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This article takes a first step towards the design and normalization theory for XML documents.
We show that, like relational databases, XML documents may contain redundant information, and
may be prone to update anomalies. Furthermore, such problems are caused by certain functional
dependencies among paths in the document. Our goal is to find a way of converting an arbitrary DTD
into a well-designed one, that avoids these problems. We first introduce the concept of a functional
dependency for XML, and define its semantics via a relational representation of XML. We then
define an XML normal form, XNF, that avoids update anomalies and redundancies. We study its
properties, and show that XNF generalizes BCNF; we also discuss the relationship between XNF
and normal forms for nested relations. Finally, we present a lossless algorithm for converting any
DTD into one in XNF.
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els; normal forms; schema and subschema; H.2.3 [Database Management]: Languages—data
description languages (DDL)
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1. INTRODUCTION

The concepts of database design and normal forms are a key component of the
relational database technology. In this article, we study design principles for
XML data. XML has recently emerged as a new basic format for data exchange.
Although many XML documents are views of relational data, the number of
applications using native XML documents is increasing rapidly. Such applica-
tions may use native XML storage facilities [Kanne and Moerkotte 2000], and
update XML data [Tatarinov et al. 2001]. Updates, like in relational databases,
may cause anomalies if data is redundant. In the relational world, anoma-
lies are avoided by using well-designed database schema. XML has its version
of schema too; most often it is DTDs (Document Type Definitions), and some
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other proposals exist or are under development [W3C 2001, 1998]. What would
it mean then for such a schema to be well or poorly designed? Clearly, this ques-
tion has arisen in practice: one can find companies offering help in “good DTD
design.” This help, however, comes in form of consulting services rather than
commercially available software, as there are no clear guidelines for producing
well-designed XML.

Our goal is to find principles for good XML data design, and algorithms to
produce such designs. We believe that it is important to do this research now, as
a lot of data is being put on the web. Once massive web databases are created,
it is very hard to change their organization; thus, there is a risk of having large
amounts of widely accessible, but at the same time poorly organized legacy data.

Normalization is one of the most thoroughly researched subjects in database
theory (a survey [Beeri et al. 1978] produced many references more than 20
years ago), and cannot be reconstructed in a single article in its entirety. Here
we follow the standard treatment of one of the most common (if not the most
common) normal forms, BCNF. It eliminates redundancies and avoids update
anomalies which they cause by decomposing into relational subschemas in
which every nontrivial functional dependency defines a key. Just to retrace
this development in the XML context, we need the following:

(a) Understanding of what a redundancy and an update anomaly is.
(b) A definition and basic properties of functional dependencies (so far, most

proposals for XML constraints concentrate on keys).
(c) A definition of what “bad” functional dependencies are (those that cause

redundancies and update anomalies).
(d) An algorithm for converting an arbitrary DTD into one that does not admit

such bad functional dependencies.

Starting with point (a), how does one identify bad designs? We have looked
at a large number of DTDs and found two kinds of commonly present design
problems. They are illustrated in two examples below.

Example 1.1. Consider the following DTD that describes a part of a uni-
versity database:

<!DOCTYPE courses [
<!ELEMENT courses (course*)>
<!ELEMENT course (title, taken_by)>
<!ATTLIST course

cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT taken_by (student*)>
<!ELEMENT student (name, grade)>
<!ATTLIST student

sno CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT grade (#PCDATA)>

]>
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Fig. 1. A document containing redundant information.

For every course, we store its number (cno), its title and the list of students
taking the course. For each student taking a course, we store his/her number
(sno), name, and the grade in the course.

An example of an XML document that conforms to this DTD is shown in
Figure 1. This document satisfies the following constraint: any two student
elements with the same sno value must have the same name. This constraint
(which looks very much like a functional dependency), causes the document to
store redundant information: for example, the name Deere for student st1 is
stored twice. And just as in relational databases, such redundancies can lead
to update anomalies: for example, updating the name of st1 for only one course
results in an inconsistent document, and removing the student from a course
may result in removing that student from the document altogether.

In order to eliminate redundant information, we use a technique similar to
the relational one, and split the information about the name and the grade.
Since we deal with just one XML document, we must do it by creating an extra
element type, info, for student information, as shown below:

<!DOCTYPE courses [
<!ELEMENT courses (course*, info*)>
<!ELEMENT course (title,taken_by)>
<!ATTLIST course

cno CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT taken_by (student*)>
<!ELEMENT student (grade)>
<!ATTLIST student

sno CDATA #REQUIRED>
<!ELEMENT grade (#PCDATA)>
<!ELEMENT info (number*,name)>
<!ELEMENT number EMPTY>
<!ATTLIST number

sno CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>

]>
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Fig. 2. A well-designed document.

Each info element has as children one name and a sequence of number elements,
with sno as an attribute. Different students can have the same name, and we
group all student numbers sno for each name under the same info element. A
restructured document that conforms to this DTD is shown in Figure 2. Note
that st2 and st3 are put together because both students have the same name.

This example is reminiscent of the canonical example of bad relational de-
sign caused by nonkey functional dependencies, and so is the modification of
the schema. Some examples of redundancies are more closely related to the
hierarchical structure of XML documents.

Example 1.2. The DTD below is a part of the DBLP database [Ley 2003]
for storing data about conferences.

<!DOCTYPE db [
<!ELEMENT db (conf*)>
<!ELEMENT conf (title, issue+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT issue (inproceedings+)>
<!ELEMENT inproceedings (author+, title)>
<!ATTLIST inproceedings

key ID #REQUIRED
pages CDATA #REQUIRED
year CDATA #REQUIRED>

<!ELEMENT author (#PCDATA)>
]>

Each conference has a title, and one or more issues (which correspond to years
when the conference was held). Papers are stored in inproceedings elements;
the year of publication is one of its attributes.

Such a document satisfies the following constraint: any two inproceedings
children of the same issue must have the same value of year. This too is sim-
ilar to relational functional dependencies, but now we refer to the values (the
year attribute) as well as the structure (children of the same issue). Moreover,
we only talk about inproceedings nodes that are children of the same issue
element. Thus, this functional dependency can be considered relative to each
issue.

The functional dependency here leads to redundancy: year is stored multiple
times for a conference. The natural solution to the problem in this case is not to
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create a new element for storing the year, but rather restructure the document
and make year an attribute of issue. That is, we change attribute lists as:

<!ATTLIST issue
year CDATA #REQUIRED>

<!ATTLIST inproceedings
key ID #REQUIRED
pages CDATA #REQUIRED>

Our goal is to show how to detect anomalies of those kinds, and to transform
documents in a lossless fashion into ones that do not suffer from those problems.

The first step towards that goal is to introduce functional dependencies (FDs)
for XML documents. So far, most proposals for XML constraints deal with keys
and foreign keys [Buneman et al. 2001a, 2001b; W3C 2001]. We introduce FDs
for XML by considering a relational representation of documents and defining
FDs on them. The relational representation is somewhat similar to the total
unnesting of a nested relation [Suciu 1997; Van den Bussche 2001]; however,
we have to deal with DTDs that may contain arbitrary regular expressions,
and be recursive. Our representation via tree tuples, introduced in Section 3,
may contain null values. In Section 4, XML FDs are introduced via FDs on
incomplete relations [Atzeni and Morfuni 1984; Levene and Loizou 1998].

The next step is the definition of a normal form that disallows redundancy-
causing FDs. We give it in Section 5, and show that our normal form, called XNF,
generalizes BCNF and a nested normal form NNF [Mok et al. 1996] when only
functional dependencies are considered (see Section 5.2 for a precise statement
of this claim).

The last step then is to find an algorithm that converts any DTD, given a set of
FDs, into one in XNF. We do this in Section 6. On both examples shown earlier,
the algorithm produces exactly the desired reconstruction of the DTD. The
main algorithm uses implication of functional dependencies (although there is
a version that does not use implication, but it may produce suboptimal results).
In Section 7, we show that for a large class of DTDs, covering most DTDs
that occur in practice, the implication problem is tractable (in fact, quadratic).
Finally, in Section 8 we describe related work and some topics of future research.

One of the reasons for the success of the normalization theory is its simplicity,
at least for the commonly used normal forms such as BCNF, 3NF and 4NF.
Hence, the normalization theory for XML should not be extremely complicated
in order to be applicable. In particular, this was the reason we chose to use DTDs
instead of more complex formalisms [W3C 2001]. This is in perfect analogy with
the situation in the relational world: although SQL DDL is a rather complicated
language with numerous features, BCNF decomposition uses a simple model
of a set of attributes and a set of functional dependencies.

2. NOTATIONS

Assume that we have the following disjoint sets: El of element names, Att of
attribute names, Str of possible values of string-valued attributes, and Vert of
node identifiers. All attribute names start with the symbol @, and these are the
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only ones starting with this symbol. We let S and ⊥ (null) be reserved symbols
not in any of those sets.

Definition 2.1. A DTD (Document Type Definition) is defined to be D =
(E, A, P, R, r), where:

— E ⊆ El is a finite set of element types.
— A ⊆ Att is a finite set of attributes.
— P is a mapping from E to element type definitions: Given τ ∈ E, P (τ ) = S or

P (τ ) is a regular expression α defined as follows:
α ::= ε | τ ′ | α|α | α, α | α∗

where ε is the empty sequence, τ ′ ∈ E, and “|”, “,” and “∗” denote union,
concatenation, and the Kleene closure, respectively.

— R is a mapping from E to the powerset of A. If @l ∈ R(τ ), we say that @l is
defined for τ .

—r ∈ E and is called the element type of the root. Without loss of generality, we
assume that r does not occur in P (τ ) for any τ ∈ E.

The symbols ε and S represent element type declarations EMPTY and #PCDATA,
respectively.

Given a DTD D = (E, A, P, R, r), a string w = w1 · · · wn is a path in D if
w1 = r, wi is in the alphabet of P (wi−1), for each i ∈ [2, n − 1], and wn is in the
alphabet of P (wn−1) or wn = @l for some @l ∈ R(wn−1). We define length(w)
as n and last(w) as wn. We let paths(D) stand for the set of all paths in D and
EPaths(D) for the set of all paths that ends with an element type (rather than
an attribute or S); that is, EPaths(D) = {p ∈ paths(D) | last(p) ∈ E}. A DTD is
called recursive if paths(D) is infinite.

Definition 2.2. An XML tree T is defined to be a tree (V , lab, ele, att, root),
where

—V ⊆ Vert is a finite set of vertices (nodes).
— lab : V → El.
—ele : V → Str ∪ V ∗.
—att is a partial function V × Att → Str. For each v ∈ V , the set {@l ∈ Att |

att(v, @l ) is defined} is required to be finite.
—root ∈ V is called the root of T .

The parent-child edge relation on V , {(v1, v2) | v2 occurs in ele(v1)}, is required
to form a rooted tree.

Notice that we do not allow mixed content in XML trees. The children of an
element node can be either zero or more element nodes or one string.

Given an XML tree T , a string w1 · · · wn, with w1, . . . , wn−1 ∈ El and wn ∈
El ∪ Att ∪ {S}, is a path in T if there are vertices v1 · · · vn−1 in V such that:

—v1 = root, vi+1 is a child of vi (1 ≤ i ≤ n − 2), lab(vi) = wi (1 ≤ i ≤ n − 1).
—If wn ∈ El, then there is a child vn of vn−1 such that lab(vn) = wn. If wn = @l ,

with @l ∈ Att, then att(vn−1, @l ) is defined. If wn = S, then vn−1 has a child
in Str.
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We let paths(T ) stand for the set of paths in T . We next give a standard defi-
nition of a tree conforming to a DTD (T |= D) as well as a weaker version of T
being compatible with D (T ✁ D).

