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Abstract—In this paper, we study the delay performance of
CSMA policies in wireless networks, where the delay is defined
as the average time that a silent wireless link needs to wait until it
accesses the channel for packet transmission. It is well-known that
CSMA policies can incur an access delay that may be correlated
over time and may grow exponentially with the network size. This
discourages practical implementation of CSMA policies in even
mid-sized networks. In this paper, we provide a new perspective
on the delay performance of CSMA policies. We present recently
developed results for two important interference models and show
how CSMA policies can be used to ensure an access delay that
is memoryless over time or that does not grow with the network
size. The two interference models that we consider are primary
interference and the “lattice interference graph”. Our results
suggest that CSMA policies can achieve a delay performance, as
well as a delay-throughput trade-off, that makes them viable to
be used in practice.

I. INTRODUCTION

CSMA scheduling policies are examples of simple dis-
tributed policies that are throughput optimal [1]. Despite
their attractive features, these policies may incur a delay that
is heavily correlated over time and that may exponentially
increase with the network size. This is perhaps the main
hurdle towards practical implementation of CSMA policies in
multihop wireless networks.

In this paper, we study the access delay of CSMA policies,
i.e., the average time that a silent link needs to wait until its
next packet transmission. Ideally, in a network with stochastic
arrivals, it is desirable to have an access delay that is inde-
pendent of the system history or the network size. We are,
therefore, interested in the following questions:
• For which topologies, CSMA policies become memo-

ryless in the sense that links’ access delays become
independent of the system history?

• Do CSMA polices fundamentally fail in topologies in
which CSMA access delay exponentially increases with
the network size? Or, there exists a simple fix to the
operation of CSMA policies that turns the exponential
delay to a delay that does not depend on the network
size?

To answer the first question, we first define an ideal net-
work which provides sufficient conditions under which CSMA
policies become memoryless. We then consider the primary
interference model [2], [3]. Using this model, we focus on
network graphs that can be represented as bipartite graphs,
where any of N sender nodes transmits data to any of another

set of N receiver nodes. We show that under proper limiting
regime, large bipartite network graphs provide examples of
the defined ideal network. Therefore, these networks serve
as interesting examples where CSMA access delay becomes
independent of system history.

To answer the second question, we base our analysis on an
idealized CSMA policy as considered in [1], [4]. We assume a
continuous distribution of the random back-off time of CSMA
policies to avoid packet collisions. In addition, in our analysis,
we focus on networks where interference can be characterized
by a lattice, or a grid-like, interference graph. The reason
for assuming a lattice interference graph is that 1) under this
graph, the delay of CSMA policies grows exponentially with
the network size [5], and 2) it allows a formal analysis.

For the lattice interference graph, we formulate a model that
allows to characterize the transient behavior of CSMA policies
as how data throughput changes over time. This model is based
on two simplifying assumptions that allow a formal analysis of
the transient behavior. Using the model, we show that CSMA
policies converge to a maximum schedule that achieves a high
throughput at a rate that is independent of the network size.
This insight is one of the key results of the paper. Using this
insight, we propose a slight variant of the classical CSMA
policy and show that its delay performance does not depend
on the network size, i.e., the delay stays bounded even when
the networks size approaches infinity. This result is rather
surprising and at first counter-intuitive. We also characterize
the throughput-delay trade-off of the proposed CSMA policy
and show that this trade-off is also independent of the network
size.

While our analysis, to answer the second question, has
been developed for the special case of an interference graph
with a lattice topology, through numerical case studies, we
have verified that the intuition obtained from the analysis
carries over to more general network topologies. We have also
observed a similar behavior where the proposed CSMA policy
is combined with a rate control mechanism.

The above results suggest that CSMA policies while
throughput optimal, simple, and distributed, can be used to
ensure a good delay performance. In addition, the analysis
shows that CSMA policies can obtain good delay performance
even for very large networks. To the best of our knowledge,
this is the first time that such a result has been obtained. This
result opens up the possibility of having multihop wireless
networks that can be deployed in a simple distributed manner



and have a very good performance in terms of both throughput
and delay.

