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Abstract consistent answers to the original qu€yWe envision the
application of our results in a number of areas:
In this paper we consider the problem of the logical char- Data warehousingA data warehouse contains data com-
acterization of the notion of consistent answer in a relational ing from many different sources. Some of it typically does
database that may violate given integrity constraints. This not satisfy the given integrity constraints. The usual ap-
notion is captured in terms of the possible repaired versionsproach is thus teleanthe data by removing inconsistencies
of the database. A method for computing consistent an- before the data is stored in the warehouse [6]. Our results
swers is given and its soundness and completeness (for somenake it possible to determine which data is already clean
classes of constraints and queries) proved. The method isand proceed to safely remove unclean data. Moreover, a dif-
based on an iterative procedure whose termination for sev-ferent scenario becomes possible, in which the inconsisten-
eral classes of constraints is proved as well. cies are not removed but rather query answers are marked as
“consistent” or “inconsistent”. In this way, information loss
1 Introduction due to data cleaning may be prevented.
Database integration.Often many different databases

Integrity constraints capture an important normative aspectare integrated together to provide a single unified view for
of every database appiication_ However, it is often the Casethe users. Database integration is difficult since it requires
that their satisfaction cannot be guaranteed, allowing for the the resolution of many different kinds of discrepancies of
existence of inconsistent database instances. In that casethe integrated databases. One possible discrepancy is due
itis important to know which query answers are consistent to different sets of integrity constraints. Moreover, even if
with the integrity constraints and which are not. In this pa- €very integrated databakeeally satisfies the same integrity
per, we provide a logical characterization of consistent query constraint, the constraint may kyobally violated. For ex-

answers in relational databases that may be inconsistent witremple, different databases may assign different addresses to
the given integrity constraints. |ntuitive|y, an answer to a the same student. Such conflicts may fail to be resolved at all

query posed to a database that violates the integrity con-and inconsistent data cannot be “cleaned” because of the au-
straints will be consistent in a precise sense: It should be thetonomy of different databases. Therefore, it is important to
same as the answer obtained from any minimally repaired Pe able to find out, given a set of local integrity constraints,
version of the original database. We also provide a method Which query answers returned from the integrated database
for Computing such answers and prove its properties_ On theare consistent with the constraints and which are not.

basis of a quer, the method computes, using an iterative Active and reactive database# violation of integrity
procedure, a new query,[Q) whose evaluation in an arbi- constraints may be acceptable under the provision that it will

trary, consistent or inconsistent, database returns the set op€ repaired in the near future. For example, the stock levelin
a warehouse may be allowed to fall below the required min-

imum if the necessary replenishments have been ordered.
During this temporary inconsistency, however, query answers
should give an indication whether they are consistent with
the constraints or not. This problem is particularly acute in



active databases that allow such consistency lapses. The re2.1 Repairs
sult of evaluating a trigger condition that is consistent with
the integrity constraints should be treated differently from
the one that isn't.

The following example presents the basic intuitions be-

hind the notion of consistent query answer. Definition 2. (Distancg ThedistanceA(r,r’) between data-
base instancasandr’ is the symmetric difference:

Given a database instancewe denote by (r) the set of
formulas{P(a)|r E P(a)}, where thePs are relation names
andais ground tuple.

Example 1.Consider a database subject to the followli@g

WX(P(X) > Q(X)). Afr.r') = (2(r) = 2() U () ~ 2(r))-

The instance Definition 3. For the instancesr’,r”, r’ <, r" if A(r,r") C
A(r,r"), i.e., if the distance betweenandr’ is less than or
{P(a),P(b),Q(a),Q(c)} equal to the distance betweeandr”.

Notice that built-in predicates do not contribute to the

violates this constraint. Now if the query asks fonefluch  Aq pecause they have fixed extensions, identical in every
thatQ(x), onlyais returned as an answer consistent with the database instance.

integrity constraint.

The plan of this paper is as follows. In section 2 we in- Definition 4. (Repail) Given database instanceandr’, we
troduce the basic notions of our approach, including those of say thatr’ is arepair of r if r’ = IC andr’ is <,-minimalin
repair andconsistent query answein section 3 we show a  the class of database instances that satisfy the ICs.
method how to compute the query,(RQ) for a given first- Clearly, what constitutes a repair depends on the given
order quenQ. In subsequent sections, the properties of this set of integrity constraints. In the following we assume that
method are analyzed: soundness in section 4, completenesthis set is fixed.
in section 5, and termination in section 6. In section 7 we
discuss related work. In section 8 we conclude and outline Example 2. Let us consider a database schema with two
some of the prospects for future work in this area. The proofs unary relationd® andQ and domairD = {a,b,c}. Assume
are given in the appendix. that for an instance, x(r) = {P(a),P(b),Q(a),Q(c)}, and
let IC = {¥x(P(x) D Q(x))}. Clearly,r does not satisfyC
because F P(b) A =Q(b).

In this case we have two possibles repairsrorFirst,

e can falsifyP(b), obtaining an instance with Z(r') =

2 Basic Notions

In this paper we assume we have a fixed database schem b A d al . K
and a fixed infinite database dom&n We also have a first I(Ja)7Q(a) ’t? ((_:),}' sa secor;) g:lezrnzlaltlv_e, \Igve cinbma €
order language based on this schema with names for the eIe—Q( )trui, obtaining aninstanc€with 2(r") = {P(a), P(b),
ments oD. We assume that elements of the domain with dif- Q(a),Q( )’.Q@}' . . . .
ferent names are different. The instances of the schema are The definition .Of a repair sat|sf|e§ certain desirable and
finite structures for interpreting the first order language. As expzctedbproper_tlez. Ewstly, a %on_s |f§tent dar:abaze dr? es not
such they all share the given domdn nevertheless, since nee tor e re%r?u're ' e?‘aus?',at's |e§IC,ht enl, y the
relations are finite, every instance has a finite active domain minima |ty. condition wrtt e relatiorsy, 1 Is the only repair
which is a subset ob. As usual, we allow built-in predi- of itself (sinceA(r,r) S empty). Secondly, any database
cates that have infinite extensions, identical for all database®®" ?Iways b?j repallr(.ad fpgcause there is a datababat
instances. There is also a set of integrity constrdDtex- satisfiedC, andA(r,r’) is finite.
pressed in thatllanguage,' which the datgbase |.nstan(':es arByample 3.(motivated by [19]) Consider the IC saying that
expected to satisfy. We will assume th@tis consistentin = s the only supplier of items of clads:
the sense that there is a database instance that makes it true.

