
Consistent Query Answers in Inconsistent Databases

Marcelo Arenas
Pontificia Universidad Cat´olica de Chile

Escuela de Ingenier´ıa
Departamento de Ciencia de Computaci´on

Casilla 306, Santiago 22, Chile
marenas@ing.puc.cl

Leopoldo Bertossi
Pontificia Universidad Cat´olica de Chile

Escuela de Ingenier´ıa
Departamento de Ciencia de Computaci´on

Casilla 306, Santiago 22, Chile
bertossi@ing.puc.cl

Jan Chomicki
Monmouth University

Department of Computer Science
West Long Branch, NJ 07764

chomicki@monmouth.edu

Abstract

In this paper we consider the problem of the logical char-
acterization of the notion of consistent answer in a relational
database that may violate given integrity constraints. This
notion is captured in terms of the possible repaired versions
of the database. A method for computing consistent an-
swers is given and its soundness and completeness (for some
classes of constraints and queries) proved. The method is
based on an iterative procedure whose termination for sev-
eral classes of constraints is proved as well.

1 Introduction

Integrity constraints capture an important normative aspect
of every database application. However, it is often the case
that their satisfaction cannot be guaranteed, allowing for the
existence of inconsistent database instances. In that case,
it is important to know which query answers are consistent
with the integrity constraints and which are not. In this pa-
per, we provide a logical characterization of consistent query
answers in relational databases that may be inconsistent with
the given integrity constraints. Intuitively, an answer to a
query posed to a database that violates the integrity con-
straints will be consistent in a precise sense: It should be the
same as the answer obtained from any minimally repaired
version of the original database. We also provide a method
for computing such answers and prove its properties. On the
basis of a queryQ, the method computes, using an iterative
procedure, a new query Tω(Q) whose evaluation in an arbi-
trary, consistent or inconsistent, database returns the set of

consistent answers to the original queryQ. We envision the
application of our results in a number of areas:

Data warehousing.A data warehouse contains data com-
ing from many different sources. Some of it typically does
not satisfy the given integrity constraints. The usual ap-
proach is thus tocleanthe data by removing inconsistencies
before the data is stored in the warehouse [6]. Our results
make it possible to determine which data is already clean
and proceed to safely remove unclean data. Moreover, a dif-
ferent scenario becomes possible, in which the inconsisten-
cies are not removed but rather query answers are marked as
“consistent” or “inconsistent”. In this way, information loss
due to data cleaning may be prevented.

Database integration.Often many different databases
are integrated together to provide a single unified view for
the users. Database integration is difficult since it requires
the resolution of many different kinds of discrepancies of
the integrated databases. One possible discrepancy is due
to different sets of integrity constraints. Moreover, even if
every integrated databaselocally satisfies the same integrity
constraint, the constraint may beglobally violated. For ex-
ample, different databases may assign different addresses to
the same student. Such conflicts may fail to be resolved at all
and inconsistent data cannot be “cleaned” because of the au-
tonomy of different databases. Therefore, it is important to
be able to find out, given a set of local integrity constraints,
which query answers returned from the integrated database
are consistent with the constraints and which are not.

Active and reactive databases.A violation of integrity
constraints may be acceptable under the provision that it will
be repaired in the near future. For example, the stock level in
a warehouse may be allowed to fall below the required min-
imum if the necessary replenishments have been ordered.
During this temporary inconsistency, however, query answers
should give an indication whether they are consistent with
the constraints or not. This problem is particularly acute in



active databases that allow such consistency lapses. The re-
sult of evaluating a trigger condition that is consistent with
the integrity constraints should be treated differently from
the one that isn’t.

The following example presents the basic intuitions be-
hind the notion of consistent query answer.

Example 1.Consider a database subject to the followingIC:

8x(P(x)�Q(x)):

The instance

fP(a);P(b);Q(a);Q(c)g

violates this constraint. Now if the query asks for allx such
thatQ(x), onlya is returned as an answer consistent with the
integrity constraint.

The plan of this paper is as follows. In section 2 we in-
troduce the basic notions of our approach, including those of
repair andconsistent query answer. In section 3 we show a
method how to compute the query Tω(Q) for a given first-
order queryQ. In subsequent sections, the properties of this
method are analyzed: soundness in section 4, completeness
in section 5, and termination in section 6. In section 7 we
discuss related work. In section 8 we conclude and outline
some of the prospects for future work in this area. The proofs
are given in the appendix.

2 Basic Notions

In this paper we assume we have a fixed database schema
and a fixed infinite database domainD. We also have a first
order language based on this schema with names for the ele-
ments ofD. We assume that elements of the domain with dif-
ferent names are different. The instances of the schema are
finite structures for interpreting the first order language. As
such they all share the given domainD, nevertheless, since
relations are finite, every instance has a finite active domain
which is a subset ofD. As usual, we allow built-in predi-
cates that have infinite extensions, identical for all database
instances. There is also a set of integrity constraintsIC, ex-
pressed in that language, which the database instances are
expected to satisfy. We will assume thatIC is consistent in
the sense that there is a database instance that makes it true.

Definition 1. (Consistency) A database instancer is consis-
tent if r satisfiesIC in the standard model-theoretic sense,
that is,r � IC; r is inconsistent otherwise.

This paper addresses the issue of obtaining meaningful
and useful query answers inany, consistent or inconsistent,
database. It is well known how to obtain query answers in
consistent databases. Therefore, the challenging part is how
to deal with the inconsistent ones.

2.1 Repairs

Given a database instancer, we denote byΣ(r) the set of
formulasfP(ā)jr � P(ā)g, where thePs are relation names
andā is ground tuple.

Definition 2. (Distance) Thedistance∆(r; r 0) between data-
base instancesr andr 0 is the symmetric difference:

∆(r; r 0) = (Σ(r)�Σ(r 0))[ (Σ(r 0)�Σ(r)):

Definition 3. For the instancesr; r 0; r 00, r 0 �r r 00 if ∆(r; r 0) �
∆(r; r 00), i.e., if the distance betweenr andr 0 is less than or
equal to the distance betweenr andr 00.

Notice that built-in predicates do not contribute to the
∆s because they have fixed extensions, identical in every
database instance.

Definition 4. (Repair) Given database instancesr andr 0, we
say thatr 0 is a repair of r if r 0 � IC andr 0 is�r -minimal in
the class of database instances that satisfy the ICs.

Clearly, what constitutes a repair depends on the given
set of integrity constraints. In the following we assume that
this set is fixed.

Example 2. Let us consider a database schema with two
unary relationsP andQ and domainD = fa;b;cg. Assume
that for an instancer, Σ(r) = fP(a);P(b);Q(a);Q(c)g, and
let IC = f8x(P(x) � Q(x))g. Clearly,r does not satisfyIC
becauser � P(b)^:Q(b).