The rest of this paper is organized as follows. In the
next section, we provide the network model and the details
of CSMA policies. In Section III, we provide an example
that motivates our study in this paper. In section IV, we
focus on the first question posed above and the topologies in
which CSMA policies become memoryless. In Section V, we
focus on the second question posed above and introduce our
modified CSMA policy. Finally, in Section VI, we conclude
the paper.

II. MODEL

In this section, we introduce the network and CSMA models
that we will use in this paper.

A. Network Model

We consider a fixed wireless network composed of a set
N of nodes with cardinality N, and a set L of undirected
links with cardinality L. An undirected link l = (n,m) ∈ L
indicates that node n and m are within transmission range of
each other and can exchange data packets.

We model the contention between links by an interference
graph G(L, E), where L is the set of links and E is the set of
edges. An edge e = (l, l′) ∈ E in the graph G(L, E) indicates
that the two links l and l′, l, l′ ∈ L interfere with each other.
In the following, we will refer to L as the node set of the
interference graph, and to the set E as its edge set.

Throughout the paper, we assume that all traffic is one-hop.
We let λl = λ(i,j) indicate the total packet arrival rate to link
l = (i, j), and let λ = (λl)l∈L be the arrival rate vector for
a given network. We assume that the rate of transmission is
the same for all links and equal to unity. Moreover, if a link
is scheduled for transmission but does not have any packets
to transmit, dummy packets are transmitted.

B. CSMA Policies

A CSMA policy can be characterized by 1) how links make
decisions as when to transmit, and 2) by a parameter β defined
as the sensing delay or the idle period. When β = 0, we
have the idealized CSMA model, which is very similar to
the one presented in [1], [4]. Given a wireless network with
interference graph G(L, E), every link l ∈ L independently
of others senses transmissions of any conflicting link in the
interference graph G(L, E), i.e. of any link l′ such that the
edge e = (l, l′) is contained in the edge set E . If link l senses
that any of its interfering links is transmitting, then it waits
until all its interfering links become silent. Once this happens,
link l sets a backoff timer with a value that is exponentially
distributed with mean 1/zl, and starts to reduce the backoff
timer. If the timer reaches zero before any of its interfering
links start a transmission, then link l starts a transmiission.
Otherwise, link l simply waits until all its interfering links
become silent again, and repeats the above process. For the
case of β = 0, we assume that all transmission times (packet

lengths) are independently (across links and over time) and
exponentially distributed with unit mean.

The above models an idealized CSMA protocol [1], [4].
Since the distribution of the backoff timers is continuous, the
probability that two interfering links start to transmit a packet
exactly at the same time is equal to zero, and we assume that
we can ignore the collision of the transmissions of any two
interfering links. In addition, we assume that links can always
sense transmissions of their interfering links, and there is no
“hidden-terminal” problem that can create packet collisions.

When β > 0, we consider a synchronized time-slotted sys-
tem where each timeslot has duration β. For this case, CSMA
policy works as follows: every link l ∈ L independently of
others senses transmissions of any conflicting link. We define
the channel to be sensed as idle by link l, if link l senses no
transmission of its conflicting links. If the channel is sensed
as idle by link l for the duration of one given timeslot, then
in the following timeslot, link l starts transmission of one
single packet with probability pl, independent of all other
events in the network. For the case of β > 0, we assume
packet transmission times (packet lengths) are geometrically
distributed with unit mean, independently across links and
over time. If link l does not start a packet transmission, then
link l has to sense the channel as idle for the duration of
another timeslot before it again has the chance to start a packet
transmission as explained above.

When β = 0, we can characterize a CSMA policy by
the vector z = (zl)l∈L where zl > 0, and refer to zl as
the transmission attempt-rate of link l. When β > 0, we
can characterize a CSMA policy by transmission attempt
probability vector p = (pl)l∈L ∈ [0, 1]L. Given a CSMA
policy characterized by z or p, let µl, l ∈ L, be the service
rate of link l, i.e., the fraction of time link l is transmitting
under the given CSMA policy.

For a given network, we say that the given CSMA policy
stabilizes the network for a given rate vector λ if

λl < µl, l ∈ L.