Y(X,Y,2)(Supplyx,y,z) AClasgz, T4) Dx=C). (1)
Definition 1. (ConsistencyA database instanaes consis-
tentif r satisfiesIC in the standard model-theoretic sense, The following database instancgviolates the IC:
that is,r £ IC; r is inconsistent otherwise.

. ) - . Suppl Class
This paper addresses the issue of obtaining meaningful CD# T
and useful query answers &my, consistent or inconsistent, 5 Di I; I; Tj

database. It is well known how to obtain query answers in
consistent databases. Therefore, the challenging part is howT he only repairs of this database are

to deal with the inconsistent ones.
Supply Class

C D1 I1 i Ty
lo Ty



and

Supply Class
C D1 Ih l1 Ty
D Dy Iz

Example 4. (motivated by [19]) Consider the IC:

(2)

saying that iteni; is supplied whenever item is supplied;
and the following inconsistent instance, of the database

Y(x,y)(Supplyx,y,l1) D Supplyx,y,l2)),

Supply
C D1 I1
C D1 I3

This instance has two repairs:

Supply
C D1 14
C D1 Ip
C D I3
and
Supply
C D I3

Example 5. Consider a student databas8tudentx,y,z)
means thax is the student numbey,is the student’s name,
andz is the student’s address. The two following ICs state
that the first argument is a key of the relation

Y(x,Y,z u,V)(Studentx,y, z) A Studenfx, u,v) Dy =u),
Y(x,Y,z u,v)(Studentx,y,z) A Studenfx, u,v) D z=v).

The inconsistent database instange

Student Course
S Ny D1 S G G
S N D 5 G G
has two repairs:
Student Course
S N Dp 5 CG G
S5 & G
and
Student Course
S N Di S G &
S5 & G

2.2 Consistent query answers

We assume all queries are in prefix disjunctive normal form.

Definition 5. A formulaQ is aqueryif it has the following
syntactical form:

_s m n
Q'\/(/\ PG A A —Qii (Vi) A i),

1j=1 j=1

whereQ is a sequence of quantifiers and evesycontains
only built-in predicates. IfQ contains only universal quanti-
fiers, then we say th&) is auniversal query If Q contains
existential (and possibly universal) quantifiers, we say that
Qis non-universabuery.

Definition 6. (Query answerA (ground) tuplet is anan-
swerto a queryQ(X) in a database instanceéf r = Q(t). A
(ground) tuplé is ananswerto a set of querie§Qs, ... ,Qn}

if 1= QuA- AQn.

Definition 7. (Consistent answgiGiven a set of integrity
constraints, we say that a (ground) tuplés a consistent
answerto a queryQ(x) in a database instange and we
write 1 =¢ Q(t) (or r =c Q(X)[t]), if for every repairr’ of
r,r'E Q(t). If Qis a sentence, therue (false is aconsis-
tent answetto Q in r, and we writer |=¢ Q (r ¢ Q), if for

every repair’ of r,r' EQ (r' £ Q).

Example 6. (example 3 continued) The only consistent an-
swer to the querglasgz Ta), posed to the database instance
r1, isl1 becauser; |=¢ Clasgz Ts)[l1].

Example 7. (example 4 continued) The only consistent an-
swer to the querpupplyC,D1,z), posed to the database in-
stancery, is I3 becausera = SupplyC,D1,2)[l3].

Example 8. (example 5 continued) By considering all the re-
pairs of the database instangewe obtainC; andC; as the
consistent answers to the quétyCoursé¢S;,y, z), posed to
rs. For the quend(u, v)(Studentu, N1, v) A Courséu, x,y)),

we obtain no (consistent) answers.

3 The General Approach

We present here a method to compute consistent answers to
queries. Given a quer®, the queryT,(Q) is defined based

on the notion ofesiduedeveloped in the context of seman-

tic query optimization (SQO) [5]. In the context of deductive
databases, SQO is used to optimize the process of answering
gueries using the semantic knowledge about the domain that
is contained in the ICs. In this case, the basic assumption is
that the ICs are satisfied by the database. In our case, since
we allow inconsistent databases, we do not assume the sat-
isfaction of the ICs while answering queries. A first attempt
to obtain consistent answers to a qu&fx) may be to use
query modificationi.e., ask the quer@(x) A IC. However,



this does not work, as we obtafalse as the answer if the  and each positive occurrence of a predidgtg;) in it, the
DB is inconsistent. Instead, we iteratively modify the query following residue for-P;(X;) is generated

Q using the residues. As a result, we obtain the qlg(®)

with the property that the set of all answersTig(Q) is the _i-1 m _ _

same as as the set of consistent answef.t¢As shown Q(.V R(x) v \/ P (%) V'V —“Qy)ve), (4
later, the property holds only for restricted classes of queries =1 =i+l =1

and constraints.) whereQ is a sequence of universal quantifiers over all the

. . . . variables in the formula not appearingip
3.1 Generating residues in relational DBs If Ry, ... ,R are all the residues fosP;, then the follow-