Definition 2.3. Given a DTD D = (E, A, P, R, r) and an XML tree T = (V ,
lab, ele, att, root), we say that T conforms to D (T |= D) if

— lab is a mapping from V to E.
—For each v ∈ V , if P (lab(v)) = S, then ele(v) = [s], where s ∈ Str. Otherwise,

ele(v) = [v1, . . . , vn], and the string lab(v1) · · · lab(vn) must be in the regular
language defined by P (lab(v)).

—att is a partial function from V × A to Str such that for any v ∈ V and @l ∈ A,
att(v, @l ) is defined iff @l ∈ R(lab(v)).

— lab(root) = r.

We say that T is compatible with D (written T ✁ D) iff paths(T ) ⊆ paths(D).

Clearly, T |= D implies T is compatible with D.

3. TREE TUPLES

To extend the notions of functional dependencies to the XML setting, we
represent XML trees as sets of tuples. While various mappings from XML
to the relational model have been proposed [Florescu and Kossmann 1999;
Shanmugasundaram et al. 1999], the mapping that we use is of a different na-
ture, as our goal is not to find a way of storing documents efficiently, but rather
find a correspondence between documents and relations that lends itself to a
natural definition of functional dependency.

Various languages proposed for expressing XML integrity constraints such as
keys [Buneman et al. 2001a, 2001b; W3C 2001], treat XML trees as unordered
(for the purpose of defining the semantics of constraints): that is, the order of
children of any given node is irrelevant as far as satisfaction of constraints is
concerned. In XML trees, on the other hand, children of each node are ordered.
Since the notion of functional dependency we propose also does not use the
ordering in the tree, we first define a notion of subsumption that disregard this
ordering.

Given two XML trees T1 = (V1, lab1, ele1, att1, root1) and T2 = (V2, lab2,
ele2, att2, root2), we say that T1 is subsumed by T2, written as T1 � T2 if

—V1 ⊆ V2.
—root1 = root2.
— lab2�V1

= lab1.
—att2�V1×Att

= att1.

—For all v ∈ V1, ele1(v) is a sublist of a permutation of ele2(v).

This relation is a pre-order, which gives rise to an equivalence relation:
T1 ≡ T2 iff T1 � T2 and T2 � T1. That is, T1 ≡ T2 iff T1 and T2 are equal
as unordered trees. We define [T ] to be the ≡-equivalence class of T . We write
[T ] |= D if T1 |= D for some T1 ∈ [T ]. It is easy to see that for any T1 ≡ T2,
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paths(T1) = paths(T2); hence, T1 ✁ D iff T2 ✁ D. We shall also write T1 ≺ T2
when T1 � T2 and T2 �� T1.

In the following definition, we extend the notion of tuple for relational
databases to the case of XML. In a relational database, a tuple is a function
that assigns to each attribute a value from the corresponding domain. In our
setting, a tree tuple t in a DTD D is a function that assigns to each path in D
a value in Vert ∪ Str ∪ {⊥} in such a way that t represents a finite tree with
paths from D containing at most one occurrence of each path. In this section,
we show that an XML tree can be represented as a set of tree tuples.

Definition 3.1 (Tree tuples). Given a DTD D = (E, A, P, R, r), a tree tuple
t in D is a function from paths(D) to Vert ∪ Str ∪ {⊥} such that:

—For p∈EPaths(D), t(p)∈Vert ∪ {⊥}, and t(r) �=⊥.
—For p ∈ paths(D) − EPaths(D), t(p) ∈ Str ∪ {⊥}.
—If t(p1) = t(p2) and t(p1) ∈ Vert, then p1 = p2.
—If t(p1)=⊥ and p1 is a prefix of p2, then t(p2)=⊥.
—{p ∈ paths(D) | t(p) �= ⊥} is finite.

T (D) is defined to be the set of all tree tuples in D. For a tree tuple t and a path
p, we write t.p for t(p).

Example 3.2. Suppose that D is the DTD shown in Example 1.1. Then a
tree tuple in D assigns values to each path in paths(D):

t(courses) = v0
t(courses.course) = v1
t(courses.course.@cno) = csc200
t(courses.course.title) = v2
t(courses.course.title.S) = Automata Theory
t(courses.course.taken by) = v3
t(courses.course.taken by.student) = v4
t(courses.course.taken by.student.@sno) = st1
t(courses.course.taken by.student.name) = v5
t(courses.course.taken by.student.name.S) = Deere
t(courses.course.taken by.student.grade) = v6
t(courses.course.taken by.student.grade.S) = A+

We intend to consider tree tuples in XML trees conforming to a DTD. The ability
to map a path to null (⊥) allow one in principle to consider tuples with paths
that do not reach the leaves of a give tree, although our intention is to consider
only paths that do reach the leaves. However, nulls are still needed in tree
tuples because of the disjunction in DTDs. For example, let D = (E, A, P,
R, r), where E = {r, a, b}, A = ∅, P (r) = (a|b), P (a) = ε and P (b) = ε. Then
paths(D) = {r, r.a, r.b} but no tree tuple coming from an XML tree conforming
to D can assign nonnull values to both r.a and r.b.

If D is a recursive DTD, then paths(D) is infinite; however, only a finite
number of values in a tree tuple are different from ⊥. For each tree tuple t, its
nonnull values give rise to an XML tree as follows.
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Definition 3.3 (treeD). Given a DTD D = (E, A, P, R, r) and a tree tuple
t ∈ T (D), treeD(t) is defined to be an XML tree (V , lab, ele, att, root), where
root = t.r and

—V = {v ∈ Vert | ∃p ∈ paths(D) such that v = t.p}.
—If v = t.p and v ∈ V , then lab(v) = last(p).
—If v = t.p and v ∈ V , then ele(v) is defined to be the list containing {t.p′ |

t.p′ �= ⊥ and p′ = p.τ, τ ∈ E, or p′ = p.S}, ordered lexicographically.
—If v = t.p, @l ∈ A and t.p.@l �= ⊥, then att(v, @l ) = t.p.@l .

We note that, in this definition, the lexicographic order is arbitrary, and it is
chosen simply because an XML tree must be ordered.

Example 3.4. Let D be the DTD from Example 1.1 and t the tree tuple from
Example 3.2. Then, t gives rise to the following XML tree:

Notice that the tree in the example conforms to the DTD from
Example 1.1. In general, this need not be the case. For instance, if the
rule <!ELEMENT taken_by (student*)> in the DTD shown in Example 1.1 is
changed by a rule saying that every course must have at least two stu-
dents <!ELEMENT taken_by (student, student+)>, then the tree shown in
Example 3.4 does not conform to the DTD. However, treeD(t) would always be
compatible with D, as easily follows from the definition:

PROPOSITION 3.5. If t ∈ T (D), then treeD(t) ✁ D.

We would like to describe XML trees in terms of the tuples they contain.
For this, we need to select tuples containing the maximal amount of infor-
mation. This is done via the usual notion of ordering on tuples (and rela-
tions) with nulls [Buneman et al. 1991; Grahne 1991; Gunter 1992]. If we
have two tree tuples t1, t2, we write t1 � t2 if whenever t1.p is defined,
then so is t2.p, and t1.p �= ⊥ implies t1.p = t2.p. As usual, t1 � t2 means
t1 � t2 and t1 �= t2. Given two sets of tree tuples, X and Y , we write
X �� Y if ∀t1 ∈ X ∃t2 ∈ Y t1 � t2.

Definition 3.6 (tuplesD). Given a DTD D and an XML tree T such that
T ✁ D, tuplesD(T ) is defined to be the set of maximal, with respect to �, tree
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tuples t such that treeD(t) is subsumed by T ; that is:

max�{t ∈ T (D) | treeD(t) � T }.
Observe that T1 ≡ T2 implies tuplesD(T1) = tuplesD(T2). Hence, tuplesD applies
to equivalence classes: tuplesD([T ]) = tuplesD(T ). The following proposition
lists some simple properties of tuplesD(·).

PROPOSITION 3.7. If T ✁ D, then tuplesD(T ) is a finite subset of T (D). Fur-
thermore, tuplesD(·) is monotone: T1 � T2 implies tuplesD(T1) �� tuplesD(T2).

PROOF. We prove only monotonicity. Suppose that T1 � T2 and t1 ∈
tuplesD(T1). We have to prove that there exists t2 ∈ tuplesD(T2) such that t1 � t2.
If t1 ∈ tuplesD(T2), this is obvious, so assume that t1 �∈ tuplesD(T2). Given
that t1 ∈ tuplesD(T1), treeD(t1) � T1, and, therefore, treeD(t1) � T2. Hence, by
definition of tuplesD(·), there exists t2 ∈ tuplesD(T2) such that t1 � t2, since
t1 �∈ tuplesD(T2).

Example 3.8. In Example 1.1, we saw a DTD D and a tree T conforming
to D. In Example 3.2, we saw one tree tuple t for that tree, with identifiers
assigned to some of the element nodes of T . If we assign identifiers to the rest
of the nodes, we can compute the set tuplesD(T ) (the attributes are sorted as in
Example 3.2):

{(v0, v1, csc200, v2, Automata Theory, v3, v4, st1, v5, Deere, v6, A+),
(v0, v1, csc200, v2, Automata Theory, v3, v7, st2, v8, Smith, v9, B-),
(v0, v10, mat100, v11, Calculus I, v12, v13, st1, v14, Deere, v15, A),
(v0, v10, mat100, v11, Calculus I, v12, v16, st3, v17, Smith, v18, B+)}.

Finally, we define the trees represented by a set of tuples X as the minimal,
with respect to �, trees containing all tuples in X .

Definition 3.9 (treesD). Given a DTD D and a set of tree tuples X ⊆ T (D),
treesD(X ) is defined to be:

min�{T | T ✁ D and ∀t ∈ X , treeD(t) � T }.
Notice that if T ∈ treesD(X ) and T ′ ≡ T , then T ′ is in treesD(X ). The following
shows that every XML document can be represented as a set of tree tuples, if
we consider it as an unordered tree. That is, a tree T can be reconstructed from
tuplesD(T ), up to equivalence ≡.

THEOREM 3.10. Given a DTD D and an XML tree T, if T ✁ D, then
treesD(tuplesD([T ])) = [T ].

PROOF. Every XML tree is finite, and, therefore, tuplesD([T ]) = {t1, . . . , tn},
for some n. Suppose that T �∈ treesD({t1, . . . , tn}). Given that treeD(ti) � T , for
each i ∈ [1, n], there is an XML tree T ′ such that T ′ � T and treeD(ti) � T ′, for
each i ∈ [1, n]. If T ′ ≺ T , there is at least one node, string or attribute value
contained in T which is not contained in T ′. This value must be contained
in some tree tuple t j ( j ∈ [1, n]), which contradicts treeD(t j ) � T ′. Therefore,
T ∈ treesD(tuplesD([T ])).

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



A Normal Form for XML Documents • 205

Let T ′ ∈ treesD(tuplesD([T ])). For each i ∈ [1, n], treeD(ti) � T ′. Thus, given
that tuplesD(T ) = {t1, . . . , tn}, we conclude that T � T ′, and, therefore, by
definition of treesD, T ′ ≡ T .

Example 3.11. It could be the case that for some set of tree tuples X there
is no an XML tree T such that for every t ∈ X , tree(t) � T . For example, let D
be a DTD D = (E, A, P, R, r), where E = {r, a, b}, A = ∅, P (r) = (a|b), P (a) = ε

and P (b) = ε. Let t1, t2 ∈ T (D) be defined as

t1.r = v0 t2.r = v2
t1.r.a = v1 t2.r.a = ⊥
t1.r.b = ⊥ t2.r.b = v3

Since t1.r �= t2.r, there is no an XML tree T such that treeD(t1) � T and
treeD(t2) � T .