Given a fixed network, we then define the achievable rate
region C of the idealized CSMA policy with β = 0 as the
set of all rate vectors λ for which there exists a vector z that
stabilizes the network for λ, i.e. we have that λl < µl(z),
l ∈ L.

It is well-known that the idealized CSMA policy with β = 0
is throughput optimal, i.e., the set C contains all arrival rate
vectors λ that are inside the capacity region Γ, where Γ is the
set of all λ’s that can be stabilized by any other policy [1].

C. Primary Interference Model

In this model, a packet transmission over link l = (i, j)
is successful if only if within the transmission duration, there
exists no other activity over any other link (m,n) which shares
a node with (i, j) [2], [3]. The primary interference model
applies, for example, to wireless systems where multiple
frequencies/codes are available (using FDMA or CDMA) to
avoid interference, but each node has only a single transceiver
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Fig. 1. Demonstration of the lattice graph GL in R2; active links and their
coverage area; and clusters and their boundary. Active links are colored.

and hence can only send to or receive from one other node at
any time.

D. Lattice Interference Graph

In the lattice interference graph, the interference graph
G(L, E) can be represented by a two-dimensional grid or
lattice (see Fig. 1 for an illustration). More precisely, we
assume that the interference graph G(L, E) is such that all
links l ∈ L of the interference graph can be represented by
coordinates (i, j), i, j ∈ {0, ..., n}, and there is an edge e ∈ E
between any two links l = (i, j) and l′ = (i′, j′), l, l′ ∈ L, if
l and l′ differ in exactly one coordinate and we have that

|i− i′|+ |j − j′| = 1.

Throughout the paper, we use the notation GL = GL(L, E)
to indicate that the interference graph can be represented by
a lattice as described above.

Given a lattice interference graph GL with links (i, j),
i, j ∈ {0, ..., n}, we define B(GL) as the boundary of GL, i.e.,
B(GL) is the set of all links for which at least one coordinate is
equal to 0 or n. For the purpose of illustration, we assume that
each link l represented by coordinates (i, j) can be interpreted
and mapped to the point (i, j) in R2. With such an extension,
we have mapped the vertex set L of GL to a subset of points
in R2.

Given a lattice interference graph GL, we define a link l =
(i, j) ∈ L as an even link iff i + j is an even number. We
define L(e) as the set of all such even links. Similarly, we
define a link l = (i, j) ∈ L as an odd link iff i+ j is an odd
number, and define L(o) as the set of all odd links. Note that
all even links can transmit simultaneously without causing an
interference. The same holds for all odd links.

For the lattice interference graph GL, in the following, we
focus on the idealized CSMA policies with β = 0 and uniform
transmission attempt-rates so that

zl = z, z > 0, l ∈ L.

In addition, we also focus on the case of uniform packet arrival
rates, i.e., we have

λl = λ, 0 < λ < 0.5, l ∈ L. (1)

III. MOTIVATING EXAMPLE

Consider the lattice interference graph model as defined
in Section II-D. An important question for this model is
to determine the maximal packet arrival rate λ that can be
stabilized by a CSMA policy z. By now it is well-known that
for any packet arrival rate λ < 0.5, there exists a CSMA
policy z that can stabilize the network [4]–[6]. Roughly, this
can be achieved by choosing a CSMA policy z with uniform
tranmission attempt-rates zl = z, l ∈ L, and by letting
z become larger and larger. In the case where the attempt
rate z becomes large, the network state will mainly alternate
between two transmission patterns where either mostly links
in the set of even links L(e), or links in the set of odd links
L(o), are transmitting. However, transitions between these two
transmission patters happen very infrequently, i.e., the CSMA
policy tends to “lock into” one of the two transmission patterns
for a very long time before it switches to the other pattern.