We consider only universal constraints. We begin by trans- INd rule is generated:

forming every integrity constraint to the standard fornest ( ' '
pansionstep). —Pj(W) — ~Pj(W){Ry(W), ... ,Re (W)},

wherew are new variables. If there are no residuesBy,
then the rule—-P;(w) — —P;(w) is generated.
For each negative occurrence of a predi€ggy; ) in (3),

Definition 8. An integrity constraint is irstandard formatf
it has the form

m N _ the following residue foQ;(y;) is generated
vV P VV -Qi) V),
i=1 i=1 _.m -1 n
. — P(x)V -Qi(Yi) V =Qi(y) V),
whereV represents the universal closure of the formuia, Q(i\:/l () i\:/l Qi) i:\ﬂl QY
y; are tuples of variables anfl is a formula that mentions
only built-in predicates, in particular, equality. whereQ is a sequence of universal quantifiers over all the
Notice that in such an IC there are no constants in the yariables in the formula not appearingyip ~
R,Q; if they are needed they can be pushed ipto If R,,...,R, are all the residues f@;(y;), the following

Many usual ICs that appear in DBs can be transformed to rye is generated:
the standard format, e.g. functional dependencies, set inclu-
sion dependencies of the foriix(P(x) > Q(X)), transitiv- Qj (1) — Qj(W{Ry(U),... ,Ry(u)}.
ity constraints of the fornvx,y, z(P(x,y) AP(y,2) D P(x,2)).
The usual ICs that appear in SQO in deductive databasedf there are no residues f@;(y;), then the ruleQ;(u) —
as rules [5] can be also accommodated in this format, in- Qj(U) is generated. Notice that there is exactly one new rule
cluding rules with disjunction and logical negation in their for each positive predicate, and exactly one rule for each
heads. An inclusion dependency of the forktx(P(X) D negative predicate.
Jy Q(X,y)) cannot be transformed to the standard format. If there are more than one positive (negative) occurrences
After the expansion dfc, rules associated with the databas@®f a predicate, saf, in an IC, then more then one residue
schema are generated. This could be seen as considerintp computed for-P. In some cases, e.g., for functional de-
an instance of the database as an extensional database egendencies, the subsequent residues will be redundant. In
panded with new rules, and so obtaining an associated de-Other cases cases, e.g., fansitivity constraints multiple
ductive database where semantical query optimization canresidues are not redundant.
be used.
For each predicate, its negative and positive occurrencesEX@mple 10. If we have the following ICs in standard for-

in the ICs (in standard format) will be treated separately with Mat
the purpose of generating corresponding residues and rules. _
First, a motivating example. IC = {¥X(R(X) V=P(X) v =Q(x)), YX(P(x) V=Q(X))},

Example 9. Consider the ICVx (=P(x) V Q(x)). If Q(X) is the following rules are generated:

false, then—P(x) must be true. Then, when asking about

-Q(x), we make sure thatP(x) becomes true. That is, P9 = PO{RXV=Q)}
we generate the query-Q(x) A =P(x) where—P(x) is the QX — QE){R(X)V=P(x),P(x)}
residue attached to the query. R(X) — R(X)
For each IC in standard format -P(x) — =PX){—Q(x)}
m o ~QX) — -Q(X)
MVRE)VV QG0 V). ® “R(X) > <RO{P() V-Q(X)}.

Notice that no rules are generated for built-in predicates,
but such predicates may appear in the residues. They have



fixed extensions and thus cannot contribute to the violation Definition 10. The application of operatorJon a query is
of an IC or be modified to make an IC true. For example, if defined as §,(¢) = U {Tn(9)}.
we have the ICVX,y,z(—=P(x,y) V =P(x,2) Vy = z), and the n<w

database sgtisfiesP(L 2),P(1,3), the IC cannot be made Example 11. (example 10 continued) For the querR(x)
true by making 2= 3. o _we have T(=R(X)) = —RX) A (=P(X) V =Q(X)), T2(~R(X))
Once the rules have been generated, itis possible to sim-_ “R(X) A ((<P(X) A—Q(X)) V~Q(x)) and finally Ts(~R(x))

plify the associated residues. In every new rule of the form _ T,(=R(X)). We have reached a fixed point and then

P(u) — P(U){Ry(0),... ,R(U)} the auxiliary quantifica-
tions introduced in the expansion step are eliminated (both To(=ROO) = {2R(X). SR A (P(X) V =O(x

the quantifier and the associated variable in the formula) o(FR9) = {=R09, =RO) A (AP() V ~Q)),
from the residues by the process inverse to the one applied ~RX) A ((=PO) A=Q(X)) V =Q(x)) -
in the expansion. The same is done with rules of the form

We show first that the operatog,Eonservatively extends
-P— -P{---}.

standard query evaluation on consistent databases.

3.2 Computing T,(Q) Proposition 1. Given a database instancend a set of in-
tegrity constraint$C, such that F IC, then for every query

In order to determine consistent answers to queries in arbi- _
X) and every natural numbar r EVYX(Q(X) =T X))).
trary databases, we will make use of a family of operators QX Y QK n(Q9))

consisting of |, n> 0, and T,. Corollary 1. Given a database instanceand a set of in-
tegrity constraintsC, such that F IC, then for every query

Definition 9. The application of an operatopTo a query is Q(X) and every tuplé r £ Q(D) if and only ifr £ Te(Q(D).

defined inductively by means of the following rules

1. To(O) := 0O, Ty(—-0O) := -0, for everyn > 0 (O is the

empty clause). 4 Soundness

2. To(9) :=¢. Now we will show the relationship between consistent an-
swers to a querQ in a database instancédefinition 7) and
answers to the queryIQ) (definition 6). We show that
Tw(Q) returns only consistent answers@o