We say that X ⊆ T (D) is D-compatible if there is an XML tree T such that
T ✁ D and X ⊆ tuplesD(T ). For a D-compatible set of tree tuples X , there is
always an XML tree T such that for every t ∈ X , treeD(t) � T . Moreover,

PROPOSITION 3.12. If X ⊆ T (D) is D-compatible, then (a) There is an XML
tree T such that T ✁ D and treesD(X ) = [T ], and (b) X �� tuplesD(treesD(X )).

PROOF

(a) Assume that D = (E, A, P, R, r). Since X is D-compatible, there
exists an XML tree T ′ = (V ′, lab′, ele′, att′, root ′) such that T ′ ✁ D and
X ⊆ tuplesD(T ′). We use T ′ to define an XML tree T = (V , lab, ele, att, root)
such that treesD(X ) = [T ].

For each v ∈ V ′, if there is t ∈ X and p ∈ paths(D) such that t.p = v, then
v is included in V . Furthermore, for each v ∈ V , lab(v) is defined as lab′(v),
ele(v) = [s1, . . . , sn], where each si = t ′.p.S or si = t ′.p.τ for some t ′ ∈ X and
τ ∈ E such that t ′.p = v. For each @l ∈ A such that t ′.p.@l �= ⊥ and t ′.p = v for
some t ′ ∈ X , att(v, @l ) is defined as t ′.p.@l . Finally, root is defined as root ′. It is
easy to see that treesD(X ) = [T ].

(b) Let t ∈ X and T be an XML tree such that treesD(X ) = [T ]. If t ∈
tuplesD([T ]), then the property holds trivially. Suppose that t �∈ tuplesD([T ]).
Then, given that treeD(t) � T , there is t ′ ∈ tuplesD([T ]) such that t � t ′. In either
case, we conclude that there is t ′ ∈ tuplesD(treesD(X )) such that t � t ′.

The example below shows that it could be the case that tuplesD(treesD(X ))
properly dominates X , that is, X �� tuplesD(treesD(X )) and tuplesD
(treesD(X )) ��� X . In particular, this example shows that the inverse of
Theorem 3.10 does not hold, that is, tuplesD(treesD(X )) is not necessarily equal
to X for every set of tree tuples X , even if this set is D-compatible. Let D be as
in Example 3.11 and t1, t2 ∈ T (D) be defined as

t1.r = v0 t2.r = v0
t1.r.a = v1 t2.r.a = ⊥
t1.r.b = ⊥ t2.r.b = v2
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Let t3 be a tree tuple defined as t3.r = v0, t3.r.a = v1 and t3.r.b = v2. Then,
tuplesD(treesD({t1, t2})) = {t3} since t1 � t3 and t2 � t3, and, therefore, {t1, t2} ��

tuplesD(treesD({t1, t2})) and tuplesD(treesD({t1, t2})) ��� {t1, t2}.
From Theorem 3.10 and Proposition 3.12, it is straightforward to prove the

following Corollary.

COROLLARY 3.13. For a D-compatible set of tree tuples X , treesD(tuplesD
(treesD(X ))) = treesD(X ).

Theorem 3.10 and Proposition 3.12 are summarized in the diagram presented
in the following figure. In this diagram, X is a D-compatible set of tree tuples.
The arrow ⊂ ✲ stands for the �� ordering.

4. FUNCTIONAL DEPENDENCIES

We define functional dependencies for XML by using tree tuples. For a DTD
D, a functional dependency (FD) over D is an expression of the form S1 → S2
where S1, S2 are finite nonempty subsets of paths(D). The set of all FDs over
D is denoted by FD(D).

For S ⊆ paths(D), and t, t ′ ∈ T (D), t.S = t ′.S means t.p = t ′.p for all p ∈ S.
Furthermore, t.S �= ⊥ means t.p �= ⊥ for all p ∈ S. If S1 → S2 ∈ FD(D) and T
is an XML tree such that T ✁ D and S1 ∪ S2 ⊆ paths(T ), we say that T satisfies
S1 → S2 (written T |= S1 → S2) if for every t1, t2 ∈ tuplesD(T ), t1.S1 = t2.S1
and t1.S1 �= ⊥ imply t1.S2 = t2.S2. We observe that if tree tuples t1, t2 satisfy
an FD S1 → S2, then for every path p ∈ S2, t1.p and t2.p are either both null
or both nonnull. Moreover, if for every pair of tree tuples t1, t2 in an XML tree
T , t1.S1 = t2.S1 implies they have a null value on some p ∈ S1, then the FD is
trivially satisfied by T .

The previous definition extends to equivalence classes, since for any FD ϕ,
and T ≡ T ′, T |= ϕ iff T ′ |= ϕ. We write T |= �, for � ⊆ FD(D), if T |= ϕ for
each ϕ ∈ �, and we write T |= (D, �), if T |= D and T |= �.

Example 4.1. Referring back to Example 1.1, we have the following FDs.
cno is a key of course:

courses.course.@cno → courses.course. (FD1)

Another FD says that two distinct student subelements of the same course
cannot have the same sno:

{courses.course, courses.course.taken by.student.@sno} →
courses.course.taken by.student. (FD2)
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Finally, to say that two student elements with the same sno value must have
the same name, we use

courses.course.taken by.student.@sno →
courses.course.taken by.student.name.S. (FD3)

We offer a few remarks on our definition of FDs. First, using the tree tuples
representation, it is easy to combine node and value equality: the former corre-
sponds to equality between vertices and the latter to equality between strings.
Moreover, keys naturally appear as a subclass of FDs, and relative constraints
can also be encoded. Note that by defining the semantics of FD(D) on T (D),
we essentially define satisfaction of FDs on relations with null values, and our
semantics is the standard semantics used in Atzeni and Morfuni [1984] and
Levene and Loizou [1998].

Given a DTD D, a set � ⊆ FD(D) and ϕ ∈ FD(D), we say that (D, �)
implies ϕ, written (D, �) � ϕ, if for any tree T with T |= D and T |= �, it is
the case that T |= ϕ. The set of all FDs implied by (D, �) will be denoted by
(D, �)+. Furthermore, an FD ϕ is trivial if (D, ∅) � ϕ. In relational databases,
the only trivial FDs are X → Y , with Y ⊆ X . Here, DTD forces some more
interesting trivial FDs. For instance, for each p ∈ EPaths(D) and p′ a prefix
of p, (D, ∅) � p → p′, and for every p, p.@l ∈ paths(D), (D, ∅) � p → p.@l .
As a matter of fact, trivial functional dependencies in XML documents can be
much more complicated than in the relational case, as we show in the following
example.

Example 4.2. Let D = (E, A, P, R, r) be a DTD. Assume that a, b and
c are element types in D and P (r) = (a|b|c). Then, for every p ∈ paths(D),
{r.a, r.b} → p is a trivial FD since for every XML tree T conforming to D and
every tree tuple t in T , t.r.a = ⊥ or t.r.b = ⊥.

5. XNF: AN XML NORMAL FORM

With the definitions of the previous section, we are ready to present the normal
form that generalizes BCNF for XML documents.

Definition 5.1. Given a DTD D and � ⊆ FD(D), (D, �) is in XML normal
form (XNF) iff for every nontrivial FD ϕ ∈ (D, �)+ of the form S → p.@l or
S → p.S, it is the case that S → p is in (D, �)+.

The intuition is as follows. Suppose that S → p.@l is in (D, �)+. If T is an
XML tree conforming to D and satisfying �, then in T for every set of values
of the elements in S, we can find only one value of p.@l . Thus, for every set of
values of S we need to store the value of p.@l only once; in other words, S → p
must be implied by (D, �).

In this definition, we impose the condition that ϕ is a nontrivial FD. Indeed,
the trivial FD p.@l → p.@l is always in (D, �)+, but often p.@l → p �∈ (D, �)+,
which does not necessarily represent a bad design.

To show how XNF distinguishes good XML design from bad design, we revisit
the examples from the introduction, and prove that XNF generalizes BCNF and
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NNF, a normal form for nested relations [Mok et al. 1996; Özsoyoglu and Yuan
1987], when only functional dependencies are provided.

Example 5.2. Consider the DTD from Example 1.1 whose FDs are (FD1),
(1), (1) shown in the previous section. (1) associates a unique name with each
student number, which is therefore redundant. The design is not in XNF, since
it contains (1) but does not imply the functional dependency

courses.course.taken by.student.@sno → courses.course.taken by.student.name.

To remedy this, we gave a revised DTD in Example 1.1. The idea was to create a
new element info for storing information about students. That design satisfies
FDs (FD1), (1) as well as

courses.info.number.@sno → courses.info,

and can be easily verified to be in XNF.

Example 5.3. Suppose that D is the DBLP DTD from Example 1.2. Among
the set � of FDs satisfied by the documents are:

db.conf.title.S → db.conf (FD4)
db.conf.issue → db.conf.issue.inproceedings.@year (FD5)

{db.conf.issue, db.conf.issue.inproceedings.title.S} →
db.conf.issue.inproceedings (FD6)

db.conf.issue.inproceedings.@key → db.conf.issue.inproceedings (FD7)

Constraint (FD4) enforces that two distinct conferences have distinct titles.
Given that an issue of a conference represents a particular year of the con-
ference, constraint (FD5) enforces that two articles of the same issue must
have the same value in the attribute year. Constraint (FD6) enforces that for
a given issue of a conference, two distinct articles must have different titles.
Finally, constraint (FD7) enforces that key is an identifier for each article in the
database.

By (FD5), for each issue of a conference, its year is stored in every article in
that issue and, thus, DBLP documents can store redundant information. (D, �)
is not in XNF, since

db.conf.issue → db.conf.issue.inproceedings

is not in (D, �)+.
The solution we proposed in the introduction was to make year an attribute

of issue. (FD5) is not valid in the revised specification, which can be easily
verified to be in XNF. Note that we do not replace (FD5) by db.conf.issue →
db.conf.issue.@year, since it is a trivial FD and thus is implied by the new DTD
alone.

5.1 BCNF and XNF

Relational databases can be easily mapped into XML documents. Given a rela-
tion G(A1, . . . , An) and a set of FDs FD over G, we translate the schema (G, FD)
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into an XML representation, that is, a DTD and a set of XML FDs (DG , �FD).
The DTD DG = (E, A, P, R, db) is defined as follows:

— E = {db, G}.
— A = {@A1, . . . , @An}.
— P (db) = G∗ and P (G) = ε.
— R(db) = ∅, R(G) = {@A1, . . . , @An}.

Without loss of generality, assume that all FDs are of the form X → A, where
A is an attribute. Then �FD over DG is defined as follows.

—For each FD Ai1 · · · Aim → Ai ∈ FD, {db.G.@Ai1 , . . . , db.G.@Aim} → db.G.@
Ai is in �FD.

—{db.G.@A1, . . . , db.G.@An} → db.G is in �FD.

The latter is included to avoid duplicates.

Example 5.4. A schema G(A, B, C) can be coded by the following DTD:

<!ELEMENT db (G*)>
<!ELEMENT G EMPTY>
<!ATTLIST G

A CDATA #REQUIRED
B CDATA #REQUIRED
C CDATA #REQUIRED>

In this schema, an FD A → B is translated into db.G.@A → db.G.@B.

The following proposition shows that BCNF and XNF are equivalent when
relational databases are appropriately coded as XML documents.

PROPOSITION 5.5. Given a relation schema G(A1, . . . , An) and a set of func-
tional dependencies FD over G, (G, FD) is in BCNF iff (DG , �FD) is in XNF.

PROOF. This follows from Proposition 5.7 (to be proved in the next section)
since every relation schema is trivially consistent (see next section) and NNF-
FD coincides with BCNF when only functional dependencies are provided [Mok
et al. 1996].

