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Abstract—We consider the problem of ranking the popularity of items and suggesting popular items based on user feedback. User

feedback is obtained by iteratively presenting a set of suggested items, and users selecting items based on their own preferences

either from this suggestion set or from the set of all possible items. The goal is to quickly learn the true popularity ranking of items

(unbiased by the made suggestions), and suggest true popular items. The difficulty is that making suggestions to users can reinforce

popularity of some items and distort the resulting item ranking. The described problem of ranking and suggesting items arises in

diverse applications including search query suggestions and tag suggestions for social tagging systems. We propose and study

several algorithms for ranking and suggesting popular items, provide analytical results on their performance, and present numerical

results obtained using the inferred popularity of tags from a month-long crawl of a popular social bookmarking service. Our results

suggest that lightweight, randomized update rules that require no special configuration parameters provide good performance.

Index Terms—Popularity ranking, recommendation, suggestion, implicit user feedback, search query, social tagging.
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1 INTRODUCTION

WE consider the problem of learning the popularity of

items that is assumed to be a priori unknown but has to

be learned from the observed user’s selection of items. In

particular, we consider systems where each user is presented

with a list of items (“suggested items”) and the user selects a

set of preferred items that can contain either suggested items

or any other items preferred by this user. The list of suggested

items would typically contain only a (small) subset of popular

items. The goal of the system is to efficiently learn the

popularity of items and suggest popular items to users.

Items are suggested to users to facilitate tasks such as

browsing or tagging of the content. Items could be search

query keywords, files, documents, and any items selected by

users from short lists of popular items. A specific application

is that of tagging of the content where items are “tags”

applied by users to content such as photos (e.g., Flickr),

videos (e.g., YouTube), or Web pages (e.g., del.icio.us) for

their later retrieval or personal information management.

The basic premise of social tagging is that the user can choose

any set of tags for an information object according to her

preference. In most existing social tagging applications, users

are presented with tag suggestions that are made based on

the history of tag selections.1 Fig. 1 shows an example user

interface to enter tags for a Web page.
The learning of item popularity is complicated by the

suggesting of items to users. Indeed, we expect that users
would tend to select suggested items more frequently. This
could be for various reasons, for example, (least effort)
where users select suggested items as it is easier than
thinking of alternatives that are not suggested or (bandwa-
gon) where humans may tend to conform to choices of other
users that are reflected in the suggestion set showing a few
popular items. In practice, we find indications that such
popularity bias may well happen; see, for example, Sen et al.
[18] and Suchanek et al. [20]. In Fig. 3, we provide results of
our own user study that indicate users’ tendency to imitate.2

One may ask, if suggesting popular items seems proble-
matic due to potential popularity disorder, why make
suggestions in the first place? This is for several reasons; for
example, suggestions may help recall what candidate items
are. A fix to avoid popularity skew would be to suggest all
candidate items and not restrict to a short list of few popular
items. This is often impractical for reasons such as limited
user interface space, user ability to process smaller sets
easier, and the irrelevance of less popular items. So, the
number of suggestion items is limited to a small number
(e.g., seven for the suggested tags in del.icio.us).

In this paper, our goal is to propose algorithms and
analyze their performance for suggesting popular items to
users in a way that enables learning of the users’ true
preference over items. The true preference refers to the
preference over items that would be observed from the
users’ selections over items without exposure to any
suggestions. A simple scheme for ranking and suggesting
popular items (that appears in common use in practice)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 8, AUGUST 2009 1133

. M. Vojnovi�c and D. Gunawardena are with Microsoft Research Ltd.,
7 JJ Thomson Avenue, CB3 0FB Cambridge, UK.
E-mail: {milanv, dinang}@microsoft.com.

. J. Cruise is with the Department of Mathematics, Bristol University,
University Walk, Royal Fort Annex, Bristol BS8 1TW, UK.
E-mail: marjrc@bristol.ac.uk.

. P. Marbach is with the Bahen Center for Information Technology (BCIT),
University of Toronto, Room BA5232, Toronto, ON M5S 3G4, Canada.
E-mail: marbach@cs.toronto.edu.

Manuscript received 16 July 2008; revised 29 Nov. 2008; accepted 8 Dec.
2008; published online 16 Jan. 2009.
Recommended for acceptance by Y. Chen.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number
TKDE-2008-07-0366.
Digital Object Identifier no. 10.1109/TKDE.2009.34.

1. We focus on the ranking of items where the only available information
is the observed selection of items. In learning of the user’s preference over
items, one may leverage some side information about items, but this is out
of the scope of this paper.

2. The user study was conducted with about 400 participants that tagged
a set of six Web pages. For a Web page, the user was either presented or not
presented tag suggestions which enabled us to measure the frequencies of
tag selections in the presence and absence of suggestions.
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presents a fixed number of the most popular items as
observed from the past item selections. We show analysis
that suggests such a simple scheme can lock down to a set of
items that are not the true most popular items if the
popularity bias is sufficiently large, and may obscure
learning the true preference over items. In this paper, we
propose alternative algorithms designed to avoid such
reinforcements and provide formal performance analysis of
the ranking limit points and popularity of the suggested
items. While convergence speed of the algorithms is of
interest, its formal analysis is out of the scope of this paper.

In the remainder of the paper, we first define more
precisely the problem that we consider (Section 2), provide
a summary of our results (Section 3), and discuss related
work (Section 4). We then introduce the algorithms that we
study (Section 5) and present our main analytical results
(Section 6) and numerical results (Section 7). The proofs of
our main results are given in the Appendix.

2 PROBLEM FORMULATION

In this section, we present a more precise description of the
problem of ranking and suggesting items that we consider,
and define a user’s choice model that we use for our analysis.

2.1 Ranking and Suggesting Items

We consider the situation where users select items from a
given set C :¼ f1; 2; . . . ; cg, where c > 1. We let

r ¼ ðr1; r2; . . . ; rcÞ

be the users’ true preference over the set of items C and
call r the true popularity rank scores. For an item i, we
interpret ri as the portion of users that would select item i
if suggestions were not made. We assume that the true
popularity rank scores r are such that: 1) ri is strictly
positive for each item i, 2) items are enumerated such that
r1 � r2 � � � � � rc, and 3) r is normalized such that it is a
probability distribution, i.e., r1 þ r2 þ � � � þ rc ¼ 1.

An algorithm is specified by: 1) ranking rule: the rule that
specifies how to update the ranking scores of items that are
denoted by � ¼ ð�1; . . . ; �cÞ and 2) suggestion rule: the rule
that specifies what subset of items to suggest to a user. We
assume that the size of the suggestion set is fixed to s, a
positive integer that is a system configuration parameter. A
notable difference with respect to ranking problems such as
that of web search results is that our ranking algorithms do
not account for the order in which items are suggested to

the users—this is because we are interested in small
suggestion sets and assume that we can allow for
randomized presentation order.

The design objective to learn the true popularity ranking
of items means that the ranking order induced by the
ranking scores �ðtÞ at time t is the same as that induced by
the true popularity ranking scores r, as the number of users
t tends to be large. In other words, we want that for any two
items i and j, ri � rj implies �iðtÞ � �jðtÞ, for sufficiently
large t. The design objectives are also to suggest true
popular items and identify quickly the true popular items.
Ideally, we would like the ranking order induced by �ðtÞ to
conform to that induced by r after a small number of
selections. We characterize the precision of a set of items S
using the following metric. For a set S of size s,

precðSÞ ¼ jfi 2 S : ri � rsgj
s

: ð1Þ

This is a standard information-retrieval measure of precision
[17], [21] defining the relevant items to be 1; 2; . . . ; v, where
v ¼ maxfi 2 C : ri � rsg. Note that (1) values the same any
item i such that ri � rs. Alternatively, one may consider
weighted precision that would value more items with larger
frequencies, which we do not consider in this paper.