3. For each predicatB(u), if there is a ruleP(u) —
P(@{Ra(T0),...,Re (@)}, then

r
Tnia(P(0) :=P(@) A A Ta(Ri(). Theorem 1. (Soundnegd_et r be a database instand€, a
i=1 set of integrity constraints ar@(x) a query (see definition 5)
If P(u) does not have residues, thepT(P(u)) := such thar = T,(Q(X))[t]. If Qis universal or non-universal
P(0). and domain independent[20], theis a consistent answer to

4. For each negated predicat€(v), if there is a rule Qi (in the sense of definition 7), that isj=c Q(t) .
~QY) — ~QV{Ry(V). .- . Re(V)}, then The second condition in the theorem excludes non-universal,
S but domain dependent queries lilx—P(x).
Tn1(=Q(V)) := QW) A A\ Tn(Ri(V)).
i=1 Example 12.(example 6 continued) The IC (1) transformed

If -Q(V) does not have any residues, then{-Q()) :=  into the standard format becomes
—Q(U).
: : o V(xy,zw)(=Supplyx,y,2) v
5. If ¢ is a formula in prenex disjunctive normal form,
. —Clasgz,w) Vw # T4V x=C).
that is,
_s m _ N _ The following rule is generated:
0=Q V(AP@HA A =Qj(Vij)Awi),
i=1j=1 =1 Clasgz w) — Clasgz w)
whereQ s a sequence of quantifiers apds a formula {V(x,y)(=Supplyx,y,z) VW # T4 Vx=C)}.
that includes only built—in predicates, then for every
n>o0: Given the database instangethat violates the IC as before,
- s m if we pose the querflasgz T4), asking for the items of
A = classTy, directly tory, we obtainl; andl,. Nevertheless, if
Tn(®) = Qi\:/l(j/z\lT“(P"J (G)) A we pose the queryJ(Clasgz Ty)), that is

A\ Tol~Qu () A ). {Classz Ta),
j=1 Clasgz, Ta) AY(X,Y)(—~Supplyx,y,z) Vx =C)}



we obtain onlyly, eliminatingl,. |1 is the only consistent
answer.

Example 13.(example 8 continued) In the standard format,
the ICs take the form
Y(x,Y,z u,Vv)(—Studenfx,y, z)
—Studenix,u,v) Vy=u),
Y(x,Y,z u,v)(=Studenfx,y,z) V
—Studentx,u,v) Vz=v).

The following rule is generated

Studen(x,y,z) — Studenfx, y, z)
{¥(u,v) (~Studentx,u,v) V'y = ),
Y(u,v)(~Studentx,u,v) Vz=v)}.
Given the inconsistent database instang;af we pose the
query3zCoursé€Sy, Y, z), asking for the names of the courses

of the student with numbe$;, we obtainC; andCy. If we
pose the query

Tw(3zCourséSy,y, z)) = {3zCourséS,,y,z) }

we obviously obtain the same answers which, in this case,
are the consistent answers. Intuitively, in this case the T
operator helps us to establish that even when the name of th
student with numbe$; is undetermined, it is still possible
to obtain the list of courses in which he/she is registered. On
the other hand, if we pose the query

3(u,v)(Studentu, Nz, v) A Courséu, X,y))

about the courses and grades for a student with fgmio
rs, we obtain(Cy,G;1) and(Cy, Gz). Nevertheless, if we ask

Tw(3(u,v)(Studenfu, Ny, v) A Courséu,x,y)))

we obtain, in conjunction with the original query, the for-
mula:

3(u,v)(Studentu, N1, v) A

V()/7z’)(ﬂ8tuder’¢u7>/7z’) \/}/ =Njp)A
Y(y,Z)(=Studentu,y’,Z) v Z = v) A Cours€u,X,y)),

from this we obtain the empty set of tuples. This answer

is intuitively consistent, because the number of the student

with nameN; is uncertain, and in consequence it is not pos-
sible to find out in which courses he/she is registered. The
set of answers obtained with the Toperator coincides with
the set of consistent answers which is empty.

5 Completeness

5.1 Binary ICs

Definition 11. A binary integrity constrain{BIC) is a sen-
tence of the form

V(l1(x1) VI2(X2) VU(X)),

wherel; andl, are literals, andp is a formula that only
contains built-in predicates.

Examples of BICs include: functional dependencies, sym-
metry constraints, set inclusions dependencies of the form

VRIP(X) S Q(X)).

Definition 12. Given a set of sentencésin the language
of the database schema DB, and a senténee denote by
> Fpe ¢ the fact that, for every instanceof the database, if
rkZ, thenr E ¢.

Theorem 2. (Completeness for BIG$iven a selC of bi-
nary integrity constraints, if for every literél(a), IC ¥pg
I'(a@), then the operator Jis complete, that is, for every
ground literall (t), if r E¢ I (t) thenr E T(I(1)).

The theorem says that every consistent answer to a query
of the forml(X) is captured by the J operator. Actually,
proposition 2 in the appendix and the completeness theorem
can be easily extended to the case of queries that are con-
junctions of literals. Notice that the finitenesg(T(X)) is
not a part of the hypothesis in this theorem. The hypoth-
esis of the theorem requires that the ICs are not enough to
answer a literal query by themselves; they do not contain
definite knowledge about the literals.

eExampIe 14.We can see in the example 12 where BICs and

gueries which are conjunctions of literals appear, that the
operator T, gave us all the consistent answers, as implied
by the theorem.

Corollary 2. If IC is a set of functional dependencies (FDs)

IC = {V(=P1(x1,y1) V =P1(X1,21) VY1 = 71), )

ey

¥ (=Pa(Xn,Yn) V =Pa(Xn,20) VYn = Zn) },

then the operator Jis complete for consistent answers to
gueries that are conjunctions of literals.