5.2 NNF and XNF

A nested relation schema is either a set of attributes X , or X (G1)∗ · · · (Gn)∗,
where Gi ’s are nested relation schemas. An example of a nested relation for the
schema H1 = Country(H2)∗, H2 = State(H3)∗, H3 = City is shown in Figure 3(a).

Nested schemas are naturally mapped into DTDs, as they are defined by
means of regular expressions. For a nested schema G = X (G1)∗ · · · (Gn)∗,
we introduce an element type G with P (G) = G∗

1, . . . , G∗
n and R(G) =

{@A1, . . . , @Am}, where X = {A1, . . . , Am}; at the top level we have a new
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Fig. 3. Nested relation and its unnesting.

element type db with P (db) = G∗ and R(db) = ∅. In our example the DTD
is:

<!DOCTYPE db [
<!ELEMENT db (H1*)>
<!ELEMENT H1 (H2*)>
<!ATTLIST H1 Country CDATA #REQUIRED>

<!ELEMENT H2 (H3*)>
<!ATTLIST H2 State CDATA #REQUIRED>

<!ELEMENT H3 EMPTY>
<!ATTLIST H3 City CDATA #REQUIRED>

]>

The definition of FDs for nested relations uses the notion of complete unnesting.
The complete unnesting of a nested relation from our example is shown in
Figure 3(b); in general, this notion is easily defined by induction. In our example,
we have a valid FD State → Country, while the FD State → City does not hold.

Normalization is usually considered for nested relations in the partition nor-
mal form (PNF) [Abiteboul et al. 1995; Mok et al. 1996; Özsoyoglu and Yuan
1987]. A nested relation r over X (G1)∗ · · · (Gn)∗ is in PNF if for any two tuples t1,
t2 in r: (1) if t1.X = t2.X , then the nested relation t1.Gi and t2.Gi are equal, for
every i ∈ [1, n], and (2) each nested relation t1.Gi is in PNF, for every i ∈ [1, n].
Note that PNF can be enforced by using FDs on the XML representation. In
our example this is done as follows:

db.H1.@Country → db.H1

{db.H1, db.H1.H2.@State} → db.H1.H2

{db.H1.H2, db.H1.H2.H3.@City} → db.H1.H2.H3

It turns out that one can define FDs over nested relations by using the XML rep-
resentation. Let U be a set of attributes, G1 a nested relation schema over U and
FD a set of functional dependencies over G1. Assume that G1 includes nested re-
lation schemas G2, . . . , Gn and a set of attributes U ′ ⊆ U . For each Gi (i ∈ [1, n]),
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Fig. 4. Two schema trees.

path(Gi) is inductively defined as follows. If Gi = G1, then path(Gi) = db.G1.
Otherwise, if Gi is a nested attribute of G j , then path(Gi) = path(G j ).Gi. Fur-
thermore, if A ∈ U ′ is an atomic attribute of Gi, then path(A) = path(Gi).@A.
For instance, for the schema of the nested relation in Figure 3, path(H2) =
db.H1.H2 and path(City) = db.H1.H2.H3.@City.

We now define �FD as follows:

—For each FD Ai1 · · · Aim → Ai ∈ FD, {path(Ai1 ), . . . , path(Aim)} → path(Ai) is
in �FD.

—For each i ∈ [1, n], if Aj1 , . . . , Ajm is the set of atomic attributes of Gi and Gi
is a nested attribute of G j , {path(G j ), path(Aj1 ), . . . , path(Ajm)} → path(Gi)
is in �FD.

Furthermore, if Bj1 , . . . , Bjl is the set of atomic attributes of G1, then
{path(Bj1 ), . . . , path(Bjl )} → path(G1) is in �FD.

Note that the last rule imposes the partition normal form. The set �PNF contains
all the functional dependencies defined by this rule.

A normal form for nested relations called NNF was first introduced in
Özsoyoglu and Yuan [1987], and then revisited in Mok et al. [1996]. These
normal forms were defined for nested schemas containing functional and mul-
tivalued dependencies. Here we consider a normal form NNF-FD, which is the
nested normal form NNF introduced in Mok et al. [1996] restricted to FDs only.
To define this normal form, we need to introduce some terminology.

Every nested relation schema G can be represented as a tree st(G), called the
schema tree of G. Formally, if G is a flat schema containing a set of attributes
X , then st(G) is a single node tree whose root is the set of attributes X . Other-
wise, G is of the form X (G1)∗ · · · (Gn)∗ and st(G) is a tree defined as follows: The
root of st(G) is X and the children of X are the roots of st(G1), . . . , st(Gn). For
example, the schema trees of nested relation schemas G1 = Title(G2)∗(G3)∗,
G2 = Director, G3 = Theater(G4)∗, G4 = Snack and H1 = Country(H2)∗,
H2 = State(H3)∗, H3 = City are shown in Figures 4(a) and 4(b), respectively.
Given a nested relation schema G including a set of attributes U , for each node
X of st(G) we define ancestor(X ) as the union of attributes in all ancestors
of X in st(G), including X . For instance, ancestor(State) = {Country, State}
in the schema tree shown in Figure 4(b). Similarly, for every A ∈ U , we de-
fine ancestor(A) as the set of attributes ancestor(X A), where X A is the one
of st(G) containing the attribute A, and for every node X of st(G) we define

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



212 • M. Arenas and L. Libkin

descendant(X ) as the union of attributes in all descendants of X in st(G), in-
cluding X .

Data dependencies for nested relations are defined by using the notion of
complete unnesting. Thus, every nested schema has some multivalued de-
pendencies. For example, the nested relation schema G1 = Title(G2)∗(G3)∗,
G2 = Director, G3 = Theater(G4)∗, G4 = Snack has the following set of multi-
valued dependencies:

{Title →→ Director, Title →→ { Theater, Snack}, {Title, Theater} →→ Snack},
since for every nested relation I of G1, the complete unnesting of I satisfies
these dependencies. Formally, the set of multivalued dependencies embedded
in a nested relation schema G is defined to be:

MVD(G) = {ancestor(X ) →→ descendant(Y ) | (X , Y ) is an edge in st(G)}.
Given a nested relation schema G, the set MVD(G) is used to define NNF and,
in particular, to define NNF-FD. More precisely, if � is a set of functional and
multivalued dependencies over G, then (G, �) is in NNF [Mok et al. 1996] if
(1) � is equivalent to MVD(G) ∪ {X → Y | X → Y ∈ (G, �)+}, and (2) for
each nontrivial FD X → A ∈ (G, �)+, X → ancestor(A) is also in (G, �)+. As
before, (G, �)+ stands for the set of all FDs implied by (G, �). Furthermore, if
FD is a set of functional dependencies over G, then (G, FD) is in NNF-FD if (1)
FD � MVD(G), that is, every multivalued dependency embedded in G is implied
by FD, and (2) for each nontrivial FD X → A ∈ (G, FD)+, X → ancestor(A) is
also in (G, FD)+.

Example 5.6. We show here that in general XNF does not generalize NNF
since it does not consider multivalued dependencies. Let G be the nested schema
shown in Figure 4(a) and assume that � contains the following multivalued
dependencies:

Title →→ Director, Title →→ Theater,
Title →→ Snack.

Then (G, �) is not in NNF since the set of multivalued dependencies MVD(G) =
{Title →→ Director} is not equivalent to �. On the other hand, the XML repre-
sentation of (G, �) is trivially in XNF since � does not contain any functional
dependency.

To establish the relationship between NNF-FD and XNF, we have to intro-
duce the notion of consistent nested schemas. Given a nested relation schema
G and a set of FDs FD over G, (G, FD) is consistent [Mok et al. 1996] if
FD � MVD(G). It was shown in Mok et al. [1996] that for consistent nested
schemas, NNF precisely characterize redundancy in nested relations. The
result below shows that for consistent nested schemas, NNF-FD and XNF
coincide.

PROPOSITION 5.7. Let G be a nested relation schema and FD a set of func-
tional dependencies over G such that (G, FD) is consistent. Then (G, FD) is in
NNF-FD iff (DG , �FD) is in XNF.
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PROOF. First, we need to prove the following claim.

CLAIM 5.8. Ai1 · · · Aim → Ai ∈ (G, FD)+ if and only if {path(Ai1 ), . . . ,
path(Aim)} → path(Ai) ∈ (DG , �FD)+.

The proof of this claim follows from the following fact: For each instance I of
G, there is an XML tree TI conforming to DG such that I |= FD iff TI |= �FD.
Moreover, for each XML tree T conforming to DG and satisfying �PNF, there is
an instance IT of G such that T |= �FD iff IT |= FD.

Now we prove the proposition.

(⇐) Suppose that (DG , �FD) is in XNF. We prove that (G, FD) is in NNF-FD.
Given that (G, FD) is consistent, we only need to consider the second condition
in the definition of NNF-FD. Let Ai1 · · · Aim → Ai be a nontrivial functional
dependency in (G, FD)+. We have to prove that Ai1 · · · Aim → ancestor(Ai) is in
(G, FD)+. By Claim 5.8, we know that {path(Ai1 ), . . . , path(Aim)} → path(Ai) is
a nontrivial functional dependency in (DG , �FD)+. Since (DG , �FD) is in XNF,
{path(Ai1 ), . . . , path(Aim)} → path(G j ) is in (DG , �F D)+, where G j is a nested
relation schema contained in G such that Ai is an atomic attribute of G j . Thus,
given that path(G j ) → path(A) is a trivial functional dependency in DG , for each
A ∈ ancestor(Ai), we conclude that {path(Ai1 ), . . . , path(Aim)} → path(A) is in
(DG , �FD)+ for each A ∈ ancestor(Ai). By Claim 5.8, Ai1 · · · Aim → ancestor(Ai)
is in (G, FD)+.

(⇒) Suppose that (G, FD) is in NNF-FD. We will prove that (DG , �FD) is
in XNF. Let R be a nested relation schema contained in G and A an atomic
attribute of R. Suppose that there is S ⊆ paths(DG) such that S → path(A)
is a nontrivial functional dependency in (DG , �FD)+. We have to prove that
S → path(R) ∈ (DG , �FD)+. Let S1 and S2 be set of paths such that S =
S1 ∪ S2, S1 ⊆ EPaths(DG) and S2 ∩ EPaths(DG) = ∅. Let S′

1 = {path(A′) | there
is path(R ′) ∈ S1 such that A′ is an atomic attribute of some nested relation
schema mentioned in path(R ′)}. Given that �PNF ⊆ �FD, S′

1 → S1 ∈ (DG , �FD)+.
Thus, S′

1 ∪ S2 → path(A) ∈ (DG , �FD)+. Assume that S′
1 ∪ S2 = {path(Ai1 ), . . . ,

path(Aim)}. By Claim 5.8, Ai1 · · · Aim → A is a nontrivial functional dependency
in (G, FD)+. Thus, given that (G, FD) is in NNF-FD, we conclude that Ai1 · · ·
Aim → ancestor(A) is in (G, FD)+. Therefore, by Claim 5.8, S′

1 ∪ S2 → path(B)
is in (DG , �FD)+, for each B ∈ ancestor(A). But {path(B) | B ∈ ancestor(A)}
→ path(R) is in (DG , �FD)+, since �PNF ⊆ �FD. Thus, S′

1 ∪ S2 → path(R) ∈
(DG , �FD)+, and given that S1 → S′

1 is a trivial functional dependency in DG ,
we conclude that S → path(R) is in (DG , �FD)+.

6. NORMALIZATION ALGORITHMS

The goal of this section is to show how to transform a DTD D and a set of
FDs � into a new specification (D′, �′) that is in XNF and contains the same
information.

Throughout the section, we assume that the DTDs are nonrecursive. This
can be done without any loss of generality. Notice that in a recursive DTD D,
the set of all paths is infinite. However, a given set of FDs � only mentions a
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finite number of paths, which means that it suffices to restrict one’s attention
to a finite number of “unfoldings” of recursive rules.

