
Throughput-Delay Trade-off of CSMA Policies in
Wireless Networks
Mahdi Lotfinezhad and Peter Marbach

Department of Computer Science, University of Toronto
E-mail: {mahdi,marbach}@cs.toronto.edu

Abstract—We consider CSMA policies for multihop wireless
networks. CSMA policies are simple policies that can be eas-
ily implemented in a distributed manner. However, the delay
performance of CSMA policies can be very poor as the delay
can grow exponentially in the network size. As a result, CSMA
policies are not practical for delay-sensitive traffic even for mid-
sized networks. In this paper, we consider a slight variant of
the classical CSMA policies and show that it leads to a much
improved delay performance. In particular, we show that the
delay does not depend on the networks size. Using this result, we
also characterize the delay-throughput trade-off of the proposed
CSMA policy. At the heart of our analysis is a result that shows
that CSMA policies quickly converge to a maximum schedule, i.e.,
converge to a maximum schedule at a rate that does not depend
on the network size. Using this insight, we consider a CSMA
policy that periodically ”unlocks” the transmission pattern of
a CSMA policy, and show that this unlocking mechanism can
be used to obtain a much improved delay performance without
significantly reducing the throughput. While our analysis has
been carried out for the special case of an interference graph with
a grid (lattice) topology, we provide numerical case studies for
general network topologies and show that the intuition obtained
from the analysis carries over to these general cases. We also
illustrate the performance of the proposed CSMA policy when
combined with a flow control mechanism.

I. INTRODUCTION

In this paper, we study the performance of CSMA poli-
cies [1]–[6]. CSMA policies are attractive as they are simple
and can be easily implemented in a distributed manner. More-
over, these policies are known to be throughput optimal in that
they can stabilize any packet arrival rate that can be stabilized
by any other policy [4]–[6]. However, it is well-known that
they can have a very poor delay performance where the delay
can grow exponentially in the network size. As a result, CSMA
policies are not practical for delay-sensitive traffic even for
mid-sized networks.

In the following, we consider the question whether the fact
that the delay can grow exponentially in the network size is
a fundamental property of CSMA policies, or whether it is
possible to obtain a much improved delay performance by
slightly changing the classical CSMA policy. The main result
of our analysis is that this is indeed the case: by slightly
modifying the classical CSMA policy we obtain a new policy
for which the delay is constant, and does not grow, as the
size of the networks grows. We then also use this result to
characterize the throughput delay trade-off of the proposed
CSMA policy.

Our analysis is based on an idealized CSMA policy as it has
been considered in [4], [7]: assuming a continuous distribution
of the random back-off time of CSMA, we can avoid packet
collisions. In addition, we focus in our analysis on wireless
networks in which the interference can be characterized by a
grid-like interference graph. The reason for assuming a grid
(lattice) topology of the interference graph is that this topology
allows a formal analysis.

For the classical CSMA policy, a grid (lattice) topology
for the interference graph leads to the well-known hard-
core model that has been extensively studied [8], [9], and
has been used to study the delay performance of CSMA
policies. In particular, it has been shown that under the grid
interference graph, the delay of CSMA can grow exponentially
in the network size. Therefore, even for simple interference
topologies such as the grid topology, CSMA policies incur an
exponentially large delay, which makes these policies less than
attractive for large-scale implementation.

In the view of the above, our main contributions are as
follows:

1) We formulate a model that allows to characterize the
transient behavior of CSMA, i.e. that allows to study
how the throughput of a CSMA policy changes over
time if we start with a network where all nodes are silent
(do not transmit). The model is based on two simplifying
assumptions that allow a formal analysis of the transient
behavior.

2) Using the model, we show that CSMA policies converge
to a maximum schedule that achieves a high throughput
at a rate that is independent of the network size. This
insight is one of the key results of the paper.

3) Using the above insight, we propose a slight variant
of the classical CSMA policy and show that its delay
performance does not depend on the network size, i.e.
the delay stays bounded even when the networks size
approaches infinity. This result is rather surprising and
at first counter-intuitive.

4) We also characterize the throughput-delay trade-off of
the proposed CSMA policy and show that this trade-off
is also independent of the network size.