We derive some of our analytical results assuming a
model for the user’s choice of items described in the
following section.

2.2 User’s Choice Model

We use the following model for how users choose items.
Suppose a user is presented a set S of suggested items. The
user selects an item from the entire set of items by sampling,
using the true item popularity distribution r, with prob-
ability 1� pS . Otherwise, the user does the same but
confines her choice to items in the suggestion set S. (See
Fig. 2.) In other words, we have

Prfselected item ¼ ij suggestion set ¼ Sg

¼ ð1� pSÞri þ pS
ri1i2SP
j2S rj

:
ð2Þ

We admit this simple and intuitive model in order to
facilitate analysis under a model of user’s choice that biases
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Fig. 1. An example tag entry user interface. The user is presented with

recommended tags and selects any preferred tags by typing them in the

provided text box.

Fig. 2. User’s choice model: an item is selected over a set of eight items

with the set S ¼ f2; 4; 5; 7g of suggested items. With probability 1� pS ,

item is selected by sampling from the distribution r over the entire set of

items, else, the same but confined to the items in the set S.



to items in the suggestion set. The model turns out to
conform to the user’s choice axioms introduced by Luce
[13]; also related is Luce-Shepard model [14], [2]. The model
accommodates two cases of interest:

Case 1. Consider a dichotomous user population where a
fraction 1� p of users sample an item from the distribution
r over the entire set of items and the remaining fraction of
users p imitate by sampling an item from their preference
distribution r confined to the presented suggestion set. We
then have (2) with pS � p.

Case 2. Suppose that suggesting an item boosts its
probability of selection in the following way. Each user
selects an item i with probability proportional to �ri, where
� > 1 if item i is suggested and � ¼ 1 if item i is not
suggested. The boost of items presented in the suggestion
set is thus by a fixed multiplicative factor greater than 1. We
then have that (2) holds with the imitation probability
pS :¼ ½ð�� 1ÞrS�=½1þ ð�� 1ÞrS�, where rS :¼

P
j2S rj.

Note that given the suggestion set of items, the user’s
item selection is stochastically independent of the past item
selections. This may not hold if we consider items selected
by a given user, but it would hold for items selected by
distinct users.

3 SUMMARY OF RESULTS

We propose and analyze three randomized update rules
for suggesting popular items based on the history of
item selection.

First, we consider the naive algorithm which suggests a
fixed number of the topmost popular items and show that
this algorithm can fail to learn the true popularity ranking of
items if the imitation probability in the user’s choice model
is sufficiently large. In particular, we find that there exists a
threshold on the imitation probability below which the
algorithm guarantees to learn the true popularity ranking of
items, and otherwise, this may not hold. We fully specify
this threshold in terms of the suggestion set size and the true
popularity ranks of items. This result enables us to estimate
the threshold imitation probability for a given true popu-
larity ranking. In particular, we provide estimates for the

threshold using our data set of tags applied to popular Web
pages in del.icio.us and found threshold to be typically
around 0.1 for the suggestion set sizes ranging from 1 to
10 tags. This suggests that in real-world scenarios, using the
above simple scheme may result in failing to learn the true
popularity of items at small imitation rates.

Our first randomized algorithm suggests to each user a
random set of items S sampled with the probability
proportional to the sum of the item popularity rank scores.
We call this algorithm PROP (frequency proportional
sampling). Such a sampling appears a natural randomiza-
tion that one would consider in order to mitigate the
popularity ranking skew; biasing to popular items, but still
letting each item appear recurrently in the suggestion set.
Again, we show that this algorithm guarantees to learn the
true popularity ranking only if the imitation probability is
smaller than a threshold and fully specify this threshold.
Another issue with PROP is that sampling proportional to
the sum of rank scores appears computationally nontrivial.
For these reasons, we propose two other randomized
schemes. One of the randomized schemes is M2S (“move-
to-set”) that recursively updates the suggestion set based on
the items selected by users. The algorithm biases to show
recently used items and in the special case of the suggestion
size equal to one is equivalent to showing the last used item.
It is noteworthy that M2S does not require any counters for
updating the suggestion set. We show that the update rule
of M2S results in suggesting a set of items proportional to
the product of the popularity rank scores. We prove that
under our user’s choice model, for any imitation probability
smaller than 1, M2S guarantees that the frequencies of item
selections induce a popularity ranking that corresponds to
that of the true popularity. One feature of M2S is that any
item that is recurrently selected by users appears in the
suggestion set with same rate, increasing with the popu-
larity of this item. Our last randomized algorithm, FM2S
(“frequency move-to-set”), is designed to restrict suggesting
only items that are sufficiently popular. At a high level,
FM2S replaces an item in the suggestion set with a new item
only if this new item is (likely to be) more popular than at
least one item already in the suggestion set. The basic idea is
to mitigate the popularity bias by keeping auxiliary scores
per item that are incremented for items that are selected, but
only if not suggested. We show that FM2S tends to display
only a subset of sufficiently popular items with respect to
their true popularity and fully determine this set of items in
terms of the suggestion set size and the true popularity rank
scores of items. The true popularity ranking of these items
can be inferred from their frequency of appearance in the
suggestion set. The algorithm can be seen as a relaxation of
the TOP scheme that avoids locking down to suggesting a
set of items that are not the true most popular.

In summary, M2S and FM2S are randomized algorithms
for suggesting popular items and learning their true
popularity ranking that are lightweight with respect to their
computational and storage requirements. The algorithms are
self-tuning in that they do not require any special configura-
tion parameters, except the size of the suggestion set. The
main distinguishing feature of FM2S is that it confines to
displaying only sufficiently popular items. Another inter-
esting property for some applications is that it allows a larger
set of most popular items than the suggestion set to be
separated out. For example, this may be of interest for
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Fig. 3. Tag popularity boost due to suggestions. Frequency of selection

for the tag “apollo” over all tag applications and over those at which

“apollo” was suggested. The error bars correspond to 95 percent

confidence intervals.



applications where the size of the suggestion set is limited
but the display of a larger set of popular is required.

Finally, we present numerical results obtained by
evaluating our analytical results using the popularity rank
scores of tags for bookmarks inferred from a month-long
crawl of the social bookmarking application del.icio.us.

4 RELATED WORK

The problem studied in this paper relates to the broad area
of recommendation systems (e.g., Kumar et al. [10] and
Sandler and Kleinberg [9]) in which the goal is to learn
which items are preferred by users based on the user’s
selection of items. The important distinction of our problem
is in that we consider a system with feedback, established
through suggestions. This may results in positive reinforce-
ments similar in spirit to those of well-known preferential
attachment [3], [5]. Another related area is that of voting
systems. Specifically, our system could formally be seen as
an instance of approval voting [8], [4] in that each user can
select any set of candidates offered on a voting ballot.
Again, intrinsic to our problem is the continual feedback
that indicates popular candidates. In the voting systems
literature, it is well recognized that such feedback may bias
the voting results; see, e.g., Simon [19] for an analysis of the
bandwagon and underdog effects induced by preelection
polls. Our work is related to statistical learning problems of
the multiarmed bandit type (e.g., Lai and Robbins [11]),
described as follows: We consider a finite set of items. Each
user is presented with an item that is selected by this user
with (unknown) probability specific to this item. The goal is
to present items to the users such that the expected
cumulative number of item selections is maximized. An
asymptotically optimal rule to decide which item to present
was found by Lai and Robbins [11] and was further
extended by Anantharam et al. [1] to allow presenting
more than one item. Further related work includes that of
using the click-through data to enhance the Web search
results. Pandey et al. [15] and Cho et al. [6] studied the
entrenchment problem where the search engine result sets
lock down to a set of popular URLs and proposed to
intervene the results with randomly sampled URLs. An
important distinction of our problem to that studied in the
aforementioned prior work is that selection of items is not
restricted to items presented to the user. Finally, we discuss
the research on social tagging as our numerical results are
provided specifically for this context. In [7], Golder and
Huberman provide various statistical characterization
results on the tagging in the social bookmarking application
del.icio.us. Sen et al. [18] studied the effect of the tag
suggestions on the users’ choice of tags in MovieLens
systems, which they instrumented for experiments. Their
results suggest that tags applied by users are affected by tag
suggestions. Xu et al. [23] proposed a system for recom-
mended tags but their work differs from the goal of this
paper. Finally, we refer to Suchanek at al. [20] for an
estimation procedure of the imitation rate defined in this
paper and estimates for tagging of Web pages scenario.