We make an additional assumption that all the FDs are of the form:
{q, p1.@l1, . . . , pn.@ln} → p. That is, they contain at most one element path
on the left-hand side. Note that all the FDs we have seen so far are of this form.
While constraints of the form {q, q′, . . . } are not forbidden, they appear to be
quite unnatural (in fact it is very hard to come up with a reasonable exam-
ple where they could be used). Furthermore, even if we have such constraints,
they can be easily eliminated. To do so, we create a new attribute @l , remove
{q, q′} ∪ S → p and replace it by q′.@l → q′ and {q, q′.@l } ∪ S → p.

We shall also assume that paths do not contain the symbol S (since p.S can
always be replaced by a path of the form p.@l ).

6.1 The Decomposition Algorithm

For presenting the algorithm and proving its losslessness, we make the follow-
ing assumption: if X → p.@l is an FD that causes a violation of XNF, then
every time that p.@l is not null, every path in X is not null. This will make our
presentation simpler, and then at the end of the section we will show how to
eliminate this assumption.

Given a DTD D and a set of FDs �, a nontrivial FD S → p.@l is called
anomalous, over (D, �), if it violates XNF; that is, S → p.@l ∈ (D, �)+ but
S → p �∈ (D, �)+. A path on the right-hand side of an anomalous FD is called
an anomalous path, and the set of all such paths is denoted by AP(D, �).

In this section we present an XNF decomposition algorithm that combines
two basic ideas presented in the introduction: creating a new element type, and
moving an attribute.

6.1.1 Moving Attributes. Let D = (E, A, P, R, r) be a DTD and � a
set of FDs over D. Assume that (D, �) contains an anomalous FD q → p.@l ,
where q ∈ EPaths(D). For example, the DBLP database shown in Example 1.2
contains an anomalous FD of this form:

db.conf.issue → db.conf.issue.inproceedings.@year. (1)

To eliminate the anomalous FD, we move the attribute @l from the set of at-
tributes of the last element of p to the set of attributes of the last element of q,
as shown in the following figure.

For instance, to eliminate the anomalous functional dependency (1) we move
the attribute @year from the set of attributes of inproceedings to the set of
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attributes of issue. Formally, the new DTD D[p.@l := q.@m], where @m is an
attribute, is defined to be (E, A′, P, R ′, r), where A′ = A ∪ {@m}, R ′(last(q)) =
R(last(q)) ∪ {@m}, R ′(last(p)) = R(last(p)) − {@l } and R ′(τ ′) = R(τ ′) for each
τ ′ ∈ E − {last(q), last(p)}.

After transforming D into a new DTD D[p.@l := q.@m], a new set of func-
tional dependencies is generated. Formally, the set of FDs �[p.@l := q.@m]
over D[p.@l := q.@m] consists of all FDs S1 → S2 ∈ (D, �)+ with S1 ∪ S2 ⊆
paths(D[p.@l := q.@m]). Observe that the new set of FDs does not include the
functional dependency q → p.@l and, thus, it contains a smaller number of
anomalous paths, as we show in the following proposition.

PROPOSITION 6.1. Let D be a DTD, � a set of FDs over D, q → p.@l an
anomalous FD, with q ∈ EPaths(D), D′ = D[p.@l := q.@m], where @m is not
an attribute of last(q), and �′ = �[p.@l := q.@m]. Then AP(D′, �′) � AP(D, �).

PROOF. First, we prove (by contradiction) that q.@m �∈ AP(D′, �′). Suppose
that S′ ⊆ paths(D′) and S′ → q.@m ∈ (D′, �′)+ is a nontrivial functional de-
pendency. Assume that S′ → q �∈ (D′, �′)+. Then there is an XML tree T ′ such
that T ′ |= (D′, �′) and T ′ contains tree tuples t1, t2 such that t1.S′ = t2.S′,
t1.S′ �= ⊥ and t1.q �= t2.q. Given that there is no a constraint in �′ including
the path q.@m, the XML tree T ′′ constructed from T ′ by giving two distinct
values to t1.q.@m and t2.q.@m conforms to D′, satisfies �′ and does not satisfy
S′ → q.@m, a contradiction. Hence, q.@m �∈ AP(D′, �′).

Second, we prove that for every S1 ∪ S2 ⊆ paths(D′) − {q.@m}, (D, �) �
S1 → S2 if and only if (D′, �′) � S1 → S2, and, thus, by considering the
previous paragraph we conclude that AP(D′, �′) ⊆ AP(D, �). Let S1 ∪ S2 ⊆
paths(D′) −{q.@m}. By definition of �′, we know that if (D, �) � S1 → S2, then
(D′, �′) � S1 → S2 and, therefore, we only need to prove the other direction.
Assume that (D, �) �� S1 → S2. Then there exists an XML tree T such that
T |= (D, �) and T �|= S1 → S2. Define an XML tree T ′ from T by assigning
arbitrary values to q.@m and removing the attribute @l from last(p). Then
T ′ |= (D′, �′) and T ′ �|= S1 → S2, since all the paths mentioned in �′∪{S1 → S2}
are included in paths(D′) − {q.@m}. Thus, (D′, �′) �� S1 → S2.

To conclude the proof, we note that p.@l ∈ AP(D, �) and p.@l �∈ AP(D′, �′),
since p.@l �∈ paths(D′). Therefore, AP(D′, �′) � AP(D, �).

6.1.2 Creating New Element Types. Let D = (E, A, P, R, r) be a DTD
and � a set of FDs over D. Assume that (D, �) contains an anomalous FD
{q, p1.@l1, . . . , pn.@ln} → p.@l , where q ∈ EPaths(D) and n ≥ 1. For example,
the university database shown in Example 1.1 contains an anomalous FD of
this form (considering name.S as an attribute of student):

{courses, courses.course.taken by.student.@sno} →
courses.course.taken by.student.name.S. (2)

To eliminate the anomalous FD, we create a new element type τ as a child of
the last element of q, we make τ1, . . . , τn its children, where τ1, . . . , τn are new
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element types, we remove @l from the list of attributes of last(p) and we make it
an attribute of τ and we make @l1, . . . , @ln attributes of τ1, . . . , τn, respectively,
but without removing them from the sets of attributes of last(p1), . . . , last(pn),
as shown in the following figure:

For instance, to eliminate the anomalous functional dependency (2), in
Example 1.1, we create a new element type info as a child of courses, we re-
move name.S from student and we make it an “attribute” of info, we create
an element type number as a child of info and we make @sno its attribute.
We note that we do not remove @sno as an attribute of student. Formally, if
τ, τ1, . . . , τn are element types that are not in E, the new DTD, denoted by
D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l ]], is (E ′, A, P ′, R ′, r), where E ′ = E ∪ {τ,
τ1, . . . , τn} and

(1) if P (last(q)) is a regular expression s, then P ′(last(q)) is defined as the
concatenation of s and τ ∗, that is (s, τ ∗). Furthermore, P ′(τ ) is defined as the
concatenation of τ ∗

1 , . . . , τ ∗
n , P ′(τi) = ε, for each i ∈ [1, n], and P ′(τ ′) = P (τ ′),

for each τ ′ ∈ E − {last(q)}.
(2) R ′(τ ) = {@l }, R ′(τi) = {@li}, for each i ∈ [1, n], R ′(last(p)) = R(last(p))−{@l }

and R ′(τ ′) = R(τ ′) for each τ ′ ∈ E − {last(p)}.

After transforming D into a new DTD D′ = D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln,
@l ]], a new set of functional dependencies is generated. Formally, �[p.@l :=
q.τ [τ1.@l1, . . . , τn.@ln, @l ]] is a set of FDs over D′ defined as the union of the
sets of constraints defined in (1), (2) and (3):

(1) S1 → S2 ∈ (D, �)+ with S1 ∪ S2 ⊆ paths(D′).
(2) Each FD over q, pi, pi.@li (i ∈ [1, n]) and p.@l is transferred to τ and its

children. That is, if S1 ∪ S2 ⊆ {q, p1, . . . , pn, p1.@l1, . . . , pn.@ln, p.@l } and
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S1 → S2 ∈ (D, �)+, then we include an FD obtained from S1 → S2 by
changing pi to q.τ.τi, pi.@li to q.τ.τi.@li, and p.@l to q.τ.@l .

(3) {q, q.τ.τ1.@l1, . . . , q.τ.τn.@ln} → q.τ , and {q.τ, q.τ.τi.@li} → q.τ.τi for i ∈
[1, n].1

We are not interested in applying this transformation to an arbitrary anoma-
lous FD, but rather to a minimal one. To understand the notion of minimality
for XML FDs, we first introduce this notion for relational databases. Let R be
a relation schema containing a set of attributes U and � be a set of FDs over
R. If (R, �) is not in BCNF, then there exist pairwise disjoint sets of attributes
X , Y and Z such that U = X ∪ Y ∪ Z , � � X → Y and � �� X → A, for every
A ∈ Z . In this case, we say that X → Y is an anomalous FD. To eliminate
this anomaly, a decomposition algorithm splits relation R into two relations:
S(X , Y ) and T (X , Z ). A desirable property of the new schema is that S or T
is in BCNF. We say that X → Y is a minimal anomalous FD if S(X , Y ) is in
BCNF, that is, S(X , Y ) does not contain an anomalous FD. This condition can
be defined as follows: X → Y is minimal if there are no pairwise disjoint sets
X ′, Y ′ ⊆ U such that X ′ ∪ Y ′ � X ∪ Y , � � X ′ → Y ′ and � �� X ′ → X ∪ Y .

In the XML context, the definition of minimality is similar in the sense that
we expect the new element types τ , τ1, . . . , τn form a structure not containing
anomalous elements. However, the definition of minimality is more complex to
account for paths used in FDs. We say that {q, p1.@l1, . . . , pn.@ln} → p0.@l0
is (D, �)-minimal if there is no anomalous FD S′ → pi.@li ∈ (D, �)+ such
that i ∈ [0, n] and S′ is a subset of {q, p1, . . . , pn, p0.@l0, . . . , pn.@ln} such that
| S′ |≤ n and S′ contains at most one element path.

PROPOSITION 6.2. Let D be a DTD, � a set of FDs over D and
{q, p1.@l1, . . . , pn.@ln} → p.@l a (D, �)-minimal anomalous FD, where q ∈
EPaths(D) and n ≥ 1. If D′ = D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l ]], where τ ,
τ1, . . . , τn are new element types, and �′ = �[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l ]],
then AP(D′, �′) � AP(D, �).

PROOF. First, we prove that q.τ.τi.@li �∈ AP(D′, �′), for each i ∈ [1, n]. Sup-
pose that there is S′ ⊆ paths(D′) such that S′ → q.τ.τi.@li is a nontrivial func-
tional dependency in (D′, �′)+ for some i ∈ [1, n]. Notice that q.τ.τi �∈ S′, since
q.τ.τi → q.τ.τi.@li is a trivial functional dependency. Let S1 ∪ S2 = S′, where
(1) S1 ∩ ({q, q.τ.@l } ∪ {q.τ.τ j | j ∈ [1, n] and j �= i} ∪ {q.τ.τ j .@l j | j ∈ [1, n]}) = ∅
and (2) S2 ⊆ {q, q.τ.@l } ∪ {q.τ.τ j | j ∈ [1, n] and j �= i} ∪ {q.τ.τ j .@l j | j ∈ [1, n]}.

