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Abstract—Wireless social community networks have been cre-
ated as an alternative to cellular wireless networks to provide
wireless data access in urban areas. By relying on access points
owned by users for access, wireless community networks provide
a wireless infrastructure in an inexpensive way. However, the
coverage of such a network is limited by the set of users
who open their access points to the social community. Using
this observations, it is not clear to what degree this paradigm
can serve as a replacement, or a complimentary service, of
existing centralized networks operating in licensed bands (such
as cellular networks). This question currently concerns many
wireless network operators. In this paper, we study the dynamics
of wireless social community networks using a simple analytical
model. In this model, users choose their service provider based on
the subscription fee and the offered coverage. We first consider
the case where users decided whether or not to join the social
community network, and study the evolution of the number of
members in the community. For this case, we the dynamics of
the community depends on the initial coverage (i.e. number of
initial subscribers), the subscription fee, the user preferences for
coverage, as well as on the access points density. Furthermore,
we derive a pricing strategy that allows the wireless social
community to reach a high coverage. Next, we study the case
where the mobile users can choose between the services provided
by a licensed band operator and those of a social community.
Using a game-theoretic framework, we show that for specific
distribution of user preferences, there exists a Nash equilibrium
for this non-cooperative game. Using the Nash equilibrium, we
characterize the number of users that subscribe to each service
provider.

I. INTRODUCTION

Wireless social community networks have been created as
an alternative to cellular wireless networks to provide wireless
data access in urban areas. Traditionally, wireless access has
been provided by cellular networks that are operated by central
authorities (i.e. the owner of the radio band). The advantage
of cellular wireless networks is that they can guarantee a
high quality of service (QoS) in terms of network coverage;
however this comes at the expense of substantial deployment
and maintenance costs. Wireless social community networks
operate in the unlicensed band and rely on users having a
WiFi access point to provide access. Thus, there is no need
for an operator to make substantial initial investment to buy
the spectrum license. Furthermore, the access points (AP) are
inexpensive, easy to deploy and maintain. However, wireless
social community might have a poor coverage as the coverage

depends on number of users that subscribe to the social
community network.

In this paper, we study how effective wireless social commu-
nities networks are, where we are in particular interested in the
case where a wireless social community networks competes
with traditional a licensed band cellular network. To do this,
we first investigate how users decide whether or not to join
the social community network, and study the evolution of the
number of members in the community by modeling users’
payoffs as a function of the subscription fee1, as well as the
operators’ provided coverage. For this case, we derive pricing
strategies to maximize the coverage of the social community
network. Next, we study the competition between a social
community operator and cellular wireless network using a
game-theoretic framework. For this case, we investigate the
existence a Nash equilibrium, and characterize the number of
users that subscribe to each service provider under a Nash
equilibrium. Due to space constraints we present our results
without proof and will focus at several instances on particular
special cases, as discussed in the following.

The rest of the paper is organized as follows. In Section II,
we characterize the properties of users, the licensed band
operator and the social community operator. In Section III
and IV, we evaluate the dynamics of these networks separately
and derive the maximum payoff and the corresponding optimal
number of subscribers. In Section V, we model the competition
of these two types of network operators and discuss their
coexistence. Finally we conclude the paper in Section VII.

II. SYSTEM MODEL

Consider two network operators, a traditional licensed band
operator (LBO or `) and social community operators (SCO
or s), that compete for providing access to a set of N users.
Each provider charges a subscription fee Pi, i ∈ {l, s}.
Users decided at discrete time instances t = 1, 2, ... to which
provider they subscribe. If a user subscribes to provider i,
i ∈ {l, s}, then it pays a subscription fee Pi[t] at time t. Let
ns[t] be the fraction of users that subscribes to the SCO, and
let ni[t] be the fraction for users subscribing to the LBO.

In the following we assume that the LBO always provides
a coverage Ql[t] = 1, i.e., all users that subscribe to the LBO

1Note that the subscription fee corresponds to the price users have to pay.
Hence, we use the two terms interchangeably in the paper.



always have access to a base station. On the other hand, the
coverage Qs[t] provided by the SCO at time t depends on the
number of users ns[t] that subscribe to the SCO. Here, we
use the following simple relation to model the situation. We
assume that

Qs[t] = min{1, λns[t]},
where λ is a non-negative constant modeling the density of the
access points owned by users (see also Fig. 1). For example,
a large λ captures the case where access points are very dense
as it might be the case in a city center. Given the subscription
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Fig. 1. Relation between fraction of subscribers ns and the social community
coverage Qs: (a) 0 < λ ≤ 1, (b) 1 < λ.

fee Pi and coverage Qi of a provider i ∈ {l, s}, the benefit
that a given user v obtains by subscribing to provider i is given
by

ui
v = avQi − Pi, (1)

where av is a non-negative parameter that characterizes the
user sensitivity with respect to coverage. In the following we
assume a large user population and that the users’ sensitivity
towards coverage is uniformly distributed in [α, β], α ≥ 0. As
a result, we let the fraction of users with a sensitivity towards
coverage that is larger than a given value x ∈ [α, β] be given
by β−x

β−α . The payoff of operator i, i ∈ {`, s}, at time t is given
by

ui[t] = N · ni[t] · Pi − ci, i ∈ {`, s}, (2)

where Nni[t] is the total number of users subscribing to
provider i at time t and ci is the operating cost of provider i
per unit time slot.