5 ALGORITHMS

We provide a precise definition of the algorithms for ranking
and suggesting items that we consider in this section.

5.1 A Naive Algorithm

We first introduce the simple algorithm TOP which consists
of a ranking and a suggestion rule as defined below.

The ranking rule is to set the rank score of an item equal
to the number of selections of this item in the past. For this
algorithm and the algorithms introduced later, we initialize
Vi ¼ 0 for each item i. The implicit assumption is that we
assume no prior information about the popularity of items,
and hence, initially assume that all items are equally
popular.3 The suggestion rule sets the suggestion set to a
set of the top s most popular items with respect to the
current popularity rank scores.

We will later identify cases when this simple algorithm
can get locked down to a ranking � that induces a different
ranking than that induced by the true popularity ranking r,
and thus, may fail to learn the true popularity of items. To
overcome this problem, we consider in the following
alternative ranking and suggestion rules.

5.2 Ranking Rules

In this section, we define two ranking rules called rank
rule 1 and rank rule 2.

Rank rule 1. A simple ranking rule is the one that we
already encountered in the algorithm TOP, where the rank
score for an item i is incremented by 1 whenever a user
selects this item.

Init: Vi ¼ 0 for each item i

At the t-th item selection:

If item i selected:

Vi  Vi þ 1

�i  Vi=t

We will see that this ranking may fail to discover the
ranking order of the true popularity when combined with a
suggestion rule that reinforces items that were selected
early on, as it is the case under TOP.

Rank rule 2. We noted that rank rule 1 may fail to
discover the ranking order of the true popularity if used with
suggestion rules such as TOP. To overcome this problem, we
may redefine the rank scores in the following way.

Init: Ti ¼ 0, Vi ¼ 0, for each item i

At the t-th item selection:

For each item i:

If item i not suggested:

Ti  Ti þ 1

If item i selected:

Vi  Vi þ 1

�i  Vi=Ti.
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Now, the rank scores � are updated only for an item that
was selected and was not suggested to the user. The
ranking score �i for an item i can be interpreted as the rate
at which item i is selected over selections for which item i

was not suggested. We have the following result:

Lemma 1. Consider any suggestion rule combined with the rank
rule 2 under the only assumption that each item exits the
suggestion set infinitely often. Then, under the user’s choice
model: limt!þ1 �ðtÞ ¼ r.

The lemma follows by noting that under the user’s choice
model, an item i that is not suggested is selected with
probability proportional to ri. The result tells us that under
the user’s choice model, rank rule 2 combined with a
suggestion rule from broad set, guarantees to learn the true
popularity ranking of items. The only assumption is that
suggestion rule is such that each item exits the suggestion set
with a probability that is lower bounded by a positive (but
possibly very small) constant. However, rank rule 2 might
have slow rate of convergence as the rank scores are
updated only over a subsequence of item selections that
were not suggested. For this reason, we will focus on rank
rule 1 combined with different suggestion rules and
consider robustness in learning the true popularity ranking.

5.3 Suggestion Rules

We introduce three different suggestion rules: 1) Fre-
quency Proportional, 2) Move-to-Set, and 3) Frequency
Move-to-Set.

PROP is a randomized algorithm that for each user
presents a suggestion set of items, sampled with probability
proportional to the sum of the current rank scores of items.
The algorithm is described below in more detail.

We will later show analysis that this suggestion rule
combined with rank rule 1 is more robust to imitation than
TOP, but there still may exist cases when it fails to learn the
true popularity of items. Note also that the algorithm is
computationally demanding when the number of items c
and suggestion set size s are nonsmall; it requires sampling
on a set of c

s

� �
elements. We do not examine how this

sampling could be efficiently done. Our next algorithm is
computationally very simple.

M2S is a random iterative update rule of the suggestion
set of items. The suggestion set is updated only when a user
selects an item that is not in the suggestion set presented to
the user. Note that for the suggestion set size of one item,
M2S suggests the last used item, a recommendation rule used
by many user interface designs. For the suggestion set size

greater than one item, M2S is different from suggesting the
last distinct used items due to the random eviction of items
from the suggestion set, but note that the rule does bias to
presenting recently used items. We will show how exactly
this update rule tends to bias the sampling of the suggestion
set with respect to true popularity rank scores of items. As
an aside, note that M2S relates to the self-organized sorting
of items known as move-to-front heuristic (e.g., [16]).

It follows from the description of the suggestion rule M2S
that any item would recurrently appear in the suggestion
set, provided only that it is recurrently selected by users
with some positive probability (no matter how small). Our
next algorithm is similar in spirit to M2S, but is designed so
that an item appears recurrently in the suggestion set only if
sufficiently popular, with respect to its true popularity. This
lockdown feature characterizes the simple algorithm TOP,
but note that our goal is to ensure that the lockdown is to a
subset of true top popular items. We call this new algorithm
FM2S (frequency move to set) for the reasons that we
discuss shortly; the algorithm is defined as follows.

For each item, the algorithm keeps a counter of how
many users selected this item over users that were not
suggested this item. The rationale is not to update the
counter for items that were suggested and selected by users
in order to mitigate the positive reinforcement due to
exposure in the suggestion set. Furthermore, a selected item
that was not suggested does not immediately qualify for
entry in the suggestion set (as with M2S), but only if its
counter exceeds that of an item that is already in the
suggestion set. In addition, specific to FM2S is that the
eviction of an item from the suggestion set is over a subset
of items with smallest counter. We will see how this
additional update rules yield higher precision of the
suggestion set in our numerical examples (Section 7).

6 ANALYTICAL RESULTS

In this section, we present our main analytical results on the
ranking and suggesting algorithms introduced in the
preceding section.

6.1 Top Popular

We analyze robustness of the algorithm TOP to the user
imitation. We will see that there exists a threshold on the
imitation probability below which the algorithm guaran-
tees to learn the true popularity rank of items and above or
at this threshold, the undesired lockdown can happen
where the learned ranking of items does not conform to
that of the true popularity ranking. The threshold is a
function of the suggestion set size s and the true popularity
rank scores r that is made explicit in the result below.
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Theorem 1. Consider the algorithm TOP under the user’s choice

model with arbitrarily fixed tie break of item ranks.