Example 15.1n example 13 we had FDs that are also BICs.
Thus the operatorJfound all the consistent answers, even
for some queries that are not conjunctions of literals, show-
ing that this is not a necessary condition.

Example 16. Here we will show that in general complete-
ness is not obtained for queries that are not conjunctions of
literals. Consider the IC¥X,y,zZ(P(X,y) AP(X,2) Dy =2)

and the inconsistent instanceith Z(r) = {P(a,b),P(a,c)}.

This database has two repairswith Z(r') = {P(a,b) }; and

r” with Z(r") = {P(a,c)}. We have thatr = 3xP(a,x), be-
cause the query is true in the two repairs.

Now, it is easy to see that,[JuP(a, u)) is logically equiv-
alent todu(P(a,u) AVz(-P(a,2) Vz=u)). So, we haver [~
Tw(IXP(a,x)). Thus, the consistent answene is not cap-
tured by the operatorJ.



5.2 Other Constraints

The following theorem applies to arbitrary ICs and general-
izes Theorem 2.

Theorem 3. (Completenegd et IC be a set of integrity con-
straints|| (x) a literal, and (I (x)) of the form

1) A A YY) (G (56X) VWi (%))
i=1
If for everyn > 0, there isSC {1,...,m} such that
1. for everyj € Sand every tuple: TC (£pg Cj(a), and
2. {V(x, 1) (Ci(x.%) VWi(X,¥i))|i € S} implies
V06D (G %) Vi (X yi)[1 < i < m}

thenr E¢ 1(t) impliesr £ Ty (I(t)).

This theorem can be extended to conjunctions of literals.
Notice that the theorem requires a condition for evegyN.
Its application is obviously simplified if we know that the

iteration terminates. This is an issue to be analyzed in the

next section.

6 Termination

Termination means that the operatqg fleturns a finite set
of formulas. It is clearly important because then the set of

6.1 Syntactical finiteness

The notion of syntactical finiteness is important because then
for somen and allm> n, T(Q(X)) will be exactly the same.
In consequence, J(Q) will be a finite set of formulas. In
addition, a point of finiteness can be detected (if it exists)
by syntactically comparing every two consecutive steps in
the iteration. No simplification rules need to be considered,
because the iterative procedure is fully deterministic.

Here we introduce a necessary and sufficient condition
for syntactical finiteness.

Definition 14. A set of integrity constraintkC is acyclicif

there exists a functioh from predicate names plus negations
of predicate names in the database to the natural numbers,
that is, f : {p,...,Pn,~P1,---,~Pn} — N, such that for
every integrity constraint(\/*_; i (X)) V(X)) € IC as in (3),
andevery andj (1<i,j <K),if i # j, thenf(=l;) > f(l;).
(Here-l; is the literal complementary tg.)

Example 17.The set of ICs

IC = {Vx(=P(x) v -Q(x) V §(x)),
V(%Y)(=Q() v =S(y) VT (x,y)) }.

is acyclic, because the functidndefined by
f(P)=2 f(Q =2 f(-P)=0 f(-Q)=0
f(9=1 f(T)=0 f(=9=1 f(=T)=2,
isfies the condition of definition 14.

sat-

consistent answers can be computed by evaluating a singleExample 18.The set of ICs

finite query. We distinguish between three different notions
of termination.

Definition 13. Given a set ofCs and a quer)(x), we say
that T, (Q(X)) is

1. syntactically finitaf there is an am such that |(Q(X))

and Th+1(Q(X)) are syntactically the same.

. semantically finitéf there is am such that for alm >

N, YX(Tn(Q(X) = Tm(Q(X)) is valid.

. semantically finite in an instanceif there is am such
that for allm > n, r = VX (Tn(Q(X) = Tm(Q(X)).

The numben in cases 2 and 3 is calledmint of finite-
ness It is clear that 1 implies 2 and 2 implies 3. In the full
version we will show that all these implications are proper.
In all these cases, evaluating,(RQ(X) gives the same result
as evaluating J(Q(x) for somen (in the instance in case
3). If Tu(Q(X) is semantically finite, sound and complete,
then the set of consistent answergQ}as first-order defin-
able

IC = {¥x(=P(x) V 2Q(X) V §(x)),
V(xY)(QMX)V=Sy) VT(Xy)}.

is not acyclic, because for any functidnthat we may at-
tempt to use to satisfy the condition in definition 14, from
the first integrity constraint we obtair{Q) > f(S), and from
the second, we would obtaii(S) > f(Q); a contradiction.

Theorem 4. A set of integrity constraintC is acyclic iff
for every literal name in the database schema,(T(X)) is
syntactically finite.

The theorem can be extended to any class of queries sat-
isfying Definition 5.

Example 19. The set of integrity constraints in example 18
is not acyclic. In that case JQ(x)) is infinite.

Example 20. The ICs in example 17 are acyclic. There we



Tw(P(u) =
{P(u),
P(u) A (=Q(u) vV S(u)),
P(U) A (=Q(u) V S(u) AWW(=Q(V) VT(V,u))) }
Tw(Q(U) =
{Q(u),
Q(U) A (=P(u) v S(u)) AWW(=S(V) VT(u,V)),
Q(U) A (=P(u) v S(u) AYW(=Q(W) V T (W, u))) A

To(S(U)) = {S(u), S(U) AV(=Q(v) VT (v,u)) }
To(T(u,v)) ={T(u,v)}

To(=P(U)) = {-P(u)}

To(-Q(u)) = {-Q(u)}

To(=S(u) = {=S(u), ~S(u) A (=P(u) v =Q(u)) }

To(—=T(u,v)) =
{=Tv),
=T (U, V) A (=Q(u) V=S(v)),
=T (U, V) A (=Q(U) V=S(V) A (=P(v) V=Q(v))) }-

Corollary 3. For functional dependencies and a quexx),

Tw(Q(X)) is always syntactically finite.