In this case we have two possibles repairs forr. First,
we can falsifyP(b), obtaining an instancer 0 with Σ(r 0) =
fP(a);Q(a);Q(c)g. As a second alternative, we can make
Q(b) true, obtaining an instancer 00 with Σ(r 00)= fP(a);P(b);
Q(a);Q(b);Q(c)g.

The definition of a repair satisfies certain desirable and
expected properties. Firstly, a consistent database does not
need to be repaired, because ifr satisfiesIC, then, by the
minimality condition wrt the relation�r , r is the only repair
of itself (since∆(r; r) is empty). Secondly, any databaser
can always be repaired because there is a databaser 0 that
satisfiesIC, and∆(r; r 0) is finite.

Example 3. (motivated by [19]) Consider the IC saying that
C is the only supplier of items of classT4:

8(x;y;z)(Supply(x;y;z)^Class(z;T4)� x=C): (1)

The following database instancer1 violates the IC:

Supply Class
C D1 I1 I1 T4

D D2 I2 I2 T4

The only repairs of this database are

Supply Class
C D1 I1 I1 T4

I2 T4



and

Supply Class
C D1 I1 I1 T4

D D2 I2

Example 4. (motivated by [19]) Consider the IC:

8(x;y)(Supply(x;y; I1) � Supply(x;y; I2)); (2)

saying that itemI2 is supplied whenever itemI1 is supplied;
and the following inconsistent instance,r2, of the database

Supply
C D1 I1
C D1 I3

This instance has two repairs:

Supply
C D1 I1
C D1 I2
C D1 I3

and

Supply
C D1 I3

Example 5. Consider a student database.Student(x;y;z)
means thatx is the student number,y is the student’s name,
andz is the student’s address. The two following ICs state
that the first argument is a key of the relation

8(x;y;z;u;v)(Student(x;y;z)^Student(x;u;v)� y= u);

8(x;y;z;u;v)(Student(x;y;z)^Student(x;u;v)� z= v):

The inconsistent database instancer3

Student Course
S1 N1 D1 S1 C1 G1

S1 N2 D1 S1 C2 G2

has two repairs:

Student Course
S1 N1 D1 S1 C1 G1

S1 C2 G2

and

Student Course
S1 N2 D1 S1 C1 G1

S1 C2 G2

2.2 Consistent query answers

We assume all queries are in prefix disjunctive normal form.

Definition 5. A formulaQ is aqueryif it has the following
syntactical form:

Q̄
s_

i=1

(
mî

j=1

Pi; j(ūi; j)^
nî

j=1

:Qi; j(v̄i; j)^ψi);

whereQ̄ is a sequence of quantifiers and everyψi contains
only built-in predicates. IfQ̄ contains only universal quanti-
fiers, then we say thatQ is auniversal query. If Q̄ contains
existential (and possibly universal) quantifiers, we say that
Q is non-universalquery.

Definition 6. (Query answer) A (ground) tuplet̄ is anan-
swerto a queryQ(x̄) in a database instancer if r j= Q(t̄). A
(ground) tuplēt is ananswerto a set of queriesfQ1; : : : ;Qng
if r j= Q1^ �� �^Qn.

Definition 7. (Consistent answer) Given a set of integrity
constraints, we say that a (ground) tuplet̄ is a consistent
answerto a queryQ(x̄) in a database instancer, and we
write r j=c Q(t̄) (or r j=c Q(x̄)[t̄]), if for every repairr 0 of
r, r 0 � Q(t̄). If Q is a sentence, thentrue (false) is aconsis-
tent answerto Q in r, and we writer j=c Q (r 6j=c Q), if for
every repairr 0 of r, r 0 �Q (r 0 2Q).

Example 6. (example 3 continued) The only consistent an-
swer to the queryClass(z;T4), posed to the database instance
r1, is I1 because r1 j=c Class(z;T4)[I1].

Example 7. (example 4 continued) The only consistent an-
swer to the querySupply(C;D1;z), posed to the database in-
stancer2, is I3 becauser2 j=c Supply(C;D1;z)[I3].

Example 8.(example 5 continued) By considering all the re-
pairs of the database instancer3, we obtainC1 andC2 as the
consistent answers to the query9zCourse(S1;y;z), posed to
r3. For the query9(u;v)(Student(u;N1;v)^Course(u;x;y)),
we obtain no (consistent) answers.

3 The General Approach

We present here a method to compute consistent answers to
queries. Given a queryQ, the queryTω(Q) is defined based
on the notion ofresiduedeveloped in the context of seman-
tic query optimization (SQO) [5]. In the context of deductive
databases, SQO is used to optimize the process of answering
queries using the semantic knowledge about the domain that
is contained in the ICs. In this case, the basic assumption is
that the ICs are satisfied by the database. In our case, since
we allow inconsistent databases, we do not assume the sat-
isfaction of the ICs while answering queries. A first attempt
to obtain consistent answers to a queryQ(x̄) may be to use
query modification, i.e., ask the queryQ(x̄)^ IC. However,



this does not work, as we obtainfalseas the answer if the
DB is inconsistent. Instead, we iteratively modify the query
Q using the residues. As a result, we obtain the queryTω(Q)
with the property that the set of all answers toTω(Q) is the
same as as the set of consistent answers toQ. (As shown
later, the property holds only for restricted classes of queries
and constraints.)

3.1 Generating residues in relational DBs

We consider only universal constraints. We begin by trans-
forming every integrity constraint to the standard format (ex-
pansionstep).

Definition 8. An integrity constraint is instandard formatif
it has the form

8(
m_

i=1

Pi(x̄i)_
n_

i=1

:Qi(ȳi)_ψ);

where8 represents the universal closure of the formula, ¯xi ,
ȳi are tuples of variables andψ is a formula that mentions
only built–in predicates, in particular, equality.

Notice that in such an IC there are no constants in the
Pi ;Qi ; if they are needed they can be pushed intoψ.

Many usual ICs that appear in DBs can be transformed to
the standard format, e.g. functional dependencies, set inclu-
sion dependencies of the form8x̄(P(x̄) � Q(x̄)), transitiv-
ity constraints of the form8x;y;z(P(x;y)^P(y;z)�P(x;z)).
The usual ICs that appear in SQO in deductive databases
as rules [5] can be also accommodated in this format, in-
cluding rules with disjunction and logical negation in their
heads. An inclusion dependency of the form8x̄(P(x̄) �
9y Q(x̄;y)) cannot be transformed to the standard format.

After the expansion ofIC, rules associated with the database
schema are generated. This could be seen as considering
an instance of the database as an extensional database ex-
panded with new rules, and so obtaining an associated de-
ductive database where semantical query optimization can
be used.

For each predicate, its negative and positive occurrences
in the ICs (in standard format) will be treated separately with
the purpose of generating corresponding residues and rules.
First, a motivating example.