If there is no an XML tree T ′ conforming to D′, satisfying �′ and containing a
tuple t such that t.S1∪S2 �= ⊥, then S1∪S2 → q.τ.τi must be in (D′, �′)+. In this
case q.τ.τi.@li �∈ AP(D′, �′). Suppose that there is an XML tree T ′ conforming
to D′, satisfying �′ and containing a tuple t such that t.S1 ∪ S2 �= ⊥. In this
case, by definition of �′ it is straightforward to prove that S2 → q.τ.τi.@li is in
(D′, �′)+.

1If ⊥ can be a value of p.@l in tuplesD(T ), the definition must be modified slightly, by letting P ′(τ )
be τ ∗

1 , . . . , τ ∗
n , (τ ′|ε), where τ ′ is fresh, making @l an attribute of τ ′, and modifying the definition of

FDs accordingly.

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



218 • M. Arenas and L. Libkin

By definition of �′ and (D, �)-minimality of {q, p1.@l1, . . . , pn.@ln} → p.@l ,
one of the following is true: (1) S2 → q.τ.τi.@li is not an anomalous FD,
(2) {q, q.τ.τ1.@l1, . . . , q.τ.τn.@ln, q.τ.@l } = S2 ∪{q.τ.τi.@li} or (3) {q.τ.τ j , q.τ.τ1.@
l1, . . . , q.τ.τn.@ln, q.τ.@l } = S2 ∪ {q.τ.τi.@li} for some j �= i ( j ∈ [1, n]). In the
first case, q.τ.τi.@li �∈ AP(D′, �′), so we assume that either (2) or (3) holds.
We prove that S2 → q.τ.τi must be in (D′, �′)+. If either (2) or (3) holds, then
S2 ∪ {q.τ.τi.@li} → q.τ is in (D′, �′)+ since {q, q.τ.τ1.@l1, . . . , q.τ.τn.@ln} →
q.τ is in �′ and q.τ.τk → q is a trivial FD in D′, for every k ∈ [1, n]. Let T ′

be an XML tree conforming to D′ and satisfying �′ and t1, t2 ∈ tuplesD′(T ′)
such that t1.S2 = t2.S2 and t1.S2 �= ⊥. Given that S2 → q.τ.τi.@li ∈ (D′, �′)+,
t1.q.τ.τi.@li = t2.q.τ.τi.@li. If t1.q.τ.τi.@li = ⊥, then t1.q.τ.τi = t2.q.τ.τi = ⊥. If
t1.q.τ.τi.@li �= ⊥, then t1.q.τ = t2.q.τ and t1.q.τ �= ⊥, because S2 ∪ {q.τ.τi.@li} →
q.τ ∈ (D′, �′)+. But, by definition of �′, {q.τ, q.τ.τi.@li} → q.τ.τi ∈ �′, and,
therefore, t1.q.τ.τi = t2.q.τ.τi. In any case, we conclude that t1.q.τ.τi = t2.q.τ.τi
and, therefore, S2 → q.τ.τi ∈ (D′, �′)+. Thus, q.τ.τi.@li �∈ AP(D′, �′).

In a similar way, we conclude that q.τ.@l �∈ AP(D′, �′).
Second, we prove that for every S3 ∪ S4 ⊆ paths(D) − {p.@l }, (D, �) � S3 →

S4 if and only if (D′, �′) � S3 → S4, and, thus, by considering the previous
paragraph we conclude that AP(D′, �′) ⊆ AP(D, �). Let S3 ∪ S4 ⊆ paths(D) −
{p.@l }. By definition of �′, we know that if (D, �) � S3 → S4, then (D′, �′) �
S3 → S4 and, therefore, we only need to prove the other direction. Assume that
(D, �) �� S3 → S4. Then there exists an XML tree T such that T |= (D, �) and
T �|= S3 → S4. Define an XML tree T ′ from T by assigning ⊥ to q.τ and removing
the attribute @l from last(p). Then T ′ |= (D′, �′) and T ′ �|= S3 → S4, since all
the paths mentioned in �′ ∪ {S3 → S4} are included in paths(D)−{p.@l }. Thus,
(D′, �′) �� S3 → S4.

To conclude the proof, we note that p.@l ∈ AP(D, �) and p.@l �∈ AP(D′, �′),
since p.@l �∈ paths(D′). Therefore, AP(D′, �′) � AP(D, �).

6.1.3 The Algorithm. The algorithm applies the two transformations pre-
sented in the previous sections until the schema is in XNF, as shown in Figure 5.
Step (2) of the algorithm corresponds to the “moving attributes” rule applied
to an anomalous FD q → p.@l and step (3) corresponds to the “creating new
element types” rule applied to an anomalous FD {q, p1.@l1, . . . , pn.@ln} → p.@l .
We choose to apply first the “moving attributes” rule since the other one involves
minimality testing .

The algorithm shows in Figure 5 involves FD implication, that is, testing
membership in (D, �)+ (and consequently testing XNF and (D, �)-minimality),
which will be described in Section 7. Since each step reduces the number of
anomalous paths (Propositions 6.1 and 6.2), we obtain:

THEOREM 6.3. The XNF decomposition algorithm terminates, and outputs a
specification (D, �) in XNF.

Even if testing FD implication is infeasible, one can still decompose into
XNF, although the final result may not be as good as with using the im-
plication. A slight modification of the proof of Propositions 6.1 and 6.2
yields:
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Fig. 5. XNF decomposition algorithm.

PROPOSITION 6.4. Consider a simplification of the XNF decomposition algo-
rithm which only consists of step (3) applied to FDs S → p.@l ∈ �, and in which
the definition of �[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l ]] is modified by using � in-
stead of (D, �)+. Then such an algorithm always terminates and its result is in
XNF.

6.2 Lossless Decomposition

To prove that our transformations do not lose any information from the docu-
ments, we define the concept of lossless decompositions similarly to the rela-
tional notion of “calculously dominance” from Hull [1986]. That notion requires
the existence of two relational algebra queries that translate back and forth
between two relational schemas. Adapting the definition of Hull [1986] is prob-
lematic in our setting, as no XML query language yet has the same “yardstick”
status as relational algebra for relational databases.

Instead, we define (D′, �′) as a lossless decomposition of (D, �) if there is a
mapping f from paths in the DTD D′ to paths in the DTD D such that for every
tree T |= (D, �), there is a tree T ′ |= (D′, �′) such that T and T ′ agree on all
the paths with respect to this mapping f .

This can be done formally using the relational representation of XML trees
via the tuplesD(·) operator. Given DTDs D and D′, a function f : paths(D′) →
paths(D) is a mapping from D′ to D if f is onto and a path p is an element path
in D′ if and only if f (p) is an element path in D. Given tree tuples t ∈ T (D) and
t ′ ∈ T (D′), we write t ≡ f t ′ if for all p ∈ paths(D′) − EPaths(D′), t ′.p = t. f (p).
Given nonempty sets of tree tuples X ⊆ T (D) and X ′ ⊆ T (D′), we let X ≡ f X ′

if for every t ∈ X , there exists t ′ ∈ X ′ such that t ≡ f t ′, and for every t ′ ∈ X ′,
there exist t ∈ X such that t ≡ f t ′. Finally, if T and T ′ are XML trees such that
T ✁ D and T ′ ✁ D′, we write T ≡ f T ′ if tuplesD(T ) ≡ f tuplesD′ (T ′).

Definition 6.5. Given XML specifications (D, �) and (D′, �′), (D′, �′) is a
lossless decomposition of (D, �), written (D, �) ≤lossless (D′, �′), if there exists
a mapping f from D′ to D such that for every T |= (D, �) there is T ′ |= (D′, �′)
such that T ≡ f T ′.
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In other words, all information about a document conforming to (D, �) can
be recovered from some document that conforms to (D′, �′).

It follows immediately from the definition that ≤lossless is transitive. Further-
more, we show that every step of the normalization algorithm is lossless.

PROPOSITION 6.6. If (D′, �′) is obtained from (D, �) by using one of the trans-
formations from the normalization algorithm, then (D, �) ≤lossless (D′, �′).

PROOF. We consider the two steps of the normalization algorithm, and for
each step generate a mapping f . The proofs that those mappings satisfy the
conditions of Definition 6.5 are straightforward.

(1) Assume that the “moving attribute” transformation was used to generate
(D′, �′). Then D′ = D[p.@l := q.@m], �′ = �[p.@l := q.@m] and q → p.@l
is an anomalous FD in (D, �)+. In this case, the mapping f from D′ to D
is defined as follows. For every p′ ∈ paths(D′) − {q.@m}, f (p′) = p′, and
f (q.@m) = p.@l .

(2) Assume that the “creating new element types” transformation was used
to generate (D′, �′). Then (D′, �′) was generated by considering a (D, �)-
minimal anomalous FD {q, p1.@l1, . . . , pn.@ln} → p.@l . Thus, D′ =
D[p.@l := q.τ [τ1.@l1, . . . , τn.@ln, @l ]] and �′ = �[p.@l := q.τ [τ1.@l1, . . . ,
τn.@ln, @l ]]. In this case, the mapping f from D′ to D is defined as follows:
f (q.τ ) = p, f (q.τ.@l ) = p.@l , f (q.τ.τi) = pi, f (q.τ.τi.@li) = pi.@li and
f (p′) = p′ for the remaining paths p′ ∈ paths(D′).

Thus, if (D′, �′) is the output of the normalization algorithm on (D, �), then
(D, �) ≤lossless (D′, �′).

In relational databases, the definition of lossless decomposition indicates
how to transform instances containing redundant information into databases
without redundancy. This transformation uses the projection operator. Notice
that Definition 6.5 also indicates a way of transforming XML documents to
generate well-designed documents: If (D, �) ≤lossless (D′, �′), then for every
T |= (D, �) there exists T ′ |= (D′, �′) such that T and T ′ contain the same
data values. The mappings T "→ T ′ corresponding to the two transformations
of the normalization algorithm can be implemented in an XML query language,
more precisely, using XQuery FLWOR2 expressions. We use transformations of
documents shown in Section 1 for illustration; the reader will easily generalize
them to produce the general queries corresponding to the transformations of
the normalization algorithm.

Example 6.7. Assume that the DBLP database is stored in a file dblp.xml.
As shown in Example 1.2, this document can contain redundant information
since year is stored multiple times for a given conference. We can solve this
problem by applying the “moving attribute” transformation and making year
an attribute of issue. This transformation can be implementing by using the

2FLWOR stands for for, let, where, order by, and return.
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following FLWOR expression:

let $root := document("dblp.xml")/db

<db>

{ for $co in $root/conf

<conf>

<title> { $co/title/text() } </title>,

{ for $is in $co/issue

let $value := $is/inproceedings[position() = 1]/@year

<issue year="{ $value }">

{ for $in in $is/inproceedings

<inproceedings key="{ $in/@key }" pages="{ $in/@pages }">

{ for $au in $in/author

<author> { $au/text() } </author>,

<title> { $in/title/text() } </title>

}

</inproceedings>

}

</issue>

}

</conf>

}

</db>

The XPath expression $is/inproceedings[position() = 1]/@year is used
to retrieve for every issue the value of the attribute year in the first article in
that issue. For every issue this number is stored in a variable $value and it
becomes the value of its attribute year: <issue year="{$value}">.

Example 6.8. Assume that the XML document shown in Figure 1 is stored
in a file university.xml. This document stores information about courses in a
university and it contains redundant information since for every student taking
a course we store his/her name. To solve this problem, we split the information
about names and grades by creating an extra element type, info, for student
information. This transformation can be implemented as follows.

let $root := document("university.xml")/courses

<courses>

{ for $co in $root/course

<course> {-- Query that removes name as a child of student --} </course>,

for $na in distinct-values($root/course/taken_by/student/name/text())

<info>

{ for $nu in distinct-values($root/course/taken_by/student[name/text() =

$na]/@sno)

<number sno="{ $nu }">,

<name> { $na } </name>

}

</info>

}

</courses>
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Fig. 6. Splitting a DTD.