6.2 Semantical finiteness

Definition 15. A constraintC in clausal form isuniformif
for every literall (x) in it, the set of variables ih(x) is the
same as the set of variablesGn- [ (X). A set of constraints

is uniform if all the constraints in it are uniform.

)
W(=S(V) A (=P(V) V=Q(v)) VT (u,v) }

Theorem 6.Let!| be a literal name. If for some,

YX(Tn(1(X) D Tnra(1(X)))

is valid, then for allm> n,

YX(Tn(1(X)) = Tm(1(X)))

is valid.

According to Theorem 6, we can detect a point of finite-
ness by comparing every two consecutive steps wrt logical
implication. Although this is undecidable in general, we
might try to apply semidecision procedures, for example,
automated theorem proving. We have successfully made use
of OTTER [17] in some cases that involve sets of constraints
that are neither acyclic nor uniform. Examples include mul-
tivalued dependencies, and functional dependencies together
with set inclusion dependencies. For multivalued dependen-
cies, Theorem 6 together with Theorem 3 gives complete-
ness of T,(I(x)) wherel(x) is a negative literal. The cri-
terion from Theorem 6 is also applicable to uniform con-
straints by providing potentially faster termination detection
than the proof of Theorem 5.

6.3 Instance based semantical finiteness

Theorem 7. If Q(X) is a domain independent query, then
for every database instanc¢here is am, such that for all
m>n, 1 = VX(Th(Q(X)) = Tm(Q(X))).

Notice that this theorem does not include the case of neg-
ative literals, as in the case of theorem 5.

7 Related work

Bry [4] was, to our knowledge, the first author to consider
the notion of consistent query answer in inconsistent data-
bases. He defined consistent query answers based on prov-
ability in minimal logic, without giving, however, a proof
procedure or any other computational mechanism for obtain-
ing such answers. He didn’t address the issues of of seman-
tics, soundness or completeness.

It has been widely recognized that in database integra-
tion the integrated data may be inconsistent with the integrity
constraints. A typical (theoretical) solution is to augment the
data model to represent disjunctive information. The follow-
ing example explains the need for a solution of this kind.

Examples of uniform constraints include set inclusion Example 21.Consider the functional dependency

dependencies of the fornvx(P(x) D Q(x)), e.g., Example

4,

Theorem 5. If a set of integrity constraintiC is uniform,
then for every literal namlein the database schema,(T(X))
is semantically finite. Furthermore, a point of finiteness

Y(x,y,2)(P(x,y) AP(x,2) Dy=2z

If the integrated database contains bBtla,b) andP(a,c),
then the functional dependency is violated. EacP@, b)
and P(a,c) may be coming from a different database that

can be bounded from above by a function of the number of satisfies the dependency. Thus, both facts are replaced by
variables in the query, and the number of predicates (andtheir disjunctionP(a,b) v P(a,c) in the integrated database.

their arities) in the query ani€.

Now the functional dependency is no longer violated.



To solve this kind of problems [1] introduced the notion of the models of the revised theory, i.e. the repairs in our
of flexible relation a non-1NF relation that contains tuples case, whereas we do not compute the repairs, but keep query-
with sets of non-key values (with such a set standingfar ing the original, non-revised database and pose a modified
of its elements). This approach is limited to primary key query. Therefore, we can view our methodology as a way
functional dependencies and was subsequently generalizeaf representing and querying simultaneously all the repairs
to other key functional dependencies [9]. In the same con- of the database by means of a new query. Nevertheless, our
text, [3, 12] proposed to use disjunctive Datalog and [16] motivation and starting point is quite different from belief
tables with OR-objects. [1] introduced flexible relational al- revision. We attempt to take direct advantage of the seman-
gebra to query flexible relations, and [9] - flexible relational tic information contained in the integrity constraints in order
calculus (whose subset can be translated to flexible relationalto answer queries, rather than revising the database. Revis-
algebra). The remaining papers did not discuss query lan-ing the database means repairing all the inconsistencies in it,
guage issues, relying on the existing approaches to queryinstead we are interested in the information related to par-
disjunctive Datalog or tables with OR-objects. There are ticular queries. For instance, a query referring only to the
several important differences between the above approachesonsistent portion of the database can be answered without
and ours. First, they rely on the construction of a single (dis- repairing the database.
junctive) instance and the deletion of conflicting tuples. In Reasoning in the presence of inconsistency has been an
our approach, the underlying databases are incorporated intamportant research problem in the area of knowledge repre-
the integrated onim toto, without any changes. There is no sentation. The goal is to design logical formalisms that limit
need for introducing disjunctive information. It would be what can be inferred from an inconsistent set of formulas.
interesting to compare the scope and the computational re-One does not want to infer all formulas (as required by the
quirements of both approaches. For instance, one shouldclassical two-valued logic). Also, one prefers not to infer a
note that the single-instance approach is not incremental:formula together with its negation. The formalisms satisfy-
Any changes in the underlying databases require the recom-ng the above properties, e.g., [15], are usually propositional.
putation of the entire instance. Second, our approach seem#/oreover, they do not distinguish between integrity con-
to be unique, in the context of database integration, in con- straints and database facts. Thus, if the data in the database
sidering tuple insertions as possible repairs for integrity vi- violates an integrity constraint, the constraint itself can no
olations. Therefore, in some cases consistent query answerfonger be inferred (which is not acceptable in the database
may be different from query answers obtained from the cor- context).

responding single instance.
Example 23. Assume the integrity constraint is(p A q)

Example 22. Consider the integrity constraipt> gand a  and the database contains the fazenddq. In the approach

fact p. The instance consisting @falone does not satisfy  of [15], pV q can be inferred (minimal change is captured

the integrity constraint. The common solution for remov- Correct|y) butp, q and—.(p/\q) can no |onger be inferred

ing this violation is to deletg. However, in our approach  (they are all involved in an inconsistency).

insertingq is also a possible repair. This has consequencesBecause of the above-mentioned limitations, such methods

for the inferences aboutp and—~g. Our approach returns  are not directly applicable to the problem of computing con-

falsein both cases, ag (resp.q) is true in a possible repair.  sistent query answers.