III. OPTIMAL PRICING STRATEGY OF LBO
Consider the situation where the LBO is the only wireless

access provider in a given area. For this case, we are interested
in determining the optimal price P ∗l , that the LBO should
charge per unit time in order to maximize its revenue. Note
that under a given price Pl, only user for which the payoff ul

v

given by Equation (1) is non-negative subscribes to the LBO,
and the fraction of users nl that subscribes to the LBO under
the price Pl is given by

n` =
1

β − α
(β −max{α, P`}) . (3)

The resulting payoff of the LBO is given by

u` =
N

β − α
(β −max{α, P`}) · P` − c` (4)

The following lemma shows the optimal price of LBO.
Lemma 1: The optimal price P ∗l is given by

P opt
` = max{α,

β

2
}. (5)

The fraction of users n∗l that subscribes to the LBO under the
price P ∗l is given by

n∗l = max{1,
1
2

β

β − α
}.

IV. OPTIMAL PRICING STRATEGY OF SCO

Next we consider the situation where the SBO is the only
wireless provider in a given area. For this case, we are again
interested in determining the optimal price P ∗s the SCO should
charge per unit time in order to maximize its revenue. Here
we assume that at time t users observe the coverage Qs(t−1)
at time t − 1 and the subscription fee Ps[t] at time t. Using
this information, a user v then subscribes to the SCO if

us
v[t] = avQs(t− 1)− Ps[t] ≥ 0.

Under a fixed price Ps[t] = Ps, t ≥ 0, the fraction of
users ns[t] that subscribe to the SCO at time t, and hence the
coverage Qs[t] of the SCO at time t, is then a function of the
coverage Qs(t−1) at the previous time step. In particular, we
have that

Qs[t] = min{1,
λ

β − α
(β −max{α,

Ps

Qs[t− 1]
})}

In the following, we study (a) how the coverage Qs[t]
evolves over time under a fixed price Ps and (b) what price
P ∗s the SCO should charge in order to maximize its revenue.
Before we start our analysis, we observe the following results.

Lemma 2: If Qs[0] = 0 and Ps[t] = Ps > 0, t ≥ 0, then
we have that Qs[t] = 0, t ≥ 0.

Lemma 3: If Ps[t] = Ps > 0, t ≥ 0, and Ps

Qs[0] ≤ α then
Qs[t] = min{1, λ}, t ≥ 0.

A. Dynamics of the SCO under a Fixed Price Ps

In this subsection we assume that the SCO charges a fixed
price Ps and study for this case how the coverage Qs[t] evolves
as a function of the initial coverage Qs[0]. For this analysis,
we focus on the case where λ ∈ (0, 2) and β ≥ 2

2−λα. The
analysis, and system behavior, for the general case is similar
to this situation. In the following, let Qs,1 and Qs,2 be given
as follows,

Qs,1 =
βλ−

√
β2λ2 − 4(β − α)Psλ

2(β − α)

and

Qs,2 =
βλ +

√
β2λ2 − 4(β − α)Psλ

2(β − α)
.

The following results characterize the dynamics of the cov-
erage Qs[t] for the above case. In our analysis, we distinguish
different cases depending on the price Ps (see also Fig. 2).
We first consider the case where the price Ps is low.



Lemma 4: Suppose that

Ps ∈ [0, β − 1
λ

(β − α)].

If Qs[0] < Qs,1 then limt→∞Qs[t] = 0; otherwise
limt→∞Qs[t] = min{1, λ}.
The next result is for the case where the price Ps is higher
than β − 1

λ (β − α) but smaller than β2λ
4(β−α) .

Lemma 5: Suppose that

β − 1
λ

(β − α) < Ps <
β2λ

4(β − α)
.

If Qs[0] < Qs,1 then we have that limt→∞Qs[t] = 0. If
Qs[0] > Qs,1 then limt→∞Qs[t] = Qs,2. Finally, if Qs[0] =
Qs,1 then we have Qs[t] = Qs,1, t ≥ 0.
The third case is the situation where the price Ps is exactly
equal to β2λ

4(β−α) .
Lemma 6: Suppose that

Ps =
β2λ

4(β − α)
.