This “locking-in” behavior has two important consequences.
First, the time epochs at which a link l accesses the channel
are heavily correlated over time. In other words, CSMA has
scheduling memory. Second, the average delay a silent link
needs to wait until it accesses the channel can be prohibitively
large. It is well-known that this “locking-in” behavior of
the CSMA policy is necessary in order to achieve a high
throughput, i.e., in order to support an arrival rate close to 0.5.
However, while locking into a transmission pattern benefits
the throughput, it dramatically hurts the delay performance.
An exact delay analysis of this case is difficult; the currently
best characterization of the delay performance (see, e.g., [7])
provide an upper-bound for the delay of the form zL, i.e. a
delay bound which increases exponentially in the network size
L. To support an arrival rate of λ = 0.5− ε, ε > 0, it has been
shown that an attempt rate z roughly of the order z = 1/ε is
needed [8]. As a result, in order to support an arrival rate of
λ = 0.5− ε, ε > 0, the upper-bound on the delay can grow as
fast as (1/ε)L. Furthermore, for the case where ε is sufficiently
small, a lower-bound on the delay has been derived that grows
exponentially with exponent

√
L/(logL)2 [9]. These bounds

imply that the delay performance of CSMA becomes very poor
for large networks, i.e., as L becomes large.

The fact that CSMA delay can be heavily correlated over
time and exponentially large discourages practical imple-
mentation of CSMA protocols, even for mid-sized wireless
networks. This motivates to ask the following questions. First,
is a correlated access delay a fundamental property of CSMA
policies, or otherwise, there exist non-trivial topologies for
which CSMA access delay exhibits memory-less properties?
Second, for topologies such as the grid interference graph,
is it true that any CSMA-like policy incurs large delay, or
otherwise, it is possible to dramatically improve the delay
by only slightly modifying the classical CSMA protocol? Of



Fig. 2. Markov chain from the view point of link l = (i, j). We have shown
transition rates in the limit of β → 0.

course, any modification of the CSMA protocol should be
done in a such a way that it does not negatively affect the
attractive feature of CSMA policies, namely, the fact that these
policies can be easily implemented in a distributed manner. In
the following, we provide answers to the above questions.

IV. TOPOLOGIES WITH MEMORYLESS CSMA DELAY

To get intuition into the cases where CSMA policies may
have a memoryless delay, i.e., an access delay that is not
correlated over time and does not depend on the history of the
system, we first introduce the notion of an ideal network, as
follows. Throughout this section, we consider CSMA policies
with β > 0, and hence, a timeslotted system, as described in
Section II-B.

A. An Ideal Picture

In this section, we define an ideal network and discuss its
access delay properties. Consider link l = (i, j), from node i
to node j. We define an ideal network to be the one in which
for any link l = (i, j) the following hold:
• When link l is not active, and at least one of the nodes i

or j are active, the idle and active periods of node i (node
j) are geometrically distributed with mean 1

κi
and one,

respectively, independent of activities of nodes j (node
i).

• When link l is idle, in the next timeslot, with probability
pl = p(i,j) = r(i,j)β, the link becomes active, otherwise
nodes i or j independently of each other become active
with probability κiβ or κjβ, respectively.

Under the above ideal hypothesis, the idle and active periods
of link l = (i, j) can be characterized by a simple Markov
chain with state S(n) at timeslot n. The state space of this
Markov chain can be defined as S = {Sk, k = 1, · · · , 5} =
{(si, sj)} ∪ {(l)}, where si = 0 means node i is idle, and
si = 1 means it is active. The state (l) means that link l is
active (transmitting). Fig. 2 shows how the ideal network will
look like from the view point of link l, in terms of a Markov
chain with transition rates in the limit of β → 0.

We see that by choosing

r(i,j) =
λ(i,j)

1− λ(i,j)
(1 + κi)(1 + κj), (2)

asymptotically as β → 0, we have πl

λ(i,j)
= 1, where πl is the

steady state probability that link l is transmitting. Hence, if
the ideal hypothesis holds, it becomes fairly easy to choose
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Fig. 3. Illustration of bipartite network graph.

the correct transmission probability to support any supportable
throughput for link l.

Define τl, as the access delay, to be the time until the next
packet transmission by link l given that link l is not currently
active. We have the following theorem [10]

Theorem 1. Let τsl = λlτl be the scaled version of the access
delay τl. Under the ideal network assumption, independent of
the past

lim
λl→0

lim
β→0

τsl
D→ X,

where X is an exponential r.v. with unit mean, and conver-
gence is in distribution.