Example 9. Consider the IC8x (:P(x)_Q(x)). If Q(x) is
false, then:P(x) must be true. Then, when asking about
:Q(x), we make sure that:P(x) becomes true. That is,
we generate the query:Q(x)^:P(x) where:P(x) is the
residue attached to the query.

For each IC in standard format

8(
m_

i=1

Pi(x̄i)_
n_

i=1

:Qi(ȳi)_ψ); (3)

and each positive occurrence of a predicatePj(x̄j) in it, the
following residue for:Pj(x̄j) is generated

Q̄(
j�1_

i=1

Pi(x̄i)_
m_

i= j+1

Pi(x̄i)_
n_

i=1

:Qi(ȳi)_ψ); (4)

whereQ̄ is a sequence of universal quantifiers over all the
variables in the formula not appearing in ¯xj .

If R1; : : : ;Rr are all the residues for:Pj , then the follow-
ing rule is generated:

:Pj(w̄) 7�! :Pj(w̄)fR1(w̄); : : : ;Rr(w̄)g;

wherew̄ are new variables. If there are no residues for:Pj ,
then the rule:Pj(w̄) 7�! :Pj(w̄) is generated.

For each negative occurrence of a predicateQj(ȳj ) in (3),
the following residue forQj(ȳj) is generated

Q̄(
m_

i=1

Pi(x̄i)_
j�1_

i=1

:Qi(ȳi)_
n_

i= j+1

:Qi(ȳi)_ψ);

whereQ̄ is a sequence of universal quantifiers over all the
variables in the formula not appearing in ¯yj .

If R0

1; : : : ;R
0

s are all the residues forQj(ȳj), the following
rule is generated:

Qj(ū) 7�!Qj(ū)fR
0

1(ū); : : : ;R
0

s(ū)g:

If there are no residues forQj(ȳj), then the ruleQj(ū) 7�!
Qj(ū) is generated. Notice that there is exactly one new rule
for each positive predicate, and exactly one rule for each
negative predicate.

If there are more than one positive (negative) occurrences
of a predicate, sayP, in an IC, then more then one residue
is computed for:P. In some cases, e.g., for functional de-
pendencies, the subsequent residues will be redundant. In
other cases cases, e.g., fortransitivity constraints, multiple
residues are not redundant.

Example 10. If we have the following ICs in standard for-
mat

IC = f8x(R(x)_:P(x)_:Q(x));8x(P(x)_:Q(x))g;

the following rules are generated:

P(x) 7�! P(x)fR(x)_:Q(x)g

Q(x) 7�! Q(x)fR(x)_:P(x);P(x)g

R(x) 7�! R(x)

:P(x) 7�! :P(x)f:Q(x)g

:Q(x) 7�! :Q(x)

:R(x) 7�! :R(x)f:P(x)_:Q(x)g:

Notice that no rules are generated for built-in predicates,
but such predicates may appear in the residues. They have



fixed extensions and thus cannot contribute to the violation
of an IC or be modified to make an IC true. For example, if
we have the IC8x;y;z(:P(x;y)_:P(x;z)_y = z), and the
database satisfiesP(1;2);P(1;3), the IC cannot be made
true by making 2= 3.

Once the rules have been generated, it is possible to sim-
plify the associated residues. In every new rule of the form
P(ū) 7�! P(ū)fR1(ū); : : : ;Rr(ū)g the auxiliary quantifica-
tions introduced in the expansion step are eliminated (both
the quantifier and the associated variable in the formula)
from the residues by the process inverse to the one applied
in the expansion. The same is done with rules of the form
:P 7�! :Pf� � �g.

3.2 Computing Tω(Q)

In order to determine consistent answers to queries in arbi-
trary databases, we will make use of a family of operators
consisting of Tn, n� 0, and Tω.

Definition 9. The application of an operator Tn to a query is
defined inductively by means of the following rules

1. Tn(2) :=2, Tn(:2) := :2, for everyn� 0 (2 is the
empty clause).

2. T0(ϕ) := ϕ.

3. For each predicateP(ū), if there is a ruleP(ū) 7�!
P(ū)fR1(ū); : : : ;Rr(ū)g, then

Tn+1(P(ū)) := P(ū)^
r̂

i=1

Tn(Ri(ū)):

If P(ū) does not have residues, then Tn+1(P(ū)) :=
P(ū).

4. For each negated predicate:Q(v̄), if there is a rule
:Q(v̄) 7�! :Q(v̄)fR0

1(v̄); : : : ;R
0

s(v̄)g, then

Tn+1(:Q(v̄)) := :Q(v̄)^
ŝ

i=1

Tn(R
0

i(v̄)):

If :Q(v̄) does not have any residues, then Tn+1(:Q(ū)) :=
:Q(ū).

5. If ϕ is a formula in prenex disjunctive normal form,
that is,

ϕ = Q̄
s_

i=1

(
mî

j=1

Pi; j(ūi; j)^
nî

j=1

:Qi; j (v̄i; j)^ψi);

whereQ̄ is a sequence of quantifiers andψi is a formula
that includes only built–in predicates, then for every
n� 0:

Tn(ϕ) := Q̄
s_

i=1

(
mî

j=1

Tn(Pi; j(ūi; j))^

nî

j=1

Tn(:Qi; j (v̄i; j))^ψi):

Definition 10. The application of operator Tω on a query is
defined as Tω(ϕ) =

[

n<ω
fTn(ϕ)g.

Example 11. (example 10 continued) For the query:R(x)
we have T1(:R(x)) =:R(x)^ (:P(x)_:Q(x)), T2(:R(x))
=:R(x)^((:P(x)^:Q(x))_:Q(x)) and finally T3(:R(x))
= T2(:R(x)). We have reached a fixed point and then

Tω(:R(x)) = f:R(x);:R(x)^ (:P(x)_:Q(x));

:R(x)^ ((:P(x)^:Q(x))_:Q(x))g:

We show first that the operator Tω conservatively extends
standard query evaluation on consistent databases.

Proposition 1. Given a database instancer and a set of in-
tegrity constraintsIC, such thatr � IC, then for every query
Q(x̄) and every natural numbern: r � 8x̄(Q(x̄)� Tn(Q(x̄))).

Corollary 1. Given a database instancer and a set of in-
tegrity constraintsIC, such thatr � IC, then for every query
Q(x̄) and every tuplēt: r �Q(t̄) if and only if r � Tω(Q(t̄)).

4 Soundness

Now we will show the relationship between consistent an-
swers to a queryQ in a database instancer (definition 7) and
answers to the query Tω(Q) (definition 6). We show that
Tω(Q) returns only consistent answers toQ.

Theorem 1. (Soundness) Let r be a database instance,IC a
set of integrity constraints andQ(x̄) a query (see definition 5)
such thatr � Tω(Q(x̄))[t̄]. If Q is universal or non-universal
and domain independent[20], thent̄ is a consistent answer to
Q in r (in the sense of definition 7), that is,r j=c Q(t̄) .