5) While our analysis has been carried out for the spe-
cial case of an interference graph with a grid (lattice)
topology, we provide numerical case studies for general
network topologies and show that the intuition obtained
from the analysis carries over to these general cases. We



also illustrate the performance of the proposed CSMA
policy when combined with a flow control mechanism.

The above results suggest that CSMA policies are not only
simple and can be implemented in a distributed manner, but
that they can also achieve a very good performance both in
terms of throughput and delay. The analysis shows that CSMA
policies can obtain good performance even for very large
networks, i.e. the delay performance and the delay-throughput
trade-off are not dependent on the network size. To the best of
our knowledge, this is the first time that such a result has been
obtained. The result opens up the possibility of using CSMA
policies for traffic that requires both a high-throughput and a
small delay.

II. HIGHLIGHTS OF TECHNICAL RESULTS

To explain our main results, we first briefly review the
CSMA delay behavior in the grid interference graph. In this
graph, every wireless link is represented by a node. Each node
itself is represented by coordinates (i, j), i, j ∈ {0, 1, ..., n −
1}, n > 1, so that all wireless links are nodes in a two
dimensional grid (lattice), which can be interpreted as a subset
of Z2. Hereafter, we use the terms “wireless link” and “node”
interchangeably. We use L = n2 to denote the total number of
nodes in the grid. We assume every node interferes with those
nodes of the grid that are at unit distance from the node. Hence,
every node has at most four interfering nodes. We assume that
the packet arrival rate to all links is the same and equal to λ.

An important question for the above network is to determine
the maximal packet arrival rate λ that can be stabilized by a
CSMA policy. By now it is well-known that for any packet
arrival rate λ < 0.5, there exists a CSMA policy that can
stabilize the network [7], [9]. Roughly, this can be achieved
by choosing a CSMA policy in which all nodes use the same
transmission attempt-rate z, and by letting z become larger and
larger. In the case where the attempt rate z becomes large, the
network state will mainly alternate between two transmission
patterns. The first (respectively second) pattern consists of
transmitting nodes that are mostly even (respectively odd)
nodes, i.e., those for which i + j is even (respectively odd).
However, transitions between these two transmission patters
occur very infrequently, i.e., the CSMA policy tends to “lock
into” one of the two transmission patterns for a very long time
before it switches to the other pattern.

It is well-known that this “locking-in” behavior of the
CSMA policy is necessary in order to achieve a high through-
put, i.e., in order to support an arrival rate λ close to 0.5.
However, while locking into a transmission pattern benefits
the throughput, it dramatically hurts the delay performance.
An exact delay analysis of this case is difficult; the currently
best characterization of the delay performance (see, e.g., [5])
provide an upper-bound for the delay of the form zL, i.e. a
delay bound which increases exponentially in in the network
size L. To support an arrival rate of λ = 0.5− ε, ε > 0, it has
been shown that an attempt rate z roughly of the order z = 1/ε
is needed [8]. As a result, in order to support an arrival rate of
λ = 0.5− ε, ε > 0, the upper-bound on the delay can grow as

fast as (1/ε)L. Furthermore, for the case where ε is sufficiently
small, a lower-bound on the delay has been derived that grows
exponentially with exponent

√
L/(logL)2 [10]. These bounds

imply that the delay performance of CSMA becomes very poor
for large networks, i.e. as L becomes large.

To better understand the delay performance of CSMA
policies, we propose a model to characterize the transient
behavior of these policies, i.e., how fast these policies converge
to maximum schedules. For this model, we show that, quite
surprisingly, the rate of convergence of CSMA policies to
maximum schedules is independent of the network-size. We
then use this insight to design a new CSMA policy. We show
that the delay of the new CSMA policy is O( 1

ε3 ), which is
independent of the network-size. In other words, the delay
does not increase as the network-size increases to infinity.
Using this result, we obtain that the delay-throughput trade-off
is also independent of the network-size.

While our analysis was for the special case of the grid
interference graph with uniform attempt-rates, numerical case
studies that we performed suggest that the intuition obtained
for the grid-topology carries over to more general interference
topologies. In addition, our numerical results show that when
the new CSMA policy is combined with a flow control
mechanism, then the delay is also of the order O( 1

ε3 ), where
ε is defined as the “distance” to the optimal network utility.
These results suggest that the proposed CSMA mechanism
performs well in practical settings.
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