This theorem essentially states that, due to the Markovian
nature of the system, the scaled access delays are i.i.d. and
exponentially distributed with unit mean. Hence, CSMA is
memoryless on the ideal networks with small flows (since
λl → 0). We next study an important network topology that
in a proper limiting regime becomes an an ideal network with
memoryless delay.

B. Large Bipartite Graphs as Ideal Networks

In this section, we show that ideal networks as defined
in Section IV-A are indeed feasible by considering the limit
of large bipartite graphs. Consider a sequence of networks
{(N (N),L(N)), N ∈ N}, where each network can be rep-
resented as a bipartite graph with a set of N sender nodes
NS = {1, · · · , N} and a set of N receiver nodes NR =
{N + 1, · · · , 2N} (see Fig. 3). For the N th network, we
assume the sensing period is β(N) such that

lim
N→∞

N2β(N) = 0. (3)

We also assume a symmetric CSMA policy p(N) = {p(N)
l=(i,j)}

on each network where the transmission probability of link l
is given by

p
(N)
l=(i,j) =

κ2

N
β(N), i ∈ NS , j ∈ NR. (4)

The above choice for transmission probabilities is motivated
by the results in [11]. Using the results of [11], it is not hard
to see that for large κ, the service rate or throughput of any
link is close to 1

N (1− 1
κ ).



Let Y (N)
S (n) = (Y (N)

(i) (n), i ∈ NS) be the vector of sender

nodes’ states at timeslot n, where Y
(N)
(i) (n) = 1, i ∈ NS ,

indicates that node i is transmitting, otherwise Y (N)
(i) (n) = 0.

Similarly, let Y (N)
R (n) = (Y (N)

(j) (n), j ∈ NR) be the vector of

receiver nodes’ states at timeslot n, where Y (N)
(j) (n) = 1, j ∈

NR, indicates that node j is receiving, otherwise Y (N)
(j) (n) = 0.

Let M (N)
S,0 (t) be the occupancy measure for idle sender nodes,

i.e.,

M
(N)
S,0 (t) =

1
N

N∑
i=1

1
Y

(N)
(i) (n)=0

.

Similarly, let the occupancy measure for idle receiver nodes
be

M
(N)
R,0 (t) =

1
N

2N∑
j=N+1

1
Y

(N)
(j) (n)=0

.

Finally, let Φ∞ be the positive root of

1− κ2(Φ∞)2 − Φ∞ = 0.

We have the following result [10]

Theorem 2. Suppose limN→∞N2β(N) = 0. For any ε > 0,

lim
N→∞

lim
τ→∞

1
τ

∫ τ

0

1|M(N)
S,0 (t)−Φ∞|<ε dt = 1, a.s. (5)

The above holds if M (N)
S,0 (t) is replaced with M (N)

R,0 (t).

Since

lim
κ→∞

Φ∞

κ−1
= 1, (6)

using Theorem 2, we observe that for large κ, the fraction of
idle sender (or receiver) nodes should be close to κ−1 almost
at all time instants1. Using (4), it is clear that if at all times
the fraction of idle sending nodes and the fraction of idle
receiving nodes are 1

κ , then for instance each silent sender
node attempts to access the channel with probability κβ.
Hence, in limit of β → 0, distribution of idle periods becomes
independent of each other and exponentially distributed with
mean 1

κ , in which case we have an ideal network where CSMA
access delay becomes memoryless. Theorem 2 shows that this
becomes arbitrarily accurate in the limit of N →∞.

The bipartite network graphs provide an example where
CSMA access delay becomes memoryless. We next show that
for topologies such as the lattice interference graph, one can
slightly change the operation of CSMA policies to convert an
exponentially increasing delay to a delay that does not increase
with the network size.

1In [10], we have shown that over any finite time interval, with probability
approaching one as N → ∞, the fraction of idle sender (or receiver) nodes
quickly converges to Φ∞ with rate 1 + 2κ2Φ∞ and stays close to Φ∞ for
the rest of the interval.