We omitted the query that removes name as a child of student since it can be
done as in the previous example.

6.3 Eliminating Additional Assumptions

Finally, we have to show how to get rid of the additional assumption that for
every anomalous FD X → p.@l , every time that p.@l is not null, every path in
X is not null. We illustrate this by a simple example.

Assume that D is the DTD shown in Figure 6(a). Every XML tree conforming
to this DTD has as root an element of type r which has a child of type either A
or B and an arbitrary number of elements of type C, each of them containing
an attribute @l . Let � be the set of FDs {r.A → r.C.@l }. Then, (D, �) is not in
XNF since (D, �) �� r.A → r.C.

If we want to eliminate the anomalous FD r.A → r.C.@l , we cannot directly
apply the algorithm presented in Section 6.1, since this FD does not satisfy the
basic assumption made in that section; it could be the case that r.C.@l is not
null and r.A is null. To solve this problem we transform (D, �) into a new XML
specification (D′, �′) that is essentially equivalent to (D, �) and satisfies the
assumption made in Section 6.1. The new XML specification is constructed by
splitting the disjunction. More precisely, DTD D′ is defined as the DTD shown in
Figure 6(b). This DTD contains two copies of the DTD D, one of then containing
element type A, denoted by A1, and the other one containing element type B,
denoted by B2. The set of functional dependencies �′ is constructed by including
the FD r.A → r.C.@l in both DTDs, that is, �′ = {r.A1 → r.C1.@l1, r.A2 →
r.C2.@l2}.

In the new specification (D′, �′), the user chooses between having either A or
B by choosing between either r1 or r2. We note that the new FD r.A2 → r.C2.@l2
is trivial and, therefore, to normalize the new specification we only have to
take into account FD r.A1 → r.C1.@l1. This functional dependency satisfies the
assumption made in Section 6.1, so we can use the decomposition algorithm
presented in that section.

It is straightforward to generalize the methodology presented in the previous
example for any DTD. In particular, if we have an arbitrary regular expression s
in a DTD D = (E, A, P, R, r) and we have to split it into one regular expression
containing an element type τ ∈ E and another one not containing this symbol,
we consider regular expressions s ∩ (E∗τ E∗) and s − (E∗τ E∗).
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<!ELEMENT ProcessSpecification (Documentation*, SubstitutionSet*, (Include |

BusinessDocument | ProcessSpecification | Package | BinaryCollaboration |

BusinessTransaction | MultiPartyCollaboration)*)>

<!ELEMENT Include (Documentation*)>

<!ELEMENT BusinessDocument (ConditionExpression?, Documentation*)>

<!ELEMENT SubstitutionSet (DocumentSubstitution | AttributeSubstitution |

Documentation)*>

<!ELEMENT BinaryCollaboration (Documentation*, InitiatingRole,

RespondingRole, (Documentation | Start | Transition | Success | Failure |

BusinessTransactionActivity | CollaborationActivity | Fork | Join)*)>

<!ELEMENT Transition (ConditionExpression?, Documentation*)>

Fig. 7. Part of the Business Process Specification Schema of ebXML.

7. REASONING ABOUT FUNCTIONAL DEPENDENCIES

In the previous section, we saw that it is possible to losslessly convert a DTD
into one in XNF. The algorithm used XML functional dependency implica-
tion. Although XML FDs and relational FDs are defined similarly, the impli-
cation problem for the former class is far more intricate. In this section, we
study the implication problem for XML functional dependencies. In Sections
7.1 and 7.2, we introduce two classes of DTDs for which the implication prob-
lem can be solved efficiently. These classes include most of real-world DTDs. In
Section 7.3, we introduce two classes of DTDs for which the implication prob-
lem is coNP-complete. In Section 7.4, we show that, unlike relational FDs,
XML FDs are not finitely axiomatizable. Finally, in Section 7.5, we study the
complexity of the XNF satisfaction problem. In all these sections, we assume,
without loss of generality, that all FDs have a single path on the right-hand
side.

7.1 Simple Regular Expressions

Typically, regular expressions used in DTDs are rather simple. We now formu-
late a criterion for simplicity that corresponds to a common practice of writing
regular expressions in DTDs. Given an alphabet A, a regular expression over
A is called trivial if it of the form s1, . . . , sn, where for each si there is a letter
ai ∈ A such that si is either ai or ai? (which abbreviates ai|ε), or a+

i or a∗
i , and

for i �= j , ai �= aj . We call a regular expression s simple if there is a trivial
regular expression s′ such that any word w in the language denoted by s is a
permutation of a word in the language denoted by s′, and vice versa. Simple
regular expressions were also considered in Abiteboul et al. [2001] under the
name of multiplicity atoms.

For example, (a|b|c)∗ is simple: a∗, b∗, c∗ is trivial, and every word in (a|b|c)∗

is a permutation of a word in a∗, b∗, c∗ and vice versa. A DTD is called simple
if all productions in it use simple regular expressions over E ∪ {S}. Simple
regular expressions are prevalent in DTDs. For instance, the Business Process
Specification Schema of ebXML [ebXML 2001], a set of specifications to conduct
business over the Internet, is a simple DTD. Part of this schema is showed in
Figure 7.
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THEOREM 7.1. The implication problem for FDs over simple DTDs is solvable
in quadratic time.

PROOF SKETCH. Here we present the sketch of the proof. The complete proof
can be found in electronic Appendix A.1.

In the first part of the proof, we show that given a simple DTD D and a set
of FDs � ∪ {S → p} over D, the problem of verifying whether � �� S → p can
be reduced to the problem of finding a counterexample to a certain implication
problem. That is, we need to find an XML tree T such that T |= (D, �), T �|= S →
p, T contains two tree tuples and T satisfies some additional conditions that
depend on the simplicity of D. Essentially, if an element type is allowed to occur
zero times (a? or a∗), then in constructing the counterexample such elements
not need to be considered if they are irrelevant to the functional dependencies
under consideration. Furthermore, all the element types in a regular expression
in D can be considered independently. Observe that this condition is not longer
valid if a regular expression in D contains a disjunction (D is not simple). For
instance, if (a|b) is a regular expression in D, then a and b are not independent;
if a does not appear in an XML tree conforming to D, then b appears in this
tree.

In the second part of the proof, we show that the problem of finding this
counterexample can be reduced to the problem of verifying if a certain propo-
sitional formula ϕ, constructed from D and � ∪ {S → p}, is satisfiable. This
formula is of the form ϕ1 ∨ · · · ∨ ϕn, where n is at most the length of the path
p and each ϕi (i ∈ [1, n]) is a conjunction of Horn clauses and is of linear size
in the size of D and � ∪ {S → p}. Given that the consistency problem for Horn
clauses is solvable in linear time [Dowling and Gallier 1984], we conclude that
the counterexample can be found in quadratic time and, therefore, our original
problem can be solved in quadratic time. �

7.2 Small Number of Disjunctions

In a simple DTD, disjunction can appear in expressions of the form (a|ε) or
(a|b)∗, but a general disjunction (a|b) is not allowed. For example, the following
DTD cannot be represented as a simple DTD:

<!DOCTYPE university [
<!ELEMENT university (course*)>
<!ELEMENT course (number, student*)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT student ((name | FLname), grade)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT FLname (first_name, last_name)>
<!ELEMENT first_name (#PCDATA)>
<!ELEMENT last_name (#PCDATA)>
<!ELEMENT grade (#PCDATA)>

]>

In this example, every student must have a name. This name can be an string
or it can be a composition of a first and a last name. It is desirable to express
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constraints on this kind of DTDs. For instance,

student.name.S → student,
{student.FLname.first name.S, student.FLname.last name.S} → student,

are functional dependencies in this domain. It is also desirable to reason about
these constraints efficiently. Often, a DTD is not simple because a small number
of regular expressions in it are not simple. In this section, we will show that
there is a polynomial-time algorithm for reasoning about constraints over DTDs
containing a small number of disjunctions.

A regular expression s over an alphabet A is a simple disjunction if s = ε,
s = a, where a ∈ A, or s = s1|s2, where s1, s2 are simple disjunctions over
alphabets A1, A2 and A1 ∩ A2 = ∅. A DTD D = (E, A, P, R, r) is called
disjunctive if for every τ ∈ E, P (τ ) = s1, . . . , sm, where each si is either a simple
regular expression or a simple disjunction over an alphabet Ai (i ∈ [1, m]), and
Ai ∩ Aj = ∅ (i, j ∈ [1, m] and i �= j ). This generalizes the concept of a simple
DTD.

With each disjunctive DTD D, we associate a number ND that measures
the complexity of unrestricted disjunctions in D. Formally, for a simple regular
expression s, Ns = 1. If s is a simple disjunction, then Ns is the number of
symbols | in s plus 1. If P (τ ) = s1, . . . , sn, then Nτ is 1, if s1, . . . , sn is a simple
regular expression, Nτ = |{p ∈ paths(D) | last(p) = τ }| × Ns1 × · · · × Nsn

otherwise. Finally, ND = ∏
τ∈E Nτ .

THEOREM 7.2. For any fixed c > 0, the FD implication problem for disjunc-
tive DTDs D with ND ≤ ‖D‖c is solvable in polynomial time.3

PROOF SKETCH. Here we present the sketch of the proof. The complete proof
can be found in electronic Appendix A.2.

The main idea of this proof is that the implication problem for disjunctive
DTDs can be reduced to a number of implication problems for simple DTDs by
splitting the disjunctions. More precisely, given a disjunctive DTD D and a set of
functional dependencies � ∪ {S → p} over D, there exist (D1, �1), . . . , (Dn, �n)
such that each Di (i ∈ [1, n]) is a simple DTD, �i is a set of functional depen-
dencies over Di (i ∈ [1, n]) and (D, �) � S → p if and only if (Di, �i) � S → p
for every i ∈ [1, n]. The number n of implication problems for simple DTDs is at
most ND. Thus, since the implication problem for simple DTDs can be solved in
quadratic time (see Theorem 7.1), the implication problem for disjunctive DTDs
D with ND ≤ ‖D‖c, for some constant c, can be solved in polynomial time. �

7.3 Relational DTDs

There are some classes of DTDs for which the implication problem is not
tractable. One such class consists of arbitrary disjunctive DTDs. Another class
is that of relational DTDs. We say that D is a relational DTD if for each XML
tree T |= D, if X is a nonempty subset of tuplesD(T ), then treesD(X ) |= D. This

3‖ · ‖ is the size of the description of an object. For instance, ‖p‖ is the length of the path p and ‖S‖
is the sum of the lengths of the paths in S.
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class contains regular expressions like the one below, from a DTD for Frequently
Asked Questions [Higgins and Jelliffe 1999]:

<!ELEMENT section (logo*, title,
(qna+ | q+ | ( p | div | section)+))>

There exist nonrelational DTDs (for example, <!ELEMENT a (b,b)>). However:

PROPOSITION 7.3. Every disjunctive DTD is relational.

PROOF. Let D = (E, A, P, R, r) be a disjunctive DTD, T an XML tree con-
forming to D and X a non-empty subset of tuplesD(T ). Assume that treesD(X ) �|=
D, that is, there is an XML tree T ′ = (V , lab, ele, att, root) in treesD(X ) such
that T ′ �|= D. Then, there is a vertex v ∈ V reachable from the root by follow-
ing a path p such that lab(v) = τ and ele(v) does not conform to the regular
expression P (τ ).

If P (τ ) = s, where s is a simple disjunction over an alphabet A, then there
is t ′ ∈ X such that t ′.p = v and t ′.p.a = ⊥, for each a ∈ A. Thus, given that
T |= D, we conclude that there is a tuple t ∈ tuplesD(T ) such that t.p.b �= ⊥,
for some b ∈ A, and t ′.w = t.w for each w ∈ paths(D) such that p.b is not a
prefix of w. Hence, t ′ � t. But, this contradicts the definition of tuplesD(·), since
t ′, t ∈ tuplesD(T ). The proof for P (τ ) = s1, . . . , sn, where each si (i ∈ [1, n]) is
either a simple regular expression or a simple disjunction, is similar.