If Qs[0] < Qs,1 then limt→∞Qs[t] = 0. If Qs[0] ≥ Qs,1 then
limt→∞Qs[t] = Qs,1 = Qs,2 = βλ

2(β−α) .
Finally, we consider the case where Ps is high, i.e. if Ps is
larger than β2λ

4(β−α) .
Lemma 7: If

Ps >
β2λ

4(β − α)

then we have that limt→∞Qs[t] = 0.
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Fig. 2. Dynamics of SCO for λ < 2 and β ≥ 2
2−λ

α : (a) 0 < Ps ≤
β − 1

λ
(β − α), (b) β − 1

λ
(β − α) < Ps < β2λ

4(β−α)
, (c) Ps = β2λ

4(β−α)
, (d)

Ps > β2λ
4(β−α)

.

B. Optimal Static Price

In the previous section, we presented how SCO can select
a price to have various final coverage. In this section and with
following two theorems we derive the optimal static prices
with which the social community operator can maximize
its payoff at one of the defined final coverage presented in
Lemmas 4 to 6. Recall that λ ∈ (0, 2) and β ≥ 2

2−λα.

Theorem 1: If the initial coverage Qs[0] is smaller than
λ β

β−α − 1, the SCO should select a price Ps such that
0 < Ps ≤ β− 1

λ (β−α). The best value of Ps which maximizes
the SCO payoff is then P opt

s = Qs[0] · (β− 1
λ (β−α) ·Qs[0]).

The final fraction of subscribed users and coverage are ns = 1
and Qs = min{1, λ}, respectively.
Theorem 1 corresponds to the convergence scenario presented
in Lemma 4. Since for any price bigger than β− 1

λ (β−α) the
Qs,1 is smaller than λ β

β−α − 1, the SCO must select a small
price as identified in Lemma 4. Taking into account its initial
coverage, the SCO calculates the above price to get all users
subscribed to the service.

Theorem 2: If the initial coverage Qs[0] is bigger than
λ β

β−α−1, the optimal static price is β− 1
λ (β−α) for β < 3

λα

and the final fraction of subscribed users is nopt
s = 1. If

β ≥ 3
λα, the optimal price is P opt

s = 2λ
9

β2

(β−α) and the final
fraction of subscribed users is nopt

s = 2
3

β
β−α .

Since Qs[0] is bigger than β− 1
λ (β−α) the SCO can select the

price bigger than β − 1
λ (β −α) and its final coverage will be

Qs,2 (i.e., Lemma 5). Considering the boundary conditions
and the behavior of SCO payoff, we conclude that if the
distribution of user types is narrow (β < 3

λα) then the
best strategy of the SCO is to choose the price equal to
β − 1

λ (β − α) where its final coverage is Qs,2 = min{1, λ},
hence Lemma 4. While if the distribution of user types is wide
enough (β ≥ 3

λα) the optimal price which can maximize the
SCO payoff is then equal to P opt

s = 2λ
9

β2

(β−α) . It is worth
mentioning that the SCO can select its price without taking
into account the value of Qs[0] since its initial coverage is
always bigger than Qs,1.

C. Optimal Dynamic Price

Let us now assume that the SCO adjusts its price Ps at
time t to follow the evolution of its network. The essential
difference between static and dynamic pricing is that with
dynamic pricing the SCO can maintain a lower price until
a desired coverage is reached and then fine-tune the price.
Since ∆Qs must be strictly positive, we derive the following
condition on the dynamic price:

Ps[t] < − 1
λ

(β − α)Q2
s[t− 1] + βQs[t− 1] (6)

Using the above dynamic price strategy, the SCO can
maintain the increase of the coverage by selecting appropriate
dynamic price Ps[t] at each decision time t. If β < 3

λα
the SCO will converge to Qs = min{λ, 1} where all users
subscribe to the SCO (ns = 1) whereas for β ≥ 3

λα it will
converge to Qs,2 = 2λ

3
β

β−α , where 2
3

β
β−α fraction of users

subscribes to service.

V. COMPETITION BETWEEN A SCO AND A LBO

In this section we consider the situation where a single LBO
and SCO co-exist in a given area, and compete for mobile
users to subscribe to their service. We model this situation
as a two-player non-cooperative pricing game where two



operators are the players [1]. The operators compete through
their subscription price and the the strategy of operator i in
the game is given by its price Pi.

Again we assume that users make decision at discrete time
steps t = 1, 2, · · · . Recall the definition of the utility ui

v that
user v achieves when it subscribes to a provider i ∈ {l, s}.
Given subscription fees Pl and Ps, and observing the coverage
Qs[t− 1] of the SCO at time t− 1, user v will choose at time
t the provider i which leads to the largest utility ui

v at time
t. Of course, user v will only subscribe to this provider if the
resulting utility is non-negative; otherwise the user will not
subscribe to any provider. Let nl[t] and ns[t] the resulting
fraction of users that subscribe to the LBO and the SCO,
respectively.