V. CSMA POLICIES WITH NETWORK-SIZE INDEPENDENT
DELAY

As stated in Section III, for the lattice interference graph,
CSMA delay increases with the network size. To obtain a delay
that is constant as a function of the network size, we modify
the operation of CSMA policies. Throughout this section, we
consider the idealized CSMA policies with β = 0, as described
in Section II-B.

The basic idea behind our proposed CSMA policy is very
simple. Periodically, i.e., at times t = 0, T, 2T, 3T, ..., we reset
the transmission pattern of a CSMA policy by requiring all
links to become silent and restart the CSMA protocol. Clearly,
this approach will prevent a CSMA policy from locking into
a particular transmission pattern for too long. As a result, this
“resetting” or “unlocking” of the transmission pattern should
help the delay performance as it prevents links from being
locked-out from making any transmissions for long periods
of time. However, on the other hand, it may dramatically
hurt the throughput performance, i.e., if the unlocking period
T is too small, then CSMA policy may fail to reach a
good transmission pattern that is necessary to obtain a high
throughput. Therefore, to understand the performance of this
proposed CSMA policy we have to characterize both how the
delay and throughput behave as a function of the “unlocking”
period T .

In this paper, we characterize the delay and throughput
performance of this modified CSMA policy with the above un-
locking mechanism for a lattice interference graph and uniform
transmission attempt and packet arrival rates, as described in
Section II-D. While our analysis is carried out for a restricted
model, through simulations, we have verified and illustrated
the obtained results for more general network topologies, as
well as more general transmission attempt-rates. In addition,
to consider general packet arrival rates, we have studied how
the proposed CSMA policy perform when combined with a
rate control mechanism. The numerical results for these case
studies will be provided in an extended version of this paper.

We note that the above alternative CSMA policy is an ide-
alized scheme as it assumes that all links become immediately
silent every T time units. One possible approach to implement
our CSMA policy in a fully distributed manner is through
propagating busy tones. Further discussion of this topic will
be provided in an extended version of this paper.

A. Modeling Assumptions

Our analytical results presented in the next section are
based on two simplifying assumptions. To formally state the
assumptions, we first give several definitions.

Consider the lattice GL, and for simplicity assume that
links in GL use the idealized CSMA policy with β = 0 for
transmission. We define a link l ∈ L to be active at time t if
it is transmitting at that time. At any time t, the set of active
links can be considered as the union of clusters. Each cluster
Ci, 1 ≤ i ≤ imax, imax <∞, has the following properties:

1) Ci is a subset of active links in GL.



2) For any two links l and l′, where l 6= l′ and l, l′ ∈ Ci,
there exists a path of n links {l1, l2, · · · , ln} in Ci for
some n ≥ 2 where l1 = l and ln = l′, such that lk =
(ik, jk) ∈ Ci, 1 ≤ k ≤ n, and |ik−i′k+1| = |jk−j′k+1| =
1. If l = l′ ∈ Ci, we define {l} as a path.

3) Ci is maximal is the sense that no further links can
be added to Ci without violating one of the above
properties.

By the above definition, each cluster contains only odd active
links or only even active links. We define an odd (resp.
even) cluster to be a cluster consisting of odd (resp. even)
links. We use K(o)(t) and K(e)(t) to be the number of
odd and even clusters at time t, respectively. We define
Io(t) to be the index set of all odd clusters at time t, i.e.,
Io(t) = {i : Ci is an odd cluster.}. Similarly, we define Ie(t)
to be the index set of all even clusters at time t. The above
properties define a cluster as a maximal set of even active links
or odd active links, where each link in the cluster can reach
any other in the cluster in a sequence of links, or path, in the
cluster. Considering the mapping from L to R2 as explained
in Section II-D, along the path, the euclidean distance of one
link to the next is

√
2. In Fig. 1, colored links inside the inner

polygon represent one cluster. We define |Ci| as the number
of links in Ci. We may refer to |Ci| as the size of cluster Ci.