The second condition in the theorem excludes non-universal,
but domain dependent queries like9x:P(x).

Example 12.(example 6 continued) The IC (1) transformed
into the standard format becomes

8(x;y;z;w)(:Supply(x;y;z)_

:Class(z;w)_w 6= T4_x=C):

The following rule is generated:

Class(z;w) 7�! Class(z;w)

f8(x;y)(:Supply(x;y;z)_w 6= T4_x=C)g:

Given the database instancer1 that violates the IC as before,
if we pose the queryClass(z;T4), asking for the items of
classT4, directly tor1, we obtainI1 andI2. Nevertheless, if
we pose the query Tω(Class(z;T4)), that is

fClass(z;T4);

Class(z;T4)^8(x;y)(:Supply(x;y;z)_x =C)g



we obtain onlyI1, eliminatingI2. I1 is the only consistent
answer.

Example 13.(example 8 continued) In the standard format,
the ICs take the form

8(x;y;z;u;v)(:Student(x;y;z)_

:Student(x;u;v)_y= u);

8(x;y;z;u;v)(:Student(x;y;z)_

:Student(x;u;v)_z= v):

The following rule is generated

Student(x;y;z) 7�! Student(x;y;z)

f8(u;v)(:Student(x;u;v)_y= u);

8(u;v)(:Student(x;u;v)_z= v)g:

Given the inconsistent database instancer3, if we pose the
query9zCourse(S1;y;z), asking for the names of the courses
of the student with numberS1, we obtainC1 andC2. If we
pose the query

Tω(9zCourse(S1;y;z)) = f9zCourse(S1;y;z)g

we obviously obtain the same answers which, in this case,
are the consistent answers. Intuitively, in this case the Tω
operator helps us to establish that even when the name of the
student with numberS1 is undetermined, it is still possible
to obtain the list of courses in which he/she is registered. On
the other hand, if we pose the query

9(u;v)(Student(u;N1;v)^Course(u;x;y))

about the courses and grades for a student with nameN1, to
r3, we obtain(C1;G1) and(C2;G2). Nevertheless, if we ask

Tω(9(u;v)(Student(u;N1;v)^Course(u;x;y)))

we obtain, in conjunction with the original query, the for-
mula:

9(u;v)(Student(u;N1;v)^

8(y0;z0)(:Student(u;y0;z0)_y0 = N1)^

8(y0;z0)(:Student(u;y0;z0)_z0 = v)^Course(u;x;y));

from this we obtain the empty set of tuples. This answer
is intuitively consistent, because the number of the student
with nameN1 is uncertain, and in consequence it is not pos-
sible to find out in which courses he/she is registered. The
set of answers obtained with the Tω operator coincides with
the set of consistent answers which is empty.

5 Completeness

5.1 Binary ICs

Definition 11. A binary integrity constraint(BIC) is a sen-
tence of the form

8(l1(x̄1)_ l2(x̄2)_ψ(x̄));

where l1 and l2 are literals, andψ is a formula that only
contains built-in predicates.

Examples of BICs include: functional dependencies, sym-
metry constraints, set inclusions dependencies of the form
8x̄(P(x̄)�Q(x̄)).

Definition 12. Given a set of sentencesΣ in the language
of the database schema DB, and a sentenceϕ, we denote by
Σ �DB ϕ the fact that, for every instancer of the database, if
r � Σ, thenr � ϕ.

Theorem 2. (Completeness for BICs) Given a setIC of bi-
nary integrity constraints, if for every literall 0(ā), IC 2DB

l 0(ā), then the operator Tω is complete, that is, for every
ground literall(t̄), if r �c l(t̄) thenr � Tω(l(t̄)).

The theorem says that every consistent answer to a query
of the form l(x̄) is captured by the Tω operator. Actually,
proposition 2 in the appendix and the completeness theorem
can be easily extended to the case of queries that are con-
junctions of literals. Notice that the finiteness Tω(l(x̄)) is
not a part of the hypothesis in this theorem. The hypoth-
esis of the theorem requires that the ICs are not enough to
answer a literal query by themselves; they do not contain
definite knowledge about the literals.

Example 14.We can see in the example 12 where BICs and
queries which are conjunctions of literals appear, that the
operator Tω gave us all the consistent answers, as implied
by the theorem.

Corollary 2. If IC is a set of functional dependencies (FDs)

IC = f8(:P1(x̄1;y1)_:P1(x̄1;z1)_y1 = z1); (5)

: : : ;

8(:Pn(x̄n;yn)_:Pn(x̄n;zn)_yn = zn)g;

then the operator Tω is complete for consistent answers to
queries that are conjunctions of literals.

Example 15.In example 13 we had FDs that are also BICs.
Thus the operator Tω found all the consistent answers, even
for some queries that are not conjunctions of literals, show-
ing that this is not a necessary condition.

Example 16. Here we will show that in general complete-
ness is not obtained for queries that are not conjunctions of
literals. Consider the IC:8x;y;z(P(x;y)^P(x;z) � y = z)
and the inconsistent instancer with Σ(r)= fP(a;b);P(a;c)g.
This database has two repairs:r 0 with Σ(r 0) = fP(a;b)g; and
r 00 with Σ(r 00) = fP(a;c)g. We have thatr j=c 9xP(a;x), be-
cause the query is true in the two repairs.

Now, it is easy to see that Tω(9uP(a;u)) is logically equiv-
alent to9u(P(a;u)^8z(:P(a;z)_z= u)). So, we haver 6j=
Tω(9xP(a;x)). Thus, the consistent answertrue is not cap-
tured by the operator Tω.



5.2 Other Constraints

The following theorem applies to arbitrary ICs and general-
izes Theorem 2.

Theorem 3. (Completeness) Let IC be a set of integrity con-
straints,l(x̄) a literal, and Tn(l(x̄)) of the form

l(x̄)^
m̂

i=1

8(x̄i ; ȳi)(Ci(x̄; x̄i)_ψi(x̄; ȳi)):

If for everyn� 0, there isS� f1; : : : ;mg such that

1. for everyj 2 Sand every tuple ¯a: IC 6j=DB Cj(ā), and

2. f8(x̄i; ȳi)(Ci(x̄; x̄i)_ψi(x̄; ȳi))ji 2 Sg implies

f8(x̄i; ȳi)(Ci(x̄; x̄i)_ψi(x̄; ȳi))j1� i �mg

thenr �c l(t̄) impliesr � Tω(l(t̄)).
This theorem can be extended to conjunctions of literals.

Notice that the theorem requires a condition for everyn2 N.
Its application is obviously simplified if we know that the
iteration terminates. This is an issue to be analyzed in the
next section.

6 Termination

Termination means that the operator Tω returns a finite set
of formulas. It is clearly important because then the set of
consistent answers can be computed by evaluating a single,
finite query. We distinguish between three different notions
of termination.