Given fixed prices Pl and Ps, we call Qs(Pl, Ps) an equilib-
rium coverage if for Qs[0] = Qs(Pl, Ps) we have under Pl and
Ps that Qs[t] = Qs(Pl, Ps), t ≥ 0. Similarly, we define the
equilibrium markets shares nl(Pl, Ps) and ns(Pl, Ps), and the
corresponding equilibrium payoffs ul(Pl, Ps) and us(Ps, Pl)
of the LBO and the SCO, respectively. Using the above
definitions, a Nash equilibrium for the above game is given as
follows.

Definition 1: The price pair (P ∗l , P ∗s ) constitutes a Nash
equilibrium if for each operator i ∈ {l, s} we have

ui(P ∗i , P ∗j ) ≥ ui(Pi, P
∗
j ),∀Pi ≥ 0. (7)

At a Nash equilibrium, none of the operators has an incentive
to unilaterally change its subscription fee as this will not
increase its payoff. In the following we study whether there
exists a Nash equilibrium for the above game. To simplify the
analysis, we assume that α = 0.

Theorem 3: Suppose that α = 0. If λ ∈ (0, 3) then there
exists a unique Nash equilibrium given by

(P ∗` , P ∗s ) =

(
β

2
· 1−Q∗

s

1− Q∗s
4

,
βQ∗

s

4
· 1−Q∗s
1− Q∗s

4

)
(8)

where Q∗s = 2−√4− λ. The fraction of users that subscribe
to the SCO at the Nash equilibrium is given by n∗s = 1

λQ∗
s =

1
2+
√

4−λ
, and the fraction of users that subscribe to the LBO

is given by n∗l = 2
2+
√

4−λ
.

If λ ≥ 3, then there exists a unique Nash equilibrium
(P ∗l = 0, P ∗s = 0) with Qs(P ∗l , P ∗s ) = 1. However the
fraction of users that subscribe the each operator are not
uniquely determined. In particular, any market share n∗l and
n∗s such that n∗s ≥ 1/λ and n∗l + n∗s = 1 may be realized at a
Nash equilibrium.

A. Discussion

The above analysis implies that there always exists a unique
Nash equilibrium. Furthermore, for λ ∈ (0, 3) the market share
of each provider is uniquely determined. The market share
that each operator grabs at a Nash equilibrium depends on the
parameter λ, i.e. the density of access points. The market share

of the SCO tends to increase as λ increases, and for λ ≥ 3
the might be able to grap the whole market.

It is interesting to note that the prices (P ∗l , P ∗s ) charged
at a Nash equilibrium tend to decrease as λ increases. This
suggests that the SCO influences the pricing behavior of a
LBO, and that the presence of a SCO in area with a dense
network of WiFi access points might be able to significantly
reduce the fees charged for wireless access. We note that the
above results are intuitive, suggesting that the simple model
that we used for our analysis is indeed able to capture the
main features of the competition between a LBO and SCO.

VI. RELATED WORK

The wireless community networks over unlicensed band
have been recently deployed by some ISPs such as Free [4]
in France or FON, a worldwide WiFi community operator
funded by Google and Skype [3]. A charging model for
wireless social community networks without a centralized
authority is proposed by Efstathiou et al. [5]. Their solution
relies on reciprocity among subscribers. In [6], Zemlianov and
de Veciana evaluate using a stochastic geometric model, the
cooperation between licensed band WAN and WLAN service
providers. A complete evaluation of our model for λ = 1 is
presented in [7].

VII. CONCLUSIONS

In this paper we have analyzed the dynamics of social
community and licensed band operators using a game-theoretic
approach. We have presented and evaluated an analytical
model in two scenarios: (1) a monopoly, in which a unique
operator offers the wireless access, and (2) a duopoly, in which
both operators compete for subscribers. We have obtained the
pricing strategies that maximize the payoff of the operators in
both settings. We have considered two pricing strategies: static
and dynamic pricing for the social community operator. We
have also derived the equilibrium points of the SCO coverage
and determined the price which achieves the maximal SCO
payoff. We have recognized that the SCO payoff in monopoly
is not only affected by the distribution of user types, but also
by its initial provided coverage. We have concluded that the
SCO should first bootstrap its network with low prices to
reach a fair coverage before adjusting its price to maximize its
revenue. This conclusion nicely matches the behavior of real
wireless social communities [3]. We have finally considered
the co-existence of a LBO and a SCO and computed the
potential Nash equilibria for such game.
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