We also need to define the boundary of each cluster. To do
so, first consider links that are inside the lattice, i.e., all links
l /∈ B(GL). Any such link has four interfering links on the
lattice. Considering the mapping from the links in L to the
points in R2, for any link l inside the lattice, we define its
coverage area Al to be the square formed by its four closest
links. In Fig. 1, we have shown the coverage area of one active
link. For any link that is not inside the lattice, i.e, l ∈ B(GL),
we define Al to be the intersection of the area [0, n]× [0, n] in
R2 and the square that would exist if link l were also inside
the lattice.

For each cluster Ci, we can define its coverage area as

ACi = ∪l∈CiAl,

i.e., the union of the coverage area of all links that belong to
Ci. The area ACi

contains some points (i, j), where links of
GL may be located, and also some points in R2 where links
are not located. For instance, the area inside the inner polygon
in Fig. 1 is the area of one cluster. We also conveniently define
the area of the lattice to be A(GL) = L = (n+ 1)2 > n2.

For the area ACi
, we define its boundary to be the set of all

points in R2 that any neighbourhood of which contains points
both in ACi and points not in ACi . We use B(Ci) to denote the
boundary of ACi

restricted to be inside the area [0, n]× [0, n]
(see Fig. 1). We define |B(Ci)| as the length of the boundary
of cluster Ci.

Finally, we define three quantities that define the average
properties of odd clusters at a given time t. Recall that K(o)(t)
is the number of odd clusters at time t, Io(t) is the index set
of all odd clusters at time t, and A(GL) is defined as the area

of the lattice. We define

ρL,C,t =
K(o)(t)
A(GL)

,

to be the density of odd clusters at time t. We also define

|CL,t| =
∑
i∈Io(t) |Ci|
K(o)(t)

,

to be the average number of links per odd cluster at time t.
Similarly, we define

|B(CL,t)| =
∑
i∈Io(t) |B(Ci)|
K(o)(t)

to be the average boundary-length per odd cluster at time t.
Based on the above definitions, we make the following two

assumptions to study the transient behavior of CSMA policies.
Our first assumption states that the average boundary-length
of clusters does not grow faster than the square root of the
average size of clusters. Without loss of generality, we have
stated the assumption in terms of odd clusters.

Assumption 1. For any time t > 0, odd clusters have a
regular structure, in the sense that for some constant c > 0

c|B(CL,t)|
2
< |CL,t| <∞. (7)

Our second modeling assumption characterizes statistical
structure of clusters’ boundaries. Note that the boundary
of each cluster is consisted of line-segments whose lengths
are multiples of

√
2 (see Fig. 1). Moreover, moving along

the boundaries is possible only in four directions. In the
following, by the “normalized length” of a line-segment, we
mean the length of the line-segment divided by

√
2. The

following assumption states that the normalized lengths of
line-segments are geometrically distributed, and the direction
of line-segments are appropriately random:

Assumption 2. Boundaries of clusters are consisted of line-
segments with the following properties:

a) The normalized lengths of these line-segments are geo-
metrically distributed with parameter κ(t).

b) Independent of system history before time t, with proba-
bility approaching one as L→∞,

– the average normalized length over all line-segments
is κ(t)−1, and

– moving along the boundaries, at least a fraction
υκ(t) of line-segments have unit normalized length
with the property that direction of the next line-
segment is opposite to the direction of the segment
before the current, where υ > 0 is a constant.

In Fig.1, the only line-segment that has the properties
mentioned in Assumption 2(b) is the line-segment from link
f to g, denoted by f − g.



B. Delay and Delay-throughput Trade-off: Analytical Results

In this section, we describe the main results of our analysis
on the lattice graph GL with uniform attempt-rates z as
described in Section II-D. The proofs for these results will
be provided in an extended version of this paper.

We first give a few definitions. For GL with uniform
attempt-rate z, we define ρL(t) = ρL(t, z) to be the fraction
of active links at time t, and ρ̄L = ρ̄L(z) as the expected value
of ρL(t) as t→∞:

ρ̄L = ρ̄L(z) = lim
t→∞

E[ρL(t, z)]. (8)

We also define δL(t) as the gap between the density ρL(t) at
time t and ρ̄L:

δL(t) = ρ̄L − ρL(t). (9)

Our first result states how fast CSMA converges to the
packed schedules. It states that, quite surprisingly, the conver-
gence rate becomes independent of the network size, and that
the rate does not decrease as the size of the network increases
to infinity. More precisely, as a function of time t, the gap to
the optimal density of active links drops as fast as 1/

√
t, with

high probability in the limit of large networks and attempt-rate
z.