Definition 13. Given a set ofICs and a queryQ(x̄), we say
that Tω(Q(x̄)) is

1. syntactically finiteif there is an annsuch that Tn(Q(x̄))
and Tn+1(Q(x̄)) are syntactically the same.

2. semantically finiteif there is ann such that for allm�
n, 8x̄(Tn(Q(x̄)� Tm(Q(x̄)) is valid.

3. semantically finite in an instance r, if there is ann such
that for allm� n, r j= 8x̄ (Tn(Q(x̄)� Tm(Q(x̄)).

The numbern in cases 2 and 3 is called apoint of finite-
ness. It is clear that 1 implies 2 and 2 implies 3. In the full
version we will show that all these implications are proper.
In all these cases, evaluating Tω(Q(x̄) gives the same result
as evaluating Tn(Q(x̄) for somen (in the instancer in case
3). If Tω(Q(x̄) is semantically finite, sound and complete,
then the set of consistent answers toQ is first-order defin-
able.

6.1 Syntactical �niteness

The notion of syntactical finiteness is important because then
for somen and allm> n, Tm(Q(x̄)) will be exactly the same.
In consequence, Tω(Q) will be a finite set of formulas. In
addition, a point of finitenessn can be detected (if it exists)
by syntactically comparing every two consecutive steps in
the iteration. No simplification rules need to be considered,
because the iterative procedure is fully deterministic.

Here we introduce a necessary and sufficient condition
for syntactical finiteness.

Definition 14. A set of integrity constraintsIC is acyclic if
there exists a functionf from predicate names plus negations
of predicate names in the database to the natural numbers,
that is, f : fp1; : : : ; pn;:p1; : : : ;:png �! N, such that for
every integrity constraint8(

Wk
i=1 li(x̄i)_ψ(x̄))2 IC as in (3),

and everyi and j (1� i; j � k), if i 6= j, then f (:li)> f (l j ).
(Here:li is the literal complementary toli .)

Example 17.The set of ICs

IC = f8x(:P(x)_:Q(x)_S(x));

8(x;y)(:Q(x)_:S(y)_T(x;y))g:

is acyclic, because the functionf defined by
f (P) = 2 f (Q) = 2 f (:P) = 0 f (:Q) = 0
f (S) = 1 f (T) = 0 f (:S) = 1 f (:T) = 2,

sat-

isfies the condition of definition 14.

Example 18.The set of ICs

IC = f8x(:P(x)_:Q(x)_S(x));

8(x;y)(Q(x)_:S(y)_T(x;y))g:

is not acyclic, because for any functionf that we may at-
tempt to use to satisfy the condition in definition 14, from
the first integrity constraint we obtainf (Q)> f (S), and from
the second, we would obtainf (S)> f (Q); a contradiction.

Theorem 4. A set of integrity constraintsIC is acyclic iff
for every literal namel in the database schema, Tω(l(x̄)) is
syntactically finite.

The theorem can be extended to any class of queries sat-
isfying Definition 5.

Example 19.The set of integrity constraints in example 18
is not acyclic. In that case Tω(Q(x)) is infinite.

Example 20. The ICs in example 17 are acyclic. There we



have

Tω(P(u)) =

fP(u);

P(u)^ (:Q(u)_S(u));

P(u)^ (:Q(u)_S(u)^8v(:Q(v)_T(v;u)))g

Tω(Q(u)) =

fQ(u);

Q(u)^ (:P(u)_S(u))^8v(:S(v)_T(u;v));

Q(u)^ (:P(u)_S(u)^8w(:Q(w)_T(w;u)))^

8v(:S(v)^ (:P(v)_:Q(v))_T(u;v))g

Tω(S(u)) = fS(u);S(u)^8(:Q(v)_T(v;u))g

Tω(T(u;v)) = fT(u;v)g

Tω(:P(u)) = f:P(u)g

Tω(:Q(u)) = f:Q(u)g

Tω(:S(u)) = f:S(u);:S(u)^ (:P(u)_:Q(u))g

Tω(:T(u;v)) =

f:T(u;v);

:T(u;v)^ (:Q(u)_:S(v));

:T(u;v)^ (:Q(u)_:S(v)^ (:P(v)_:Q(v)))g:

Corollary 3. For functional dependencies and a queryQ(x̄),
Tω(Q(x̄)) is always syntactically finite.

6.2 Semantical �niteness

Definition 15. A constraintC in clausal form isuniform if
for every literall(x̄) in it, the set of variables inl(x̄) is the
same as the set of variables inC� l(x̄). A set of constraints
is uniform if all the constraints in it are uniform.

Examples of uniform constraints include set inclusion
dependencies of the form8x̄(P(x̄) � Q(x̄)), e.g., Example
4.

Theorem 5. If a set of integrity constraintsIC is uniform,
then for every literal namel in the database schema, Tω(l(x̄))
is semantically finite. Furthermore, a point of finitenessn
can be bounded from above by a function of the number of
variables in the query, and the number of predicates (and
their arities) in the query andIC.

Theorem 6.Let l be a literal name. If for somen,

8x̄(Tn(l(x̄))� Tn+1(l(x̄)))

is valid, then for allm� n,

8x̄(Tn(l(x̄))� Tm(l(x̄)))

is valid.
According to Theorem 6, we can detect a point of finite-

ness by comparing every two consecutive steps wrt logical
implication. Although this is undecidable in general, we
might try to apply semidecision procedures, for example,
automated theorem proving. We have successfully made use
of OTTER [17] in some cases that involve sets of constraints
that are neither acyclic nor uniform. Examples include mul-
tivalued dependencies, and functional dependencies together
with set inclusion dependencies. For multivalued dependen-
cies, Theorem 6 together with Theorem 3 gives complete-
ness of Tω(l(x̄)) where l(x̄) is a negative literal. The cri-
terion from Theorem 6 is also applicable to uniform con-
straints by providing potentially faster termination detection
than the proof of Theorem 5.

6.3 Instance based semantical �niteness

Theorem 7. If Q(x̄) is a domain independent query, then
for every database instancer there is ann, such that for all
m� n, r j= 8x̄(Tn(Q(x̄))� Tm(Q(x̄))).

Notice that this theorem does not include the case of neg-
ative literals, as in the case of theorem 5.

7 Related work

Bry [4] was, to our knowledge, the first author to consider
the notion of consistent query answer in inconsistent data-
bases. He defined consistent query answers based on prov-
ability in minimal logic, without giving, however, a proof
procedure or any other computational mechanism for obtain-
ing such answers. He didn’t address the issues of of seman-
tics, soundness or completeness.

It has been widely recognized that in database integra-
tion the integrated data may be inconsistent with the integrity
constraints. A typical (theoretical) solution is to augment the
data model to represent disjunctive information. The follow-
ing example explains the need for a solution of this kind.