1. Top-popular sets. Suppose the user imitation prob-
ability is p < 1. Given r and s, the top popular
rankings are induced by the ranking scores given by

�iðSÞ ¼
ð1� pÞri þ p riP

j2S rj
; i 2 S;

ð1� pÞri; i 2 C n S;

(
ð3Þ

where S is a set of s items that satisfies

X
j2S

rj

 !
maxj2CnSrj

minj2Srj
� 1

� �
� p

1� p : ð4Þ

2. Uniqueness. The set f1; 2; . . . ; sg is a unique top
popular set if and only if the imitation probability p is
such that

p < pcritðr; sÞ;

where pcritðr; sÞ is the threshold imitation given by

pcritðr; sÞ ¼ min
0�i<s<j�c

aði; jÞ
1þ aði; jÞ ;

with

aði; jÞ ¼
Xi
k¼1

rk þ
Xj

k¼j�sþiþ1

rk

 !
riþ1

rj
� 1

� �
:

Proof. Proof is provided in the Appendix. tu

Equations (3) and (4) follow from our user choice model
and the definition of the top popular suggestion rule—(4)
is equivalent to saying that minj2S�j � maxj2CnS�j. Item 2
tells us that the true popularity ranking of items (with
fixed tie break) is unique if and only if the imitation
probability is smaller than the threshold asserted under
item 2. This threshold depends on the true popularity
ranking scores r and the size of the suggestion set s. This
result is obtained by finding the values of the imitation
probability p for which the left-hand side in (4) is strictly
greater than p=ð1� pÞ over all sets S of items other than
the set S�. We will use the above result in Section 7 to
evaluate the threshold imitation probabilities for the true
popularity ranks r inferred from our data set.

6.2 Frequency Proportional

We now consider the suggestion rule PROP combined with

rank rule 1. In particular, we focus on characterizing its

robustness to imitation. We derive exact characterization of

the threshold imitation probability below which the ranking

scores �ðtÞ converge to the true popularity ranking scores r.

When this condition holds, we obtain a closed-form

expression for the frequencies with which items are

suggested to users and the average precision of the

suggested set.

Theorem 2. The limit state of the suggestion rule PROP

combined with rank rule 1 is characterized as follows.

1. Limit ranking. Under the user’s choice model, from
any initial ranking scores �ð0Þ, the ranking scores �ðtÞ
converge to the true ranking scores r if and only if the
imitation probability satisfies

p <
1

�ðAÞ ; ð5Þ

where �ðAÞ is the spectral radius of the matrix A ¼
ðaijÞ defined by

aij ¼ ri
1
c�1
s�1

� � X
S02Ss: fi;jg	S0

1P
k2S0 rk

; ð6Þ

for i; j 2 C, where Ss contains all subsets of s distinct
items from C.

2. Suggestion set. Under condition (5), the limit
frequency at which an item i is suggested to users is

si ¼ ri þ
s� 1

c� 1
ð1� riÞ:

The average precision of the suggestion set (1) is

IEðprecðSÞÞ ¼ v
s

�rv þ
s� 1

c� 1
ð1� �rvÞ

� �
;

where �rv :¼ ð
Pv

i¼1 riÞ=v.

Proof. Proof is provided in the Appendix. tu

The result in (5) gives an exact condition under which for
given true popularity ranking scores r and the suggestion
set size s, the algorithm guarantees to learn the true
popularity ranking scores r. For this to hold, the imitation
probability must be smaller than the threshold asserted in
(5). The following corollary gives a sufficient condition.

Corollary 1. A sufficient condition for the relation in (5) to hold is

p <
1

s
þ 1� 1

s

� � Pc
i¼c�sþ1 ri

� �
=ðs� 1Þ

r1
:

A stronger but simpler sufficient condition is p < 1=s.

Note that for the suggestion set size of one item (s ¼ 1),
the algorithm learns the true popularity rank r for any
imitation probability p < 1. Note further that in this case,
the limit frequency at which an item i is suggested is equal
to ri. We will see that the same property holds with the next
algorithm that we consider.

6.3 Move to Set

We show that under the suggestion set update rule
M2S starting from any initial suggestion set of items, the
probability distribution of the suggestion set converges to a
unique limit distribution that is characterized in terms of the
true popularity distribution r and the suggestion set size s.

Theorem 3. The limit state of the suggestion rule M2S as the
number of items tends to be large is characterized as follows:

1. Suggestion set. From any initial suggestion set Sð0Þ,
the probability distribution of the suggestion set SðtÞ
as the number of item selections t tends to infinity
converges to
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�ðS0Þ /
Y
i2S0

ri; S
0 2 Ss; ð7Þ

where the set Ss contains all subsets of s distinct items
from the set of all items C.

2. Frequencies at which items are suggested. The
frequency at which an item i is suggested, si, has the
following properties: 1) the larger the item true
popularity ri, the larger the frequency si and 2) the
frequency si is sublinear in ri, i.e., si=ri � sj=rj, for
any items i and j such that ri � rj.

3. Combination with rank rule 1. For any imitation
probability p < 1, the limit ranking scores � induce the
true popularity ranking, i.e.,

ri � rj ) �iðtÞ � �jðtÞ; for sufficiently large t:

Proof. Proof is available in the Appendix. It relies on
Theorem 4, which is of independent interest and shown
later in this section. tu

Item 1 tells us that in the limit (steady state), the
algorithm samples a suggestion set S with the probability
proportional to the product of the true popularity of the
items in the set S. Hence, at a high level, the M2S update
rule is similar to PROP, one difference being that PROP tends
to the sampling proportional to the sum of the true item
popularity rank scores (provided that the stability condition
in Theorem 2 holds). Another way to look at the suggestion
rule M2S is as a construction of a Markov chain that has the
stationary distribution such that the probability of the
suggestion set is proportional to the product of the true
popularity rank scores of the items in the set. The frequency
at which an item appears in the suggestion set is given by
item 1 upon summing over the suggestion sets that
containing the given item. We were unable to obtain a
closed-form expression for this frequency in general for any
s � 1. In the absence of a closed-form formula, item 2
provides properties about the frequency at which an item is
suggested. Item 3 shows that the following interesting
property holds: combining rank rule 1 with M2S guarantees
learning the true popularity ranking for any imitation
probability less than 1. The result follows using the
following theorem which is of general interest—it provides
a sufficient condition on the stationary distribution of the
suggestion set and the imitation parameter for the rank
rule 1 to induce the true ranking. We denote with Si;j the set
containing all subsets of the set C n fi; jg of size s� 1.

Theorem 4. Consider a suggestion rule � under the user’s choice
model with parameters r and ðpS0 ; S0 2 SsÞ. Assume that the
suggestion set under � has the limit distribution �. If for any i
and j such that ri � rj, the following monotonicity conditions
hold:

1. �ðA [ figÞ � �ðA [ fjgÞ, for any A 2 Sij and
2. pA[fig � pA[fjg, for any A 2 Sij,

then, the limit ranking of the rank rule 1 is the same as that
induced by r.

Condition A says that replacing an item from a
suggestion set with an item that is equally or more popular
does not decrease the probability of the suggestion set.
Condition B is an analogous statement for the imitation rate.

The result of the theorem may prove useful for design of
new suggestion rules.

Proof. Suppose ri � rj. �iðþ1Þ � �jð1Þ ,

ð1� �pÞri þ
X
S02Ss

pS0
ri1i2S0P
k2S0 rk

�ðS0Þ

� ð1� �pÞrj þ
X
S02Ss

pS0
rj1j2S0P
k2S rk

�ðS0Þ;

where �p ¼
P

S02Ss pS0�ðS
0Þ. The last inequality is im-

plied by

X
S02Ss

pS0
ri1i2S0P
k2S0 rk

�ðS0Þ �
X
S02Ss

pS
rj1j2S0P
k2S0 rk

�ðS0Þ;

which is further implied byX
S02Ss

pS0
riP
k2S0 rk

�ðS0Þ1i2S0;j =2S0

�
X
S02Ss

pS0
rjP
k2S0 rk

�ðS0Þ1i =2S0;j2S0 :

The last inequality can be rewritten asX
A2Sij

pA[fig
ri

ri þ
P

k2A rk
�ðA [ figÞ

�
X
A2Sij

pA[fjg
rj

rj þ
P

k2A rk
�ðA [ fjgÞ:

ð8Þ

Now, ri=ðri þ
P

k2A rkÞ � rj=ðrj þ
P

k2A rkÞ indeed holds;
thus, inequality (8) is true provided that

pA[fig�ðA [ figÞ � pA[fjg�ðA [ fjgÞ; all A 2 Sij;

which holds if both A and B hold. tu

6.4 Frequency Move to Set

In this section, we examine the suggestion rule FM2S. We
show that this algorithm tends to suggest only a subset of
sufficiently true popular items (“competing set”) and
precisely characterize the competing set of items.