Other approaches retutue (under CWA) oundefinedun- Deontic logic [18, 14], a modal logic with operators cap-

der OWA). turing permission and obligation, has been used for the spec-
Our work has connections with research done on belief jfication of integrity constraints. [14] used the obligation op-

revision [10]. In our case, we have an implicit notion of re- eratorO to distinguish integrity constraints thaave to hold

vision that is determined by the set of repairs of the database alwaysfrom database facts that jusappen to hold [18]

and corresponds to revising the database (or a suitable catysed deontic operators to describe policies whose violations

egorical theory describing it) by the set of integrity con- can then be caught and handled. The issues of possible re-

straints. Thus, querying the inconsistent database expectpairs of constraint violations, their minimality and consistent

ing only correct answers corresponds to querying the revisedquery answers are not addressed.

theory without restrictions. Gertz [11] described techniques and algorithms for com-
It is easy to see that our notion of repair of a relational puting repairs of constraint violations. The issue of query

database is a particular case of the local semantics intro-answering in the presence of an inconsistency is not addressed
duced in [8], restricted to revision performed starting from jn his work.

a single model (the database). From this we obtain that our
revision operator satisfies the postulates (R1) — (R5),(R7)
(R8) in [13]. For each given databasethe relation<; in-

troduced in definition 3 provides the partial order between g paper represents a first step in the development of a

models that determines the (models of the) revised database,., research area dealing with the theory and applications
as described in [13]. [8] concentrates on the computation

'8 Conclusions and Further Work



of consistent query answers in arbitrary, consistent or incon- [5]
sistent, databases.

The theoretical results presented here are preliminary. We
have proved a general soundness result but the results about
completeness and termination are still partial. Also, one
needs to look beyond purely universal constraints to include
general inclusion dependencies. In a forthcoming paper we
will also describe our methodology for using automated the-
orem proving, in particular, OTTER, for proving termina-
tion.

It appears that in order to obtain completeness for dis-
junctive and existentially quantified queries one needs to move
beyond the T, operator on queries. Also, the upper bounds
on the size of ; and the lower bounds on the complexity of
computing consistent answers for different classes of queries
and constraints need to be studied. In [2] it is shown that in
the propositional case, SAT is reducible in polynomial time
to the problem of deciding if an arbitrary formula evaluated
in the propositional database does not give true as a correct
answer, that is it becomes false in some repair. From this it
follows that this problem is NP-complete.

There is an interesting connection to modal logic. Con-

sider the definition 7. We could write|= OQ(t), meaning
that Q(t) is true in all repairs of, the database instances
that are “accessible” from This is even more evident from
example 16, where, in essence, it is shown thaxQ(x) is
not logically equivalent taxdQ(x), which is what usually

happens in modal logic.
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Appendix: Proofs of Results

Some technical lemmas are stated without proof. Full proofs

can be found in the filproofspods99.psin
http://dcc.ing.puc.cl/~bertossi/.

Lemma 1. If r £ T,(I(a)), wherel(a) is a ground literal,
then for every repair’ of r, it holds r’ = 1(a).

Lemma 2. If r E To(AiL1li(&)), whereli(g) is a ground
literal, then for every repair of r, it holdsr’ E AL, li(&).

Lemma 3.1f r E T,(ViL1Ci(&)), with Ci(a) a conjunction
of literals, then for every repait of r, r' £ \/{L; CGi(&).

Lemma 4. Let Q(x) a universal query. If & Tw(Q(f)), for
a ground tuple, then for every repair’ of r, r' E Q(t).

Lemma 5. Let Q(x) a domain independent query. rif=
Tw(Q(t)), for a ground tuplé, then for every repair’ of r,

r'EQ(t).

Proof of Theorem 1: Lemmas 4 and 5.

Proposition 2. Given a setlC of integrity constraints, a
ground claus&/{", li (ti), if IC ¥pg V{1 li(ti) and, for every
repairr’ of r, r' £V, li(t), thenr E V™ 1i(t).

Proof of Proposition 2: Assume that E =\/, li(tj). By

hypothesidC Epg V{4 li(t), thus there exists an instance

of the databasg such that’ F ICU {=V/,li(t})}. Let us
consider the set of database instances

R={r*|r* EIC andA(r,r*) C A(r,r")}.

We know thatA(r,r’) is finite, therefore there exists € R
such that\(r,rp) is minimal. Thenyg is a repair ofr.

For every 1< i <m, if li(t;) is p(t) or =p(t), thenp(t) ¢
A(r,r"). Using this fact we conclude that(t) ¢ A(r,ro),
Thereforer E V™, li(t) if and only if ro £ /4 li(t). But
we assumed that= —\/™, li(t;), thenrg E =V, li(t); a
contradiction.

Proof of Theorem 2: From theorem 3.

Proof of Corollary 2: In this case it holds:

1. For every tuplea, IC Epg P(a), because the empty

database instance (which has only empty base rela-|/;

tions) satisfie$C, but notP(a).

Logic for Improving Integrity

2. For every tuplea, 1C ¥pg —PRi(a), since the database
mstancer' where the relatio® contains only the tu-
pleaand the other relations are empty, satisiigsout
not-R(a).