Example 21.Consider the functional dependency

8(x;y;z)(P(x;y)^P(x;z) � y= z:

If the integrated database contains bothP(a;b) andP(a;c),
then the functional dependency is violated. Each ofP(a;b)
and P(a;c) may be coming from a different database that
satisfies the dependency. Thus, both facts are replaced by
their disjunctionP(a;b)_P(a;c) in the integrated database.
Now the functional dependency is no longer violated.



To solve this kind of problems [1] introduced the notion
of flexible relation, a non-1NF relation that contains tuples
with sets of non-key values (with such a set standing forone
of its elements). This approach is limited to primary key
functional dependencies and was subsequently generalized
to other key functional dependencies [9]. In the same con-
text, [3, 12] proposed to use disjunctive Datalog and [16]
tables with OR-objects. [1] introduced flexible relational al-
gebra to query flexible relations, and [9] - flexible relational
calculus (whose subset can be translated to flexible relational
algebra). The remaining papers did not discuss query lan-
guage issues, relying on the existing approaches to query
disjunctive Datalog or tables with OR-objects. There are
several important differences between the above approaches
and ours. First, they rely on the construction of a single (dis-
junctive) instance and the deletion of conflicting tuples. In
our approach, the underlying databases are incorporated into
the integrated onein toto, without any changes. There is no
need for introducing disjunctive information. It would be
interesting to compare the scope and the computational re-
quirements of both approaches. For instance, one should
note that the single-instance approach is not incremental:
Any changes in the underlying databases require the recom-
putation of the entire instance. Second, our approach seems
to be unique, in the context of database integration, in con-
sidering tuple insertions as possible repairs for integrity vi-
olations. Therefore, in some cases consistent query answers
may be different from query answers obtained from the cor-
responding single instance.

Example 22. Consider the integrity constraintp� q and a
fact p. The instance consisting ofp alone does not satisfy
the integrity constraint. The common solution for remov-
ing this violation is to deletep. However, in our approach
insertingq is also a possible repair. This has consequences
for the inferences about:p and:q. Our approach returns
falsein both cases, asp (resp.q) is true in a possible repair.
Other approaches returntrue (under CWA) orundefined(un-
der OWA).

Our work has connections with research done on belief
revision [10]. In our case, we have an implicit notion of re-
vision that is determined by the set of repairs of the database,
and corresponds to revising the database (or a suitable cat-
egorical theory describing it) by the set of integrity con-
straints. Thus, querying the inconsistent database expect-
ing only correct answers corresponds to querying the revised
theory without restrictions.

It is easy to see that our notion of repair of a relational
database is a particular case of the local semantics intro-
duced in [8], restricted to revision performed starting from
a single model (the database). From this we obtain that our
revision operator satisfies the postulates (R1) – (R5),(R7),
(R8) in [13]. For each given databaser, the relation�r in-
troduced in definition 3 provides the partial order between
models that determines the (models of the) revised database
as described in [13]. [8] concentrates on the computation

of the models of the revised theory, i.e. the repairs in our
case, whereas we do not compute the repairs, but keep query-
ing the original, non-revised database and pose a modified
query. Therefore, we can view our methodology as a way
of representing and querying simultaneously all the repairs
of the database by means of a new query. Nevertheless, our
motivation and starting point is quite different from belief
revision. We attempt to take direct advantage of the seman-
tic information contained in the integrity constraints in order
to answer queries, rather than revising the database. Revis-
ing the database means repairing all the inconsistencies in it,
instead we are interested in the information related to par-
ticular queries. For instance, a query referring only to the
consistent portion of the database can be answered without
repairing the database.

Reasoning in the presence of inconsistency has been an
important research problem in the area of knowledge repre-
sentation. The goal is to design logical formalisms that limit
what can be inferred from an inconsistent set of formulas.
One does not want to infer all formulas (as required by the
classical two-valued logic). Also, one prefers not to infer a
formula together with its negation. The formalisms satisfy-
ing the above properties, e.g., [15], are usually propositional.
Moreover, they do not distinguish between integrity con-
straints and database facts. Thus, if the data in the database
violates an integrity constraint, the constraint itself can no
longer be inferred (which is not acceptable in the database
context).

Example 23. Assume the integrity constraint is:(p^ q)
and the database contains the factsp andq. In the approach
of [15], p_ q can be inferred (minimal change is captured
correctly) butp, q and:(p^ q) can no longer be inferred
(they are all involved in an inconsistency).
Because of the above-mentioned limitations, such methods
are not directly applicable to the problem of computing con-
sistent query answers.

Deontic logic [18, 14], a modal logic with operators cap-
turing permission and obligation, has been used for the spec-
ification of integrity constraints. [14] used the obligation op-
eratorO to distinguish integrity constraints thathave to hold
alwaysfrom database facts that justhappen to hold. [18]
used deontic operators to describe policies whose violations
can then be caught and handled. The issues of possible re-
pairs of constraint violations, their minimality and consistent
query answers are not addressed.

Gertz [11] described techniques and algorithms for com-
puting repairs of constraint violations. The issue of query
answering in the presence of an inconsistency is not addressed
in his work.

8 Conclusions and Further Work

This paper represents a first step in the development of a
new research area dealing with the theory and applications



of consistent query answers in arbitrary, consistent or incon-
sistent, databases.

The theoretical results presented here are preliminary. We
have proved a general soundness result but the results about
completeness and termination are still partial. Also, one
needs to look beyond purely universal constraints to include
general inclusion dependencies. In a forthcoming paper we
will also describe our methodology for using automated the-
orem proving, in particular, OTTER, for proving termina-
tion.

It appears that in order to obtain completeness for dis-
junctive and existentially quantified queries one needs to move
beyond the Tω operator on queries. Also, the upper bounds
on the size of Tω and the lower bounds on the complexity of
computing consistent answers for different classes of queries
and constraints need to be studied. In [2] it is shown that in
the propositional case, SAT is reducible in polynomial time
to the problem of deciding if an arbitrary formula evaluated
in the propositional database does not give true as a correct
answer, that is it becomes false in some repair. From this it
follows that this problem is NP-complete.

There is an interesting connection to modal logic. Con-
sider the definition 7. We could writer j= 2Q(t̄), meaning
that Q(t̄) is true in all repairs ofr, the database instances
that are “accessible” fromr. This is even more evident from
example 16, where, in essence, it is shown that29xQ(x̄) is
not logically equivalent to9x2Q(x̄), which is what usually
happens in modal logic.

Acknowledgments

This research has been partially supported by FONDECYT
Grants (1971304 & 1980945) and NSF Grant (IRI-9632870).
Part of this research was done when the second author was
on sabbatical at the Technical University of Berlin (CIS Group)
with the financial support from DAAD and DIPUC.