Theorem 5. The equilibrium points of FM2S are characterized
as follows:

1. Competing set of items. Assume that the state of the
algorithm FM2S has a stationary regime. In the
stationary regime, only a subset of items f1; 2; . . . ; c0g
are suggested with strictly positive probability, where c0

is the largest integer i such that s � i � c and

ri > 1� s
i

� �
hiðrÞ; ð9Þ

with hiðrÞ the harmonic mean of r1; . . . ; ri, i.e.,

hiðrÞ :¼ 1
1
i ð 1
r1
þ � � � þ 1

ri
Þ
:

2. Frequency at which an item i is suggested.

si ¼ 1� 1� s
c0

� � hc0 ðrÞ
ri
; i ¼ 1; 2; . . . ; c0;

0; i ¼ c0 þ 1; . . . ; c:

�
ð10Þ
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3. Average precision of the suggestion set.

IEðprecðSÞÞ ¼ v
s

1� 1� s

c0

� �hc0 ðrÞ
hvðrÞ

� �
;

where c0 is the size of the competing set defined in item
1 and v is from the definition of the precision (1).

Proof. Proof is available in the Appendix. tu

Item 1 shows that an item i can appear in the suggested set
with a strictly positive probability only if its true popularity
ri is larger than the asserted threshold. This threshold is
defined per item and is given by the right-hand side of (9),
which depends on the true popularity r and the suggestion
set size s. This is an interesting result showing that the
algorithm eventually locks down to suggesting items only
from a subset of items. We have already encountered that the
same property holds under TOP. Note that in FM2S, the
competing set of items is such that each item in this set is
more popular than any other item that is not in this set,
where the popularity is with respect to the true popularity.
This property does not hold for TOP as we showed that it can
lockdown to a set of items that contains a less preferred item
than an item that is not in the set. From item 1 of Theorem 5, it
follows that the size of the competing set of items depends on
the suggestion size in the following way:

Corollary 2. For any given distribution of the true popularity
scores r, the size of the competing set c0ðsÞ is nondecreasing
with the suggestion set size s.

The resolution of avoiding the lockdown to an inap-
propriate set using FM2S comes at the price of allowing
some imprecision of the suggested set. Items 2 and 3
characterize the popularity of the suggested items in terms
of the suggestion set size and the true popularity rank
scores. The result under item 2 tells us that for an item i, the
mean number of suggestion sets between successive
suggestion sets not containing the item i is equal to
1=ð1� siÞ ¼ ri=½ð1� s=c0Þhc0 ðrÞ�, thus, proportional to the
true popularity score of the item i. Combining with (9), we
have the following.

Corollary 3. For each item i that is in the competing set,
1

1�si �
ri
rc0

.

Hence, the mean number of suggestion set presentations
between successive presentations of suggestion sets not
containing a competing item i is at least the ratio of the
item i rank score and the rank score of a least popular
competing item. Lastly, we note the following worst-case
bound on the average precision of the suggestion set size
under FM2S.

Corollary 4. We have IEðprecðSÞÞ � s=c, for all r.

This gives a lower bound that holds uniformly over r
and this bound is tight, i.e., for any c and s � c, there exists
r that achieves the equality. Indeed, if s ¼ c, then
IEðprecðSÞÞ ¼ 1 holds. For the case s < c, take ri ¼ 1=cþ �
for i ¼ 1; 2; . . . ; s and ri ¼ 1=c� s=ðc� sÞ� for i ¼ sþ
1; . . . ; c and let � # 0.

Note that we have not obtained analogous result to
item 3 of Theorem 3 when rank rule 1 combined with FM2S

converges to the true popularity ranking, but note that the

popularity ranking of the competing items can be inferred
from the frequencies of item suggestions (item 2 of
Theorem 5) that conforms to the true popularity ranking.

7 NUMERICAL RESULTS

In this section, our goal is to evaluate performance of the
algorithms that we analyzed in earlier sections using
samples of real-world distributions for item popularity
scores. The item popularity scores are inferred from the
tagging histories of a set of bookmarks that we sampled
from del.icio.us.

Data set. Our data set contains entire tagging histories
for about 1,200 distinct bookmarks from the popular social
bookmarking Web service del.icio.us. We sampled this set
of bookmarks by collecting them from the popular del.icio.us
Web page, sampled approximately each 15 minutes over a
month period (27 October to 6 December 2006). For each
page in our data set, we estimate the true popularity
distribution of tags r and use these distributions to evaluate
the expressions derived in our analysis. Fig. 4 summarizes
the distributions r per bookmark by showing the boxplots
for the ratio ri=r1 for tag ranks 1-40. We observe that the
median of relative popularity rank score, ri=r1, versus rank i
closely follows exponential decay with exponent about 5=4,
for ranks i � 9, and otherwise, another exponential decay
but with a smaller exponent of about 1=3.4 In particular, the
results suggest that a suggestion set to the top seven tags on
average covers tags with true popularity at least 15 percent
of the rank 1 tag popularity. This provides a justification for
limiting the suggestion set to seven tags.

Learning the true popularity ranking. We first evaluate
the threshold imitation probability for the algorithm TOP, as
established in Theorem 1. Recall that if the imitation
probability is larger than this threshold, TOP can lockdown
to a set of items that are not top true popular. We have
computed the threshold imitation probability for each
bookmark in our data set. In Fig. 5, we show the empirical
cumulative distribution function of the computed threshold
imitation probabilities for a range of suggestion set sizes
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4. This dichotomy may be a result of the ranking/suggesting rule in
del.icio.us and the suggestion set size limited to seven tags therein.

Fig. 4. The tag rank scores inferred from our del.icio.us sample that we
use as true popularity rank scores. The graph shows the median ratio of
the rank i score and rank 1 score of samples obtained for each
bookmark in our data set.



from 1 to 10 items. The median threshold imitation
probability is around 0.1 across all the suggestion set sizes,
suggesting that already at small level of imitation, the
undesired lockdown may happen. We also examined the
threshold imitation beyond which TOP cannot guarantee
learning the true popularity ranking of top k true popular
tags. We refer the interested reader for these results to
Appendix [22] (Fig. 4). In summary, results suggest that
TOP may result in failing to learn the true popularity
ranking, for small values of the imitation probability.

Precision of suggestions. We next evaluate the mean
precision of the suggestions made by algorithms PROP, M2S,
and FM2S. In Fig. 9, we show the respective mean precisions
of the suggested items for PROP, M2S, and FM2S for a range
of suggestion set size from 1 to 40 tags. We observe that the
mean precision under FM2S is better than that under either
PROP or M2S. The mean precision under M2S is better than
under PROP, and this is particularly emphasized for small
suggestion set sizes (the range of practical relevance). The
mean precision under FM2S is at least 80 p for suggestion
set sizes greater or equal to 7, which may be regarded a
good performance.