Theorem 3. Fast Convergence to Packed Schedules
Consider a sequence of {GL} with L → ∞ and z → ∞
such that z = z(L) = o(L

1
3 ). Under Assumptions 1-2,

and assuming idealized CSMA on GL, without the unlocking
mechanism, there exists a constant C1 > 0, such that for any
τ <∞,

lim
L→∞

P

[
δL(t) <

C1√
t
, t ∈ (0, τ ]

]
= 1.

Through simulations, we have verified that δL(t) exhibits
the above behavior and drops as 1/

√
t (neglecting constants).

Interestingly, we have observed a similar behavior for more
general settings of random interference graphs and non-
uniform attempt-rates. This suggests that the above result is
applicable to a much wider set of network scenarios.

Our second result provides a bound for the average queue
sizes, and characterizes the throughput-delay trade-off of the
modified CSMA. To state the result, let Ql(t) be the queue
size of link l at time t. The theorem states that in order to get
ε close to the throughput limit, the expected time-averaged
Ql(t) becomes only O( 1

ε3 ). This is achieved by choosing the
unlocking period T to be on the order of 1

ε2 . By Little’s
theorem, we have that the packet delay is also O( 1

ε3 ).
Quite surprisingly, the delay bound and the trade-off are

valid for the limit of infinite lattice GL, where L =∞, which
can be considered as the lattice of Z2. Hence, even in an
infinite network, the modified CSMA can provide bounded
delay. This implies that CSMA delay and the throughput-delay
trade-off can be indeed made independent of the network size,
as the network size grows to infinity.

Theorem 4. Delay-Throughput Trade-off
Consider idealized CSMA with the (idealized) unlocking mech-
anism. Let ε = 0.5 − λ > 0, where λ is links’ packet arrival
rate. Let the unlocking period be T = C2

ε2 , where C2 > 0 is
a sufficiently large constant. Suppose the interference graph
is the infinite lattice of Z2. Then, for sufficiently large z and
under Assumption 1 and Assumption 2, for any l ∈ L we have

lim
τ→∞

1
τ
E

[∫ τ

t=0

Ql(t)dt
]

= O
( 1
ε3

)
.

Through simulations for a 26× 26 lattice and attempt rate
z = 100, we have found a close match with the above
throughput-delay behavior. We have also observed a similar
utility-delay trade-off for the case where rate control is com-
bined with the new CSMA, both in the lattice and random
interference graphs. Therefore, we expect our results and the
general trends observed here to be applicable to a wide range
of network settings.

Theorem 3 and Theorem 4 state that even in topologies that
original CSMA policies may fail to provide acceptable delay
performance or delay-throughput trade-off, one can slightly
change the operation of CSMA policies to achieve a delay as
well as a delay-throughput trade-off that becomes independent
of the network size. As stated earlier, we expect our results
to hold in more general settings than the lattice interference
graph.

VI. CONCLUSION

In this paper, we have studied the delay performance of
CSMA policies in wireless networks. We first have defined an
ideal network for which the CSMA access delay shows mem-
oryless properties. Next, we have shown that in the limit, large
bipartite graphs with small flows provide an example of ideal
networks. Hence, we have verified that there are important
topologies for which CSMA access delay exhibits desirable
properties. We then have considered the lattice interference
graph for which CSMA access delay can exponentially grow
with the network size. For this topology, we have shown that
using an unlocking mechanism, one can change the operation
of CSMA policies so that in the limit of large networks and
attempt rates, the rate of convergence to maximum schedules
and the delay-throughput trade-off become independent of the
network size. These results are encouraging as they suggest
that CSMA policies not only are simple, distributed, and
throughput optimal, but also can be used to ensure acceptable
packet delay.
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