References

[1] S. Agarwal, A.M. Keller, G. Wiederhold, and
K. Saraswat. Flexible Relation: An Approach for
Integrating Data from Multiple, Possibly Inconsistent
Databases. InIEEE International Conference on Data
Engineering, 1995.

[2] M. Arenas, L. Bertossi, and M. Kifer. APC and Query-
ing Inconsistent Databases. In preparation.

[3] C. Baral, S. Kraus, J. Minker, and V.S. Subrahma-
nian. Combining Knowledge Bases Consisting of First-
Order Theories.Computational Intelligence, 8:45–71,
1992.

[4] F. Bry. Query Answering in Information Systems with
Integrity Constraints. InIFIP WG 11.5 Working Con-
ference on Integrity and Control in Information Sys-
tems. Chapman &Hall, 1997.

[5] U.S. Chakravarthy, J. Grant, and J. Minker. Logic-
Based Approach to Semantic Query Optimization.
ACM Transactions on Database Systems, 15(2):162–
207, 1990.

[6] S. Chaudhuri and U. Dayal. An Overview of
Data Warehousing and OLAP Technology.SIGMOD
Record, 26, March 1997.

[7] J. Chomicki and G. Saake, editors. Logics for
Databases and Information Systems. Kluwer Aca-
demic Publishers, Boston, 1998.

[8] T. Chou and M. Winslett. A Model-Based Belief Re-
vision System.J. Automated Reasoning, 12:157–208,
1994.

[9] Phan Minh Dung. Integrating Data from Possibly In-
consistent Databases. InInternational Conference on
Cooperative Information Systems, Brussels, Belgium,
1996.

[10] P. Gaerdenfors and H. Rott. Belief Revision. In D. M.
Gabbay, J. Hogger, C, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 4, pages 35–132. Oxford Uni-
versity Press, 1995.

[11] M. Gertz. Diagnosis and Repair of Constraint Vio-
lations in Database Systems. PhD thesis, Universit¨at
Hannover, 1996.

[12] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity
Constraints: Semantics and Applications. In Chomicki
and Saake [7], chapter 9.

[13] H. Katsuno and A. Mendelzon. Propositional Knowl-
edge Base Revision and Minimal Change.Artificial
Intelligence, 52:263–294, 1991.

[14] K.L. Kwast. A Deontic Approach to Database In-
tegrity. Annals of Mathematics and Artificial Intelli-
gence, 9:205–238, 1993.

[15] J. Lin. A Semantics for Reasoning Consistently in the
Presence of Inconsistency.Artificial Intelligence, 86(1-
2):75–95, 1996.

[16] J. Lin and A. O. Mendelzon. Merging Databases un-
der Constraints.International Journal of Cooperative
Information Systems, 7(1):55–76, 1996.

[17] W.W. McCune. OTTER 3.0 Reference Manual and
Guide. Argonne National Laboratory, Technical Re-
port ANL-94/6, 1994.

[18] J.-J. Meyer, R. Wieringa, and F. Dignum. The Role
of Deontic Logic in the Specification of Information
Systems. In Chomicki and Saake [7], chapter 4.



[19] Jean-Marie Nicolas. Logic for Improving Integrity
Checking in Relational Data Bases.Acta Informatica,
18:227–253, 1982.

[20] J. Ullman. Principles of Database and Knowledge-
Base Systems, Vol. I. Computer Science Press, 1988.

Appendix: Proofs of Results

Some technical lemmas are stated without proof. Full proofs
can be found in the fileproofspods99.ps in
http://dcc.ing.puc.cl/�bertossi/.

Lemma 1. If r � Tω(l(ā)), wherel(ā) is a ground literal,
then for every repairr 0 of r, it holds r 0 � l(ā).

Lemma 2. If r � Tω(
Vn

i=1 li(āi)), whereli(āi) is a ground
literal, then for every repairr 0 of r, it holdsr 0 �

Vn
i=1 li(āi).

Lemma 3. If r � Tω(
Wn

i=1Ci(āi)), with Ci(āi) a conjunction
of literals, then for every repairr 0 of r, r 0 �

Wn
i=1Ci(āi).

Lemma 4. Let Q(x̄) a universal query. Ifr � Tω(Q(t̄)), for
a ground tuplēt, then for every repairr 0 of r, r 0 �Q(t̄).

Lemma 5. Let Q(x̄) a domain independent query. Ifr �
Tω(Q(t̄)), for a ground tuplēt, then for every repairr 0 of r,
r 0 �Q(t̄).

Proof of Theorem 1: Lemmas 4 and 5.

Proposition 2. Given a setIC of integrity constraints, a
ground clause

Wm
i=1 li(t̄i), if IC 2DB

Wm
i=1 li(t̄i) and, for every

repairr 0 of r, r 0 �
Wm

i=1 li(t̄i), thenr �
Wm

i=1 li(t̄i).

Proof of Proposition 2: Assume thatr � :
Wm

i=1 li(t̄i). By
hypothesisIC 2DB

Wm
i=1 li(t̄i), thus there exists an instance

of the databaser 0 such thatr 0 � IC[f:
Wm

i=1 li(t̄i)g. Let us
consider the set of database instances

R= fr�jr� � IC and∆(r; r�)� ∆(r; r 0)g:

We know that∆(r; r 0) is finite, therefore there existsr0 2 R
such that∆(r; r0) is minimal. Then,r0 is a repair ofr.

For every 1� i �m, if li(t̄i) is p(t̄) or:p(t̄), thenp(t̄) =2
∆(r; r 0). Using this fact we conclude thatp(t̄) =2 ∆(r; r0),
Therefore,r �

Wm
i=1 li(t̄i) if and only if r0 �

Wm
i=1 li(t̄i). But

we assumed thatr � :
Wm

i=1 li(t̄i), thenr0 � :
Wm

i=1 li(t̄i); a
contradiction.

Proof of Theorem 2: From theorem 3.

Proof of Corollary 2: In this case it holds:

1. For every tuple ¯a, IC 2DB Pi(ā), because the empty
database instance (which has only empty base rela-
tions) satisfiesIC, but notP(ā).

2. For every tuple ¯a, IC 2DB :Pi(ā), since the database
instancer i

ā, where the relationPi contains only the tu-
ple ā and the other relations are empty, satisfiesIC, but
not:Pi(ā).