We next examine the suggestion rule FM2S in more

detail. We first examine the frequency at which a tag is

suggested versus the true popularity rank of this tag; see
Fig. 6 for results obtained with the suggestion set size set to
seven tags. This illustrates the main properties of the
suggestion rule FM2S: locking down to displaying a set of
items with high true popularity, the gradual decrease of the
frequency with which an item is suggested with its true
popularity rank. In Fig. 9a, we have examined the average
precision of the suggestion set under FM2S. We now
examine the frequencies with which individual tags appear
in the suggestion set versus their true popularity ranks and
across a range of suggestion set sizes. The results are shown
in Fig. 7. In particular, we note that on average, the rank 1
tag of a bookmark appears in more than 90 percent of
suggestion sets, indicating good performance. In Theorem 5,
we have determined how many items eventually get into
the suggestion set (“competing set”) with strictly positive
probability as a function of the suggestion set size and the
true popularity rank scores. How does the size of the
competing set for the true popularity ranks in our data set
across differ with suggestion set sizes? Fig. 8 shows the ratio
of the competing set size and the suggestion set size for
suggestion set sizes ranging from 1 to 40 tags. We observe
that the competing set size is about twice or less than the
suggestion set size, for suggestion set sizes � 5 tags. This
suggests that the competing set tends to increase propor-
tionally with the suggestion set size.

Convergence speed. We have evaluated speed of

convergence of the algorithms considered in this paper by

simulations. For space reasons, we omit to present these
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Fig. 5. TOP: Critical imitation for the suggestion set size s ranging from 1
to 10 beyond which the algorithm can fail to learn the top k tags with
k ¼ s. The median values of the critical imitation are around 0.1.

Fig. 7. FM2S. (a) The frequency at which rank 1 tag is suggested versus
suggestion set size. (b) Same as in left but showing mean frequencies at
which tags rank 1-10 are suggested.

Fig. 8. The number of competing tags versus the suggestion set size for
the algorithm FM2S.

Fig. 6. The frequencies of tag suggestions under FM2S, with the
suggestion set size s ¼ 7, follow a “smoothed version” of the “step
function.”



results here and refer the interested reader to [22, Fig. 6]. In

summary, the results provided no evidence that either M2S

or FM2S are slower than TOP.

8 CONCLUDING REMARKS

We proposed simple randomized algorithms for ranking

and suggesting popular items designed to account for

popularity bias. We focused on understanding the limit

ranking of the items provided by the algorithms, and how it

relates to that of the true popularity ranking and assessed

the quality of suggestions as measured by the true

popularity of suggested items. We believe that the problem

posed in this paper opens interesting directions for future

research including analysis of convergence rates of the

ranking algorithms, consideration of alternative ranking

and suggesting rules, and alternative user choice models.

APPENDIX

A.1 Proof of Theorem 1

Item 1. Let ViðtÞ be the cumulative number of item i

selections over t item selections. Under the user’s choice

model and the TOP POPULAR suggestion rule, V is a

Markov chain specified by the transition probabilities

P ðV 0jV Þ ¼ �iðV Þ;

where V 0 ¼ V þ ei with ei a vector of dimension c with all

the coordinates equal to 0, but the ith equal to 1, and

�iðV Þ ¼ ð1� pÞri þ p
ri1i2SVPc
j¼1 rj1j2SV

;

where SV is a set of s most popular items with respect to the

rank scores V .

By the law of large numbers, V ðtÞ=t converges to �ðSÞ
as t goes to infinity, where �ðSÞ is given by (3) and S is a

suggestion set that satisfies mini2S�iðSÞ � maxi2CnS�iðSÞ.
Combining with (3), the latter condition can be rewritten

as (4).

Item 2. Direct: Suppose that �ðSÞ with S ¼ f1; . . . ; sg is a

unique stationary ranking, for given imitation rate p. From

(4), we have

min
S02Ssnf1;...;sg

fðS0Þ > p

1� p ; ð11Þ

where

fðSÞ ¼
X
j2S

rj

 !
maxj2SsnSrj

minj2Srj
� 1

� �
: ð12Þ

Note that condition (11) is equivalent to p < f�=ð1þ f�Þ
where f� :¼ minS02Ssnf1;...;sgfðS0Þ and, recall that Ss contains

subsets of C of size s. It suffices to show that

f� ¼ min0�i<s<j�caði; jÞ, where a is defined in the theorem.

To that end, partition the set Ss in the following way. For a

set S0 2 Ss, let i and j be such that the following hold: riþ1 ¼
maxk2CnS0rk and rj ¼ mink2S0rk. From (12), we have

min
S02Ssnf1;...;sg

fðS0Þ ¼ min
0�i<s<j�c

min
S0:fi;jg	S0

gði; j; S0Þ;

where gði; j; S0Þ ¼ ðr1 þ � � � þ ri þ
P

k2S0nfi;jg rkÞð
riþ1

rj
� 1Þ. The

result follows by noting that

min
S0:fi;jg	S0

gði; j; S0Þ

¼ r1 þ � � � þ ri þ rj�sþiþ1 þ � � � þ rj
� � riþ1

rj
� 1

� �
¼ aði; jÞ:

Converse: Suppose p � pcritðr; sÞ. By the above identities,

this means that there exists a set S0 2 Ss n f1; . . . ; sg such

that (4) holds, which completes the proof. tu

A.2 Proof of Theorem 2

Item 1. V is a Markov chain with the transition probabilities

specified by

P ðV 0jV Þ ¼ �iðV Þ; ð13Þ

with V 0 ¼ V þ ei, where

�iðV Þ ¼ ð1� pÞri þ p
X
S02Ss

ri1i2S0P
j2S0 rj

fS0 ðV Þ;

fS0 ðV Þ :¼
P

j2S0 VjP
S02Ss

P
j2S0 Vj

:

Note that
P

S02Ss
P

j2S0 VjðtÞ ¼ m � t, where m :¼ c�1
s�1

� �
.

This follows from
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Fig. 9. Average precision of the suggestion set: (a) PROP, (b) M2S, and (c) FM2S versus the suggestion set size. The results are obtained using

Theorems 2, 3, 4, and 5 with the inferred true tag popularities.



X
S02Ss

X
j2S

VjðtÞ ¼
Xc
j¼1

X
S02Ss

1j2S0

 !
VjðtÞ

¼ c� 1

s� 1

� �Xc
j¼1

VjðtÞ ¼
c� 1

s� 1

� �
� t ¼ m � t:

Let vðtÞ ¼ IEðV ðtÞÞ. It follows that

viðtþ 1Þ ¼ viðtÞ þ ð1� pÞri þ p
1

m � t
X
S02Ss

ri1i2S0P
j2S0 rj

X
j2S0

vjðtÞ;

where m :¼ c�1
s�1

� �
. For ��ðtÞ defined as ��ðtÞ ¼ vðtÞ=t, we have

��iðtþ 1Þ ¼ ��iðtÞ þ
1

t

 
ð1� pÞri

þ p 1

m

X
S02Ss

ri1i2S0P
j2S0 rj

X
j2S0

��jðtÞ � ��iðtÞ
!
:

The limit points of the last system can be studied by
considering the following ordinary differential system:

d

du
�� ¼ ð1� pÞrþ ðpA� IÞ��; ð14Þ

where uðtÞ ¼ logðtÞ, I is a c
 c identity matrix, and A ¼
ðaijÞ is given by (6).

The proof follows by noting that: 1) the condition (5) is
the stability condition for the system of the linear differ-
ential equations (14), 2) r is a stationary point of (14), and
finally 3) �ðþ1Þ ¼ limt!þ1 ��ðtÞ.

Saying that r is a stationary point means that for ��i ¼ r, it
holds ðd=duÞ��i ¼ 0 which for the system (14) is the same as

��i ¼ ð1� pÞri þ p
1

m

X
S02Ss

ri1i2S0P
j2S0 rj

X
j2S0

��j:

The proof follows by plugging �� ¼ r in the last identity:

ri ¼ ð1� pÞri þ p
1

m

X
S02Ss

ri1i2S0P
j2S0 rj

X
j2S0

rj

¼ ð1� pÞri þ pri
1

m

X
S02Ss

1i2S0

 !