THEOREM 7.4. The FD implication problem over relational DTDs and over
disjunctive DTDs is coNP-complete.

PROOF. Here we prove the intractability of the implication problem for
disjunctive DTDs. The coNP membership proof can be found in electronic
Appendix A.3.

In order to prove the coNP-hardness, we will reduce SAT-CNF to the comple-
ment of the implication problem for disjunctive DTDs. Let θ be a propositional
formula of the form C1 ∧ · · · ∧ Cn, where each Ci (i ∈ [1, n]) is a clause. Assume
that θ uses propositional variables x1, . . . , xm.

We need to construct a disjunctive DTD D and a set of functional dependen-
cies � ∪ {ϕ} such that (D, �) �� ϕ if and only if θ is satisfiable. We define the
DTD D = (E, A, P, R, r) as follows.

E = {r, B, C} ∪ {Ci, j | Ci mentions literal x j } ∪ {C̄i, j | Ci mentions literal ¬x j },
A = {@l }.
In order to define P , first we define a function for translating clauses into
regular expressions. If the set of literal mentioned in the clause Ci (i ∈ [1, n]) is
{x j1 , . . . , x jp , x̄k1 , . . . , x̄kq }, then

tr(Ci) = Ci, j1 | · · · |Ci, j p |C̄i,k1 | · · · |C̄i,kq .

We define the function P on the root as P (r) = tr(C1), . . . , tr(Cn), B, C∗. For the
remaining elements of E, we define P as ε. Finally, R(r) = ∅ and R(τ ) = {@l }
for every τ ∈ E − {r}. For example, Figure 8 shows the DTD generated from a
propositional formula (x1 ∨ x2) ∧ (x1 ∨ ¬x3).
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Fig. 8. DTD generated from a formula (x1 ∨ x2) ∧ (x1 ∨ ¬x3).

For each pair of elements Ci, j , C̄k, j ∈ E, the set of functional dependencies �

includes the constraint {r.Ci, j .@l , r.C̄k, j .@l } → r.C.@l . Functional dependency
ϕ is defined as r.B.@l → r.C.@l .

We now prove that (D, �) �� ϕ if and only if θ is satisfiable.

(⇒) Suppose that (D, �) �� ϕ. Then, there is an XML tree T such that T |=
(D, �) and T �|= ϕ. We define a truth assignment σ from T as follows. For each
j ∈ [1, m], if there is i ∈ [1, n] such that r has a child of type Ci, j in T , then
σ (x j ) = 1; otherwise, σ (x j ) = 0. We now prove that σ |= Ci, for each i ∈ [1, n]. By
definition of D, there is j ∈ [1, m] such that r has a child in T of type either Ci, j
or C̄i, j . In the first case, Ci contains the literal x j and σ (x j ) = 1, by definition of
σ . Therefore, σ |= Ci. In the second case, Ci contains a literal ¬x j . If σ (x j ) = 1,
then there is k ∈ [1, n] such that r has a child of type Ck, j in T , by definition of
σ . Since {r.Ck, j .@l , r.C̄i, j .@l } → r.C.@l is a constraint in �, all the nodes in T
of type C have the same value in the attribute @l . Thus, T |= r.B.@l → r.C.@l ,
a contradiction. Hence, σ (x j ) = 0 and σ |= Ci.

(⇐) Suppose that θ is satisfiable. Then, there exists a truth assignment σ

such that σ |= θ . We define an XML tree T conforming to D as follows. For
each i ∈ [1, n], choose a literal l j in Ci such that σ |= l j . If l j = x j , then r has
a child of type Ci, j in T ; otherwise, r has a child of type C̄i, j in T . Moreover,
r has one child of type B and two children of type C. We assign two distinct
values to the attribute @l of the nodes of type C, and the same value to the rest
of the attributes in T . Thus, T �|= ϕ, and it is easy to verify that T |= �. This
completes the proof.

7.4 Nonaxiomatizability of XML Functional Dependencies

In this section, we present a simple proof that XML FDs cannot be finitely
axiomatized. This proof shows that, unlike relational databases, there is a non-
trivial interaction between DTDs and functional dependencies. To present this
proof, we need to introduce some terminology.

Given a DTD D and a set of functional dependencies � over D, we say that
(D, �) is closed under implication if for every FD ϕ over D such that (D, �) � ϕ,
it is the case that ϕ ∈ �. Furthermore, we say that (D, �) is closed under k-ary
implication, k ≥ 0, if for every FD ϕ over D, if there exists �′ ⊆ � such that
|�′| ≤ k and (D, �′) � ϕ, then ϕ ∈ �. For example, if (D, �) is closed under
0-ary implication, then � contains all the trivial FDs.

Since the implication problem for relational FDs is finitely axiomatizable,
there exists k ≥ 0 such that each relation schema R(A1, . . . , An) admits a k-ary
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ground axiomatization for the implication problem, that is, an axiomatization
containing rules of the form if � then γ , where � ∪ {γ } is a set of FDs over
R(A1, . . . , An) and |�| ≤ k. For instance, R(A, B, C) admits a 2-ary ground
axiomatization including, among others, the following rules: if ∅ then AB → A,
if A → B then AC → BC and if {A → B, B → C} then A → C. Similarly, if
there exists a finite axiomatization for the implication problem of XML FDs,
then there exists k ≥ 0 such that each DTD D admits a (possible infinite) k-ary
ground axiomatization for the implication problem. The contrapositive of the
following proposition gives us a sufficient condition for showing that the XML
FD implication problem does not admit a k-ary ground axiomatization for every
k ≥ 0 and, therefore, it does not admit a finite axiomatization.

PROPOSITION 7.5. For every k ≥ 0, if there is a k-ary ground axiomatization
for the implication problem of XML FDs, then for every DTD D and set of FDs
� over D, if (D, �) is closed under k-ary implication then (D, �) is closed under
implication.

PROOF. This proposition was proved in Abiteboul et al. [1995] for the case
of relational databases. The proof for XML FDs is similar.

THEOREM 7.6. The implication problem for XML functional dependencies is
not finitely axiomatizable.

PROOF. By Proposition 7.5, for every k ≥ 0, we need to exhibit a DTD Dk
and a set of functional dependencies �k such that (Dk , �k) is closed under k-ary
implication and (Dk , �k) is not closed under implication.

The DTD Dk = (E, A, P, R, r) is defined as follows: E = {A1, . . . , Ak ,
Ak+1, B}, A = ∅, P (r) = (A1| · · · |Ak|Ak+1), B∗ and P (τ ) = ε for every τ ∈ E −{r}.
The set of FDs �k is defined as the union of the following sets:

—{r.Ai → r.B | i ∈ [1, k + 1]} ∪ {{r, r.Ai} → r.B | i ∈ [1, k + 1]},
—{S → p | S → p is a trivial FD in Dk}.
It is easy to see that if ϕ is not a trivial functional dependency in Dk and ϕ �∈ �k ,
then ϕ = r → r.B. Thus, in order to prove that (Dk , �k) is closed under k-ary
implication and is not closed under implication, we have to show that:

(1) For every �′ ⊆ �k such that |�′| ≤ k, (Dk , �′) �� r → r.B. Since |�′| ≤ k,
there exists i ∈ [1, k +1] such that r.Ai → r.B �∈ �′ and {r, r.Ai} → r.B �∈ �′.
Thus, an XML tree T defined as

conforms to Dk , satisfies �′ and does not satisfy r → r.B. We conclude that
(Dk , �′) �� r → r.B.

(2) (Dk , �k) � r → r.B. This proof is straightforward.

This completes the proof of the theorem.
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7.5 The Complexity of Testing XNF

Relational DTDs have the following useful property that lets us establish the
complexity of testing XNF.

PROPOSITION 7.7. Given a relational DTD D and a set � of FDs over D,
(D, �) is in XNF iff for each nontrivial FD of the form S → p.@l or S → p.S in
�, S → p ∈ (D, �)+.

PROOF. The proof is given in electronic Appendix A.4.

From this, we immediately derive:

COROLLARY 7.8. Testing if (D, �) is in XNF can be done in cubic time for
simple DTDs, and is coNP-complete for relational DTDs.

8. RELATED WORK AND FUTURE RESEARCH

It was introduced in Embley and Mok [2001] an XML normal form defined
in terms of functional dependencies, multivalued dependencies and inclusion
constraints. Although that normal form was also called XNF the approach of
Embley and Mok [2001] was very different from ours. The normal form of
Embley and Mok [2001] was defined in terms of two conditions: XML speci-
fications must not contain redundant information with respect to a set of con-
straints, and the number of schema trees (see Section 5.2) must be minimal. The
normalization process is similar to the ER approach in relational databases. A
conceptual-model hypergraph is constructed to model the real world and an
algorithm produces an XML specification in XNF. It was proved in Arenas and
Libkin [2003] that an XML specification given by a DTD D and a set � of
XML functional dependencies is in XNF if and only if no XML tree conform-
ing to D and satisfying � contains redundant information. Thus, for the class
of functional dependencies defined in this article, the XML normal form in-
troduced in Embley and Mok [2001] is more restrictive than our XML normal
form.

Normal forms for extended context-free grammars, similar to the Greibach
normal form for CFGs, were considered in Albert et al. [2001]. These, however,
do not necessarily guarantee good XML design.

The functional dependency language used in Embley and Mok [2001] is based
on a language for nested relations and it does not consider relative constraints.
In a recent article [Lee et al. 2002], a language for expressing functional depen-
dencies for XML was introduced. In that language, a functional dependency is
an expression of the form (p, [q1, . . . , qn → qn+1]), where p is a path and every
qi (i ∈ [1, n + 1]) is of the form τ.@l , where τ is an element type. An XML tree
T satisfies this constraint if for any two subtrees T1, T2 of T whose roots are
nodes reachable from the root of T by following path p, if T1 and T2 agree on the
value of qi, for every i ∈ [1, n], then they agree on the value of qn+1. This lan-
guage does not consider relative constraints and its semantics only works prop-
erly if some syntactic restrictions are imposed on the functional dependencies
[Lee et al. 2002]. The normalization problem is not considered in Lee et al.
[2002].
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Other proposals for XML constraints (mostly keys) have been studied in
Buneman et al. [2001a, 2001b] and Fan and Siméon [2000]; these constraints
do not use DTDs. XML constraints that takes DTDs into account are studied
in Fan and Libkin [2001].

Numerous surveys of relational normalization can be found in the litera-
ture [Beeri et al. 1978; Kanellakis 1990; Abiteboul et al. 1995]. Normaliza-
tion for nested relations and object-oriented databases is studied in Özsoyoglu
and Yuan [1987], Mok et al. [1996], and Tari et al. [1997]. Coding nested
relations into flat ones, similar to our tree tuples, is done in Suciu [1997]
and Van den Bussche [2001]. We use functional dependencies over incomplete
relations using the techniques from Atzeni and Morfuni [1984], Buneman et al.
[1991], Grahne [1991], Imielinski and Lipski [1984], and Levene and Loizou
[1998].

8.1 Future Research

The decomposition algorithm can be improved in various ways, and we plan
to work on making it more efficient. We also would like to find a complete
classification of the complexity of the FD implication problem for various classes
of DTDs.

As prevalent as BCNF is, it does not solve all the problems of relational
schema design, and one cannot expect XNF to address all shortcomings of DTD
design. We plan to work on extending XNF to more powerful normal forms, in
particular by taking into account multivalued dependencies which are naturally
induced by the tree structure.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.
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