Proof of Theorem 3: Suppose that | (t). Letr’ a repair
of r, we have that’ £ 1(t). By proposition 1 we have that
r' E Ta(1(t)), that is

' E1(D) /\

i=1

\/I.J DV (X)), (6)

We want to prove that for evefiyand for every sequence
of ground tuplesy, &1, ..., & m:

rI:\/IIJ

To do this, first we are going to prove that for every S
and for every sequence of ground tupesa; 1, ..., & m:

rI:\/Iljt

PV Wit &), ()

P Vi(t.a), (8)

This is immediately obtained whenk i (t,a). As-
sume thatr E —j;(t,a). We know thaty; only mentions
built-in predicates, thus for every repairof r we have that
r' £ —-i(t,a). Therefore, by (6) we conclude that for every
repairr’ of r:

rn:\/|.,t )V Wita),

By proposition 2 we conclude (8). Thus we have that

OLYAR \/IIJ

ieS j=1

rel( i) VWit X)),

but by the second condition in the hypothesis of the theorem
we conclude that:

AV @

I’|:| VLIJtXI))

Proof of Theorem 4: (=) Suppose thdC is acyclic, then
there exists as in the definition 14. We are going to prove
by induction onk that for every literal namé, if f(l) =k,
thenTiy1(1(X)) = Tir2(1 (X))

(D If k=0. We know that that for every literal nantg
f(1") > 0. Therefore, every integrity constraint containirlg

is of the formv (-l (X) vV Y (y)), wherey only mentions built-

in predicates. This is because if there were any other literal
inthe mtegrlty constraint, we would ha¥él’) < f(I) =0.

ThenTy(I(X)) = T2(1(X))-



(I Suppose that the property is true for evemy k. We
know thatT (I (X)) is of the form:

m_m
1A AQCV Taa (1 (%,1)) V Wi(%)),

=1 j=1

whereQ; is a sequence of quantifiers over all the variables
Xi1, ..., Xim, Xi not appearing ix, andTi4+1(1(X)) is of the
form:

m m
|(>6A/\Q.\/ (I, (%) VWi (%))

i=1 j=1

By definition of f, we know that for every literal namig;

in the previous formulasf(lij) < k. Then by induction
hypothesisTi(1(X j)) = Ty 1(1i,j (X)) (since if Tm(I" (X)) =
Tmr2(1'(X), then for everyn > m, To(l'(X)) = Ts1(I'(X))).
(<) Suppose that for every literal narheT(l (X)) is fi-
nite. The for every literal namkthere exists a first natu-
ral numberk such that E(I(X)) = Tkr1(1(X)). Let us de-
fine a functionf, from the literal names into the natural
number, byf(l) = k (k as before). We can show that this
is a well defined function that behaves as in definition 14:
since if V(L1 1i(X) VW(y)) € IC, then for every K s<m,
Tt(-15) (7ls(Xs)) is of the form

li(%)) v

_s1
/\Q('\/ Tt(-lg)—1(
\/ Tt (1)

i=s+1

(X)) VW(Y) AB(%), (9)

whereQ is a sequence of quantifiers over all the variables
X1, ..., Xm, ¥, NOt appearing irxs, and Te (-1 )+1(—|I (X)) is
of the form

s1
/\(5(_\/ T =19 (11 (X)) V
\/ Tt(-1g)

i=s+1

By definition of f, Tt () (=ls(Xs)) = Tt (=15 +1(—ls(Xs)). Then,
by the form of (9) and (10), we conclude that for evegys,
Tt (-1e)—1(1i(%)) = Tt (li (X)), and then, again by defini-
tion of f, f(l;) < f(=lg).

X)) VUW(Y) AE (Xs). (10)

Proof of Corollary 3: The following stratification function
from literals toN can be defined:f (-R) =0andf(P;) =1
whereR, P; are relation names.

Proof of Theorem 5: For uniform constraints the residues
do not contain quantifiers. Thereforg(x)) for everyn >

0 is quantifier-free and contains only the variables that occur
in X. There are only finitely many inequivalent formulas with
this property, and thusJ(l (X)) is finite.

Lemma 6. If T(I(X)) is of the form:

m/\v . 91) (G (X) V i (%37)).

then Thy1(1(X)) is of the form:

1) A A V(3,9 (T2 (GOCX)) V Wi (%)),

i=1

Lemma 7. If for a ground tuplea, Tn(1(a)) hV(V'lelj(éiZ_j)),
then To+1(1(8)) E V(VS_1 T1(1}(&,7)))-

Proof of Theorem 6: Suppose that for a natural number
YX(Tn(I(X)) D Tntr1(I(X))) is a valid sentence. We are going
to prove that for everyn > n, YX(Tm(1(X)) D Tmy1(1(X))) is

a valid sentence, by induction om

() If m=n, by hypothesis.

(11) Suppose that'x(Tm(l ()Z)) D Tm1(1(X))) is a valid sen-
tence. For every claus¢ —115(%Zj) V(X Z) in Tmya (1(X))
and for every ground tuplawe have that

k
(1(@) EV( \/ (&z)Vu(az).

By lemma 7 and considering thqutonly mentions built-in

predicates we have thatT1(1(8)) F V(v 1Tl z)) v
Y(a,z)), and from this and lemma 6 we can conclude that

YX(Tm1(1(X)) D Tme2(1(X))) is a valid sentence.

Proof of Theorem 7: Let Q(x) be a domain independent
query and a database instance. Defilye= {t |r E Tn(Q(t))}.
We know that for everm: Any1 C Ay, thereforeA={A; |i <

w} is a family of subsets ofg. ButAg is finite becaus(X)

is a domain independent query. Thus, there exists a minimal
elementAn, in A. For this element, it holds that for every
k> m: Am = A, sinceAx C An.