Proof of Theorem 3: Suppose thatr �c l(t̄). Let r 0 a repair
of r, we have thatr 0 � l(t̄). By proposition 1 we have that
r 0 � Tn(l(t̄)), that is

r 0 � l(t̄)^
m̂

i=1

8(
mi_

j=1

li; j (t̄; x̄i; j )_ψi(t̄; x̄i)); (6)

We want to prove that for everyi and for every sequence
of ground tuplesai , ai;1, : : : , ai;mi :

r �
mi_

j=1

li; j(t̄; āi; j)_ψi(t̄; āi); (7)

To do this, first we are going to prove that for everyi 2 S
and for every sequence of ground tuplesai , ai;1, : : : , ai;mi :

r �
mi_

j=1

li; j(t̄; āi; j)_ψi(t̄; āi); (8)

This is immediately obtained whenr � ψi(t̄; āi). As-
sume thatr � :ψi(t̄; āi). We know thatψi only mentions
built-in predicates, thus for every repairr 0 of r we have that
r 0 � :ψi(t̄; āi). Therefore, by (6) we conclude that for every
repairr 0 of r:

r 0 �
mi_

j=1

li; j(t̄; āi; j)_ψi(t̄; āi);

By proposition 2 we conclude (8). Thus we have that

r � l(t̄)^
^

i2S

8(
mi_

j=1

li; j(t̄; x̄i; j)_ψi(t̄; x̄i));

but by the second condition in the hypothesis of the theorem
we conclude that:

r � l(t̄)^
m̂

i=1

8(
mi_

j=1

li; j(t̄; x̄i; j)_ψi(t̄; x̄i)):

Proof of Theorem 4: (=)) Suppose thatIC is acyclic, then
there existsf as in the definition 14. We are going to prove
by induction onk that for every literal namel , if f (l) = k,
thenTk+1(l(x̄)) = Tk+2(l(x̄))
(I) If k = 0. We know that that for every literal namel 0,
f (l 0)� 0. Therefore, every integrity constraint containing:l
is of the form8(:l(x̄)_ψ(ȳ)), whereψ only mentions built-
in predicates. This is because if there were any other literal
l 0 in the integrity constraint, we would havef (l 0)< f (l) = 0.
ThenT1(l(x̄)) = T2(l(x̄)).



(II) Suppose that the property is true for everym< k. We
know thatTk+2(l(x̄)) is of the form:

l(x̄)^
m̂

i=1

Q̄i(
mi_

j=1

Tk+1(li; j(x̄i; j ))_ψi(x̄i));

whereQ̄i is a sequence of quantifiers over all the variables
x̄i;1, : : : , x̄i;mi , x̄i not appearing in ¯x, andTk+1(l(x̄)) is of the
form:

l(x̄)^
m̂

i=1

Q̄i(
mi_

j=1

Tk(li; j(x̄i; j))_ψi(x̄i)):

By definition of f , we know that for every literal nameli; j
in the previous formulas,f (li; j ) < k. Then by induction
hypothesisTk(l(x̄i; j )) = Tk+1(li; j (x̄i; j)) (since ifTm(l 0(x̄)) =
Tm+1(l 0(x̄)), then for everyn�m, Tn(l 0(x̄)) = Tn+1(l 0(x̄))).
((=) Suppose that for every literal namel , Tω(l(x̄)) is fi-
nite. The for every literal namel there exists a first natu-
ral numberk such that Tk(l(x̄)) = Tk+1(l(x̄)). Let us de-
fine a function f , from the literal names into the natural
number, byf (l) = k (k as before). We can show that this
is a well defined function that behaves as in definition 14:
since if8(

Wm
i=1 li(x̄i)_ψ(ȳ)) 2 IC, then for every 1� s�m,

T f (:ls)(:ls(x̄s)) is of the form

:ls(x̄s)^ Q̄(
s�1_

i=1

T f (:ls)�1(li(x̄i))_

m_

i=s+1

T f (:ls)�1(li(x̄i))_ψ(ȳ))^θ(x̄s); (9)

whereQ̄ is a sequence of quantifiers over all the variables
x̄1, : : : , x̄m, ȳ, not appearing in ¯xs, and Tf (:ls)+1(:ls(x̄s)) is
of the form

:ls(x̄s)^ Q̄(
s�1_

i=1

T f (:ls)(li(x̄i))_

m_

i=s+1

T f (:ls)(li(x̄i))_ψ(ȳ))^θ0(x̄s): (10)

By definition of f , Tf (:ls)(:ls(x̄s))=Tf (:ls)+1(:ls(x̄s)). Then,
by the form of (9) and (10), we conclude that for everyi 6= s,
Tf (:ls)�1(li(x̄i)) = T: f (ls)(li(x̄i)), and then, again by defini-
tion of f , f (li)< f (:ls).

Proof of Corollary 3: The following stratification function
from literals toN can be defined:f (:Pi) = 0 andf (Pj) = 1,
wherePi ;Pj are relation names.

Proof of Theorem 5: For uniform constraints the residues
do not contain quantifiers. Therefore Tn(l(x̄)) for everyn�
0 is quantifier-free and contains only the variables that occur
in x̄. There are only finitely many inequivalent formulas with
this property, and thus Tω(l(x̄)) is finite.

Lemma 6. If Tn(l(x̄)) is of the form:

l(x̄)^
m̂

i=1

8(x̄i ; ȳi)(Ci(x̄; x̄i)_ψi(x̄; ȳi));

then Tn+1(l(x̄)) is of the form:

l(x̄)^
m̂

i=1

8(x̄i ; ȳi)(T1(Ci(x̄; x̄i))_ψi(x̄; ȳi));

Lemma 7. If for a ground tuple ¯a, Tn(l(ā))�8(
Wk

j=1 l 0j(ā; z̄j)),

then Tn+1(l(ā)) � 8(
Wk

j=1T1(l 0j(ā; z̄j))).

Proof of Theorem 6: Suppose that for a natural numbern,
8x̄(Tn(l(x̄))� Tn+1(l(x̄))) is a valid sentence. We are going
to prove that for everym� n, 8x̄(Tm(l(x̄))� Tm+1(l(x̄))) is
a valid sentence, by induction onm.
(I) If m= n, by hypothesis.
(II) Suppose that8x̄(Tm(l(x̄)) � Tm+1(l(x̄))) is a valid sen-
tence. For every clause

Wk
j=1 l 0j(x̄; z̄j )_ψ(x̄; z̄) in Tm+1(l(x̄))

and for every ground tuple ¯a we have that

Tm(l(ā)) � 8(
k_

j=1

l 0j(ā; z̄j )_ψ(ā; z̄)):

By lemma 7 and considering thatψ only mentions built-in
predicates we have that Tm+1(l(ā)) � 8(

Wk
j=1T1(l 0j(ā; z̄j ))_

ψ(ā; z̄)), and from this and lemma 6 we can conclude that
8x̄(Tm+1(l(x̄))� Tm+2(l(x̄))) is a valid sentence.

Proof of Theorem 7: Let Q(x̄) be a domain independent
query andr a database instance. DefineAn = ft̄ j r �Tn(Q(t̄))g.
We know that for everyn: An+1�An, thereforeA= fAi j i <
ωg is a family of subsets ofA0. ButA0 is finite becauseQ(x̄)
is a domain independent query. Thus, there exists a minimal
elementAm in A. For this element, it holds that for every
k�m: Am = Ak, sinceAk � Am.


