify the content of some other node chosen at random (i.e.,
a short string). Figures 4(a) and 4(b) compare full revali-
dation to incremental validation for the catalog documents.
The results for append operations were identical, and thus
are omitted. Two observations can be made here: the full
revalidation of (only) the contents being modified (e.g., Full
Arb in Figure 4(a)) represents a substantial gain over static
validation of the document (see Table 1); and, as expected,
incremental validation outperforms that by several orders of
magnitude.

Figure 4(c) shows the revalidation times after invalid
delete operations. We note that all invalid deletions in the
catalog documents are those that modify the content of
elements other than catalog. Thus, the graph shows that,
for contents with few elements (i.e., short strings), all al-
gorithms perform very similarly. Contrasting Figures 4(c)
and 4(b) shows the impact of the length of the strings be-
ing updated on the revalidation times. Also, a careful look
at Figures 4(a) shows the impact the buffering. Thee times
for 64K and 512K (which fit in memory) are almost iden-
tical, while the highest slopes of the curves occur between
the 512K and the 4M documents (4M does not fit in mem-
ory). As expected, increasing the buffer size has the effect
of having more documents at the lower “valley” shown for
64K and 512K.

In our final revalidation experiment for catalog, we used
the 2G document (whose catalog element has roughly 6M
children), and varied the position in which we perform
an insertion operation. Figure 4(d) shows the revalidation
times (regardless of whether the operations were success-
ful) for this experiment. That figure shows not only the gap
between the full revalidation and the incremental methods,
but also that the revalidation times do not depend of the po-
sition where we update the string.

Updating the documents. The times for updating the docu-
ments do not depend of the revalidation method used; thus
we report them separately in Figure 5. For this experiment,
we consider the insertion and deletion of elements, ID and
IDREF attributes, one at a time (i.e., we do not insert sub-
trees). Note that only books have ID attribute while only re-
views have IDREF attributes, and both kinds of elements
occur at the same depth in the documents. The figure shows
that the times for individual operations scale very well with
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(b) Valid deletions.
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(d) Varying the position of insertion for children of cat-
alog in 2GB document.

the size of the documents, as was the case for the times for
incremental validation.

5.2. XMark experiments

For the final set of experiments we used 4 documents for
the XMark benchmark, varying in size from 4M to 2G (i.e.,
no document fits in memory). The XMark DTD is larger
than the one for catalog; however, it is also a CF DTD.

We report here the times for performing two “complete”
operations: inserting a new item for auction and remov-
ing an auction currently open. We chose an item at ran-
dom, and used it as the subtree (with 23 elements in to-
tal) for the insert operations, with a new value for its ID
attribute. The insertions were performed in random places
inside the europe element; the deletions were performed
in random places inside the open auction element. We
note that each open auction has 8 IDREF attributes on av-
erage. Figure 6 shows the times for these operations sep-
arately. The graphs show relatively higher costs for delet-
ing subtrees over inserting subtrees. This happens because

deleting the subtrees requires deleting several elements that
might reside in different pages on disk. Not surprisingly, in-
creasing the buffer size for performing delete operations re-
duces the number of page misses. As one can see, the be-
havior of our algorithms is essentially identical to that for
the catalog documents; most notably, the algorithms seem
to scale very well with document size. We note this the ex-
pected behavior, since both DTDs are CF.

6. Related work

There is extensive literature on the subject of relational
view/integrity maintenance, including a book [6] and a re-
cent survey [5], both of which provide a good survey of the
field. Some of the view maintenance techniques have been
extended to semi-structured models that were precursors of
XML [16].

Static validation of XML documents has been studied
in the literature and shown to have low complexity: for
DOM-like pointer structures, the validation problem is in
LOGSPACE, while for SAX-like interfaces, the problem is
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Figure 5. Updating the database.

complete for uniform ÈxÉ H [14]. The validation of stream-
ing XML under constrained memory (depending on the
DTD only) has also been considered [15]; the paper shows
conditions under which validation can be done (in general,
streaming validation can be done only for non-recursive
DTDs).

Incremental validation of XML documents is closely
related to incremental maintenance of regular languages,
which was previously studied in the literature [12]. It is
known that checking membership in a regular language is
complete for the complexity class NC

H
, which roughly cor-

responds to logarithmic parallel time [18]. On the other
hand, such a membership query can be checked incremen-
tally with AC

º
complexity [12], and AC

º=Ê
NC
H

corre-
sponds to constant parallel time [18]. 1-unambiguity leads
to particularly simple incremental validation techniques.

A recent paper [11] uses algorithms closely related to
those in [12] and in our work, and shows that incremen-
tal validation of XML documents can be done in logarith-
mic time with respect to (fixed) DTDs, and in � �!�"�#� 6 �%�
time with respect to Specialized DTDs (an abstraction of
XML Schemas [10]). We note that constant access time to
elements in the database is assumed in [11], as opposed
to � �������$�%� time in our work; intuitively, doing so allows
one to interpret the complexity of the algorithms in terms
of number of database accesses, as opposed to time. In the
sequel, we adjust our results accordingly, to allow a better
comparison between the methods. In [11], the logarithmic
time incremental validation for arbitrary DTDs is achieved
by using a separate balanced tree for storing the symbols in
each string (i.e., the children of each element) in the docu-
ment. Thus, the the storage costs in that work are � �!� � 67�
for DTDs and � �!� ��Ë � for Specialized DTDs, where

�
is

the size of the DTD. In contrast, our method yields con-
stant incremental validation time for the restricted classes
of DTDs and XML Schema specifications, and linear worst-
case time for arbitrary DTDs. On the other hand, the storage

costs in our approach are � �!������� � � in general, and con-
stant for CF DTDs.

The update operations we use are similar to those in [11],
except that they consider only insertions and deletions of
leaf nodes, as opposed to subtrees in our case; on the other
hand, they allow the renaming of nodes in the XML docu-
ments. In order to support the renaming of arbitrary nodes
in the tree (i.e., not only leaf nodes) [11] performs the in-
cremental validation of the contents of all elements against
all regular expressions in the DTD. In our approach, renam-
ing of nodes must be replaced by deletions followed by in-
sertions. For the restricted DTDs we present, the complex-
ity of such operations matches that of the renamings in [11].

Finally, [11] does not consider attribute constraints and
does not present any experimental validation.

For this study, we had to fix an update language; we set-
tled for a simple language, as the goal was to verify the fea-
sibility of our approach rather than propose a new update
language. For a discussion on updating XML, see [17]. We
use extensively 1-unambiguous regular expressions, which
are discussed in [2, 3]. Further restrictions of DTDs corre-
spond to those identified in an empirical study [4].

7. Conclusion

We have discussed the incremental validation of XML
documents with respect to DTDs and XML Schemas , con-
sidering insertions and deletions of subtrees, as opposed to
leaf nodes only, as well as validation of ID and IDREF at-
tributes. We have characterized a class of DTDs, appear-
ing to capture most real-life DTDs, that admits a logarith-
mic time and constant space incremental validation algo-
rithm. Membership of a DTD in this class is testable in poly-
nomial time. We have discussed how our algorithms could
be used with storage mechanisms for XML, and we have
shown through experimental results that the method is prac-
tical for large documents and behaves much better than full
revalidation.

There are several directions for future work, such as
handling complex updates involving several insertions and
deletions as a single transaction and studying the cost of in-
cremental validation for various relational mappings.
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