¼ ð1� pÞri þ pri ¼ ri:

Item 2. Under condition (5), we have that the limit
distribution of the suggestion set is

�ðSÞ ¼ c� 1

s� 1

� ��1X
j2S

rj; S 2 Ss;

where Ss contains all subsets of C of size s. We have

si ¼ Prði 2 SÞ ¼
X
S02Ss

�ðS0Þ1i2S0

¼ c� 1

s� 1

� ��1Xc
j¼1

X
S02Ss

1i2S0;j2S0

 !
rj

¼ ri þ
s� 1

c� 1
ð1� riÞ:

The expected precision follows by computing the expected
value of the precision defined in (1) using the latter
probability distribution. tu

A.3 Proof of Corollary 1

We use the well known row-sum bound for the spectral
radius of a non-negative matrix A:

�ðAÞ � max
i
rðiÞ;

where rðiÞ is row-sum of the ith row of the matrix A.
We have

rðiÞ ¼ s 1
c�1
s�1

� � X
S02Ss�1ðCnfigÞ

1

1þ
P

k2S0 rk

ri

; i ¼ 1; . . . ; c;

where Ss�1ðC n figÞ contains all subsets of set C n fig
of size s� 1. The asserted sufficient condition follows
from p < 1=maxirðiÞ ) p < 1=�ðAÞ and 1=maxirðiÞ � ð1þ
ð
Pc

k¼c�sþ1 rkÞ=r1Þ=s. tu

A.4 Proof of Theorem 3

Item 1. Let XiðtÞ ¼ 1 if just before the tth selection of an
item, item i is in the suggestion set and XiðtÞ ¼ 0 otherwise.
It suffices to consider the dynamics of the suggested set for
the imitation parameter p ¼ 0 as for any other value
0 < p < 1; we have only rescaling of the time with the
factor ð1� pÞ and thus the limit distribution of X remains
the same. X is a Markov chain with the state space Es ¼
fx 2 f0; 1gc :

P
k xk ¼ sg and the transition probabilities

defined by

pðyjxÞ ¼
1
s rið1� xiÞxj; for y ¼ xþ ei � ej;
1
s

P
k rkxk; for y ¼ x:

�
ð15Þ

From the facts that 1) X is a Markov chain on a finite
state space and 2) the transition matrix is irreducible (i.e.,
the graph defined by the transition matrix is connected), we
have that X has a unique stationary distribution �. In fact, X
is a reversible Markov chain, i.e., for x; y 2 Es, it satisfies

pðyjxÞ�ðxÞ ¼ pðxjyÞ�ðyÞ: ð16Þ

We now show that (16) holds for

�ðxÞ ¼ �
Y

k: xk¼1

rk; ð17Þ

where � is the normalization constant. It suffices to show
that (16) holds for y 6¼ x. Using (15), we rewrite (16) for x
with xi ¼ 0 and xj ¼ 1

�ðxÞri ¼ �ðxþ ei � ejÞrj:

Now, note that for � defined by (17), we have

�ðxÞ ¼ �
Y

k: xk¼1;k=2fi;jg
rk;

�ðxþ ei � ejÞ ¼ �
Y

k: xk¼1;k=2fi;jg
rk:

The asserted result follows.

Remark 1. It turns out that the same dynamics, but in
continuous time, is equivalent to that of exclusion
process (see Liggett [12, Chapter VIII]). With an
exclusion process, we have a set of sites. Each site
can be occupied by at most one particle. Each particle
attempts to move to a site at instances of a Poisson
process with positive rate. A particle at site u attempts
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to move to site v with given probability pðu; vÞ, and
such an attempt is successful only if site v is not
already occupied by a particle. We note that our
process X is an exclusion process where sites are
items, particles are items in the suggestion set, each
particle attempts to move at instances of a Poisson
process with rate 1=s, and pðu; vÞ ¼ rv. The transition
rates of X are specified by

X ! X þ ei � ej with rate
1

s
rið1�XiÞXj: ð18Þ

Items 2 and 2a. Let �rðAÞ :¼
Q

k2A rk, A 	 C. The long-

run frequency si at which item i is suggested is given by

si ¼
P

S02Ss:i2S0 �rðS
0ÞP

S02Ss �rðS0Þ
: ð19Þ

We need to show that ri � rj implies si � sj. Note that si �
sj is equivalent to

X
S02Ss:i2S0

�rðS0Þ �
X

S02Ss:j2S0
�rðS0Þ:

Now, the last inequality is equivalent to

X
S02Ss:i2S0;j =2S0

�rðS0Þ �
X

S02Ss:i =2S0;j2S0
�rðS0Þ;

which is further equivalent to

ri
X

S02Ss:i2S0;j =2S0
�rðS0 n figÞ � rj

X
S02Ss:i =2S0;j2S0

�rðS0 n fjgÞ:

The result follows from the last inequality as it is the same

as saying that ri � rj because

X
S02Ss:i2S0;j =2S0

�rðS0 n figÞ ¼
X

S02Ss:i =2S0;j2S0
�rðS0 n fjgÞ

¼
X

S02Ss�1ðCnfi;jgÞ
�rðS0Þ;

ð20Þ

where SsðAÞ contains all subsets of set A of size s.
Item 2b. We want to show that ri � rj implies

si=ri � sj=rj. Combining with (19), the latter is the same as

X
S02Ss:i2S0

�rðS0 n figÞ �
X

S02Ss:j2S0
�rðS0 n fjgÞ:

The last inequality can be rewritten as

X
S02Ss:fi;jg	S0

1

ri
�rðS0Þ þ

X
S02Ss:i2S0;j =2S0

�rðS0 n figÞ

�
X

S02Ss:fi;jg	S0

1

rj
�rðS0Þ þ

X
S02Ss:j2S0;i =2S0

�rðS0 n fjgÞ:

Now, note that by ri � rj, indeed

X
S02Ss:fi;jg	S0

1

ri
�rðS0Þ �

X
S02Ss:fi;jg	S

1

rj
�rðS0Þ:

It remains only to show thatX
S02Ss:i2S0;j =2S0

�rðS0 n figÞ �
X

S02Ss:j2S0;i =2S0
�rðS0 n fjgÞ:

But this clearly holds in view of (20).
Item 3. The result follows from Theorem 4. Indeed,

consider any suggestion set S such that i =2 S and j 2 S for
some i and j for which it holds ri � rj. Let S0 ¼ S n fjg [ fig.
We then have

�ðSÞ ¼ �
Y

k2Snfjg
rk � rj � �

Y
k2Snfjg

rk � ri ¼ �ðS0Þ;

which shows that condition A holds. We assumed that pS �
p for 0 � p < 1; thus, condition B is true.

A.5 Proof of Theorem 5

A.5.1 System State and Dynamics

Let WiðtÞ be the cumulative number of item i selections
when this item was not suggested. Let XiðtÞ ¼ 1 if
candidate i is in the suggestion set and XiðtÞ ¼ 0 otherwise.
Let ZðtÞ be the minimum WiðtÞ over the items i that are in
the suggestion set, i.e.,

ZðtÞ ¼ minfWiðtÞ; i 2 C : XiðtÞ ¼ 1g:

Further, let MðtÞ be the number of items that are in the
suggested set with WiðtÞ of such an item equal to ZðtÞ, i.e.,

MðtÞ ¼ fi 2 C : XiðtÞ ¼ 1;WiðtÞ ¼ ZðtÞg:

It is readily checked that �ðtÞ ¼ ðW ðtÞ; XðtÞ;MðtÞ; ZðtÞÞ
fully describes the system dynamics and is a Markov
process specified by the transition probabilities:

pð�0j�Þ ¼ rið1�XiÞ1Wi<Z;

pð�00j�Þ ¼ rið1�XiÞ1Wi¼Z
Xj1Wj¼Z

M
1M>1;

pð�000j�Þ ¼ rið1�XiÞ1Wi¼ZXj1Wj¼Z1M¼1;

pð�j�Þ ¼ 1� pð�0j�Þ � pð�00j�Þ � pð�000j�Þ;

where

�0 ¼ �þ ðei; 0; 0; 0Þ;
�00 ¼ �þ ðei; ei � ej;�1; 0Þ;
�000 ¼ �þ ðei; ei � ej; s� 1; 1Þ:

In the sequel, we consider � redefined as follows. Let

DðtÞ ¼ ZðtÞ �WðtÞ and consider the Markov process

�ðtÞ ¼ ðDðtÞ; XðtÞ;MðtÞÞ ð21Þ

specified by the transition probabilities:

pð�0j�Þ ¼ rið1�XiÞ1Di>0;

pð�00j�Þ ¼ rið1�XiÞ1Di¼0

Xj1Dj¼0

M
1M>1;

pð�000j�Þ ¼ rið1�XiÞ1Di¼0Xj1Dj¼01M¼1;

pð�j�Þ ¼ 1� pð�0j�Þ � pð�00j�Þ � pð�000j�Þ;
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where

�0 ¼ �þ ð�ei; 0; 0Þ;
�00 ¼ �þ ð�ei; ei � ej;�1Þ;
�000 ¼ �þ ð1� ei; ei � ej; s� 1Þ:

A.5.2 Necessary Condition for Positive Recurrence of �

The following lemma provides a necessary condition for �

to be positive recurrent.

Lemma 2. If for a given r and s, � is positive recurrent, then r

and s must satisfy

rc >
c� s

1
r1
þ � � � 1

rc

: ð22Þ

Proof. By definition of �,

Diðtþ 1Þ ¼
DiðtÞ þ 1; w. p. �ið�ðtÞÞ;
DiðtÞ � 1; w. p. 	ið�ðtÞÞ;
DiðtÞ; w. p. 
ið�ðtÞÞ;

8<
: ð23Þ

where

�ið�Þ ¼
Xc
j¼1

rjð1�XjÞ1Dj¼0;M¼1 � rið1�XiÞ1Di¼0;M¼1;

	ið�Þ ¼ rið1�XiÞð1� 1Di¼0;M¼1Þ;

ið�Þ ¼ 1� �ið�Þ � 	ið�Þ:

We have that � is irreducible and positive recurrent,
hence, it is ergodic. We thus have limt!þ1ðIEðDiðtþ
1ÞÞ � IEðDiðtÞÞÞ ¼ 0 for all i 2 C. From (23) and the last
identity, it follows that for arbitrarily fixed m 2 C, we
have for all i 2 C

lim
t!þ1

ri½1� IEðXiðtÞÞ� � rm½1� IEðXmðtÞÞ�f g ¼ 0: ð24Þ

It follows that for all i 2 C

IEðXiðþ1ÞÞ ¼ 1� rm½1� IEðXmðþ1ÞÞ�
1

ri
: ð25Þ

Note that

Xc
i¼1

XiðtÞ ¼ s; for all t � 0: ð26Þ

Combining the last two identities, we have
rmð1� IEðXmðþ1ÞÞÞ ¼ 1� s

c

� �
hcðrÞ. Inserting the last

identity into (25), we obtain

lim
t!þ1

IEðXiðtÞÞ ¼ 1� 1� s
c

� �hcðrÞ
ri

; i 2 C: ð27Þ

As � is positive recurrent, it must be IEðXiðþ1ÞÞ > 0, for
all i 2 C. By the above identity, this is equivalent to
1� 1� s

c

� � hcðrÞ
ri

> 0, for i 2 C, which after some elemen-
tary calculus can be rewritten as (22). tu

Remark 2. We showed that condition (22) is necessary for �
to be positive recurrent. While we believe that the
condition (22) would also be sufficient, it remains open
to prove this. To this end, one may try the Lyapunov
stability methods.

A.5.3 The Case when � Is Not Positive Recurrent

We next consider the more general case where r and s can
be such that � is not positive recurrent. In this case, we have
that some items do not recurrently enter the suggestion set.
Assume that C0 is a subset of C such that

1. ððDi;XiÞ; i 2 C0Þ is positive recurrent and
2. IEðXiðþ1ÞÞ ¼ 0, for i 2 C n C0.

Lemma 3. Conditions 1 and 2 imply that all the following
conditions hold:

lim
t!þ1

IEðXiðtÞÞ;> 0; for i 2 C0; ð28Þ

rjð1� IEðXjðþ1ÞÞ ¼ rið1� IEðXiðþ1ÞÞÞ; i; j 2 C0; ð29Þ

rjð1� IEðXjðþ1ÞÞÞ � ri; i 2 C n C0; j 2 C0: ð30Þ

Proof. Condition (28) follows directly by the positive
recurrence in condition 1. By the same arguments as in
the preceding section, it follows that condition (29) must
hold. We next show that (30) must hold. From (23), it
follows that for k 2 C0 and i 2 C n C0,

lim
t!þ1

½IEðDiðtþ 1ÞÞ � IEðDiðtÞÞ�
¼ rkð1� IEðXkðþ1ÞÞ � ri:

ð31Þ

To contradict, let us assume that (30) does not hold, i.e.,
ri < rkð1� IEðXkðþ1ÞÞ, for k 2 C0 and i 2 C n C0. From
(31), it follows that

lim
t!þ1

½IEðDiðtþ 1ÞÞ � IEðDiðtÞÞ� < 0; for i 2 C n C0;

which implies that IEðDiðtÞÞ tends to �1 at t goes
to infinity, which cannot hold as by definition,
PrðDiðtÞ � �1Þ ¼ 1, for any t � 0 and i 2 C. tu
We next define the set C0 in terms of the parameters r

and s. We have the following.

Lemma 4. Any set C0 that satisfies conditions (28), (29), and
(30) must be such that C0 ¼ f1; . . . ; ag for some
a 2 fminðs; cÞ; . . . ; cg.

Proof. Indeed, the assertion is true as for i 2 C0 and rj � ri,
conditions (28), (29), and (30) imply j 2 C0. tu

It remains only to show that a in the lemma is equal to
the expression asserted in the theorem. By condition 2, (29),
and (26), we have

IEðXiðþ1ÞÞ ¼ 1� 1� s
a

� �haðrÞ
ri

; i ¼ 1; . . . ; a: ð32Þ

Now, note that (28) is equivalent to ra > ða� sÞ=ð 1
r1
þ

� � � þ 1
ra
Þ. By simple rearrangements, we have that the

last condition is equivalent to: a� rað 1
r1
þ � � � þ 1

ra
Þ < s. Let

fðaÞ be defined by the left-hand side of the last inequality. It

can be easily checked that fðaÞ is nondecreasing with a.

Hence, it follows that a is such that minðs; cÞ � a � c0, where

c0 ¼ max i 2 fb; . . . ; cg : i� ri
1

r1
þ � � � þ 1

ri

� �
< s

� 	

VOJNOVI�C ET AL.: RANKING AND SUGGESTING POPULAR ITEMS 1145



with b :¼ minðs; cÞ. We next show that, in fact, it must be

a ¼ c0 for the conditions (28), (29), and (30) to hold. To

contradict, suppose that a < c0. By the definition of c0, we

have rc0þ1 > ðc0 þ 1� sÞ=ð 1
r1
þ � � � þ 1

rc0þ1
Þ. By a simple alge-

bra, we note that the last condition is equivalent to: rc0þ1 >

ðc0 � sÞ= ð 1
r1
þ � � � þ 1

rc0
Þ. But this violates condition (30);

hence, a contradiction.
Item 2. The asserted frequencies of the appearance of

items in the suggestion set follow from (32).
Item 3. Take the expectation in (1) and use IEð1i2SÞ ¼ si,

where si’s are given by (10). tu
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