
3644 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011

Asynchronous CSMA Policies in Multihop Wireless
Networks With Primary Interference Constraints
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Abstract—We analyze asynchronous carrier sense multiple
access (CSMA) policies for scheduling packet transmissions
in multihop wireless networks subject to collisions under pri-
mary interference constraints. While the (asymptotic) achievable
rate region of CSMA policies for single-hop networks has been
well-known, their analysis for general multihop networks has been
an open problem due to the complexity of complex interactions
among coupled interference constraints. Our work resolves this
problem for networks with primary interference constraints by
introducing a novel fixed-point formulation that approximates the
link service rates of CSMA policies. This formulation allows us to
derive an explicit characterization of the achievable rate region
of CSMA policies for a limiting regime of large networks with a
small sensing period. Our analysis also reveals the rate at which
CSMA achievable rate region approaches the asymptotic capacity
region of such networks. Moreover, our approach enables the
computation of approximate CSMA link transmission attempt
probabilities to support any given arrival vector within the achiev-
able rate region. As part of our analysis, we show that both of
these approximations become (asymptotically) accurate for large
networks with a small sensing period. Our numerical case studies
further suggest that these approximations are accurate even for
moderately sized networks.

Index Terms—Asymptotic capacity region of wireless net-
works, carrier-sense multiple access, fixed-point approximation,
throughput-optimal scheduling.

I. INTRODUCTION

T HE design of efficient resource allocation algorithms for
wireless networks has been an active area of research for

decades. The seminal work [38] of Tassiulas and Ephremides
has pioneered in a new thread of resource allocation mecha-
nisms that are throughput-optimal in the sense that the algorithm
stabilizes the network queues for flow rates that are stabilizable
by any other algorithm. This and subsequent works (e.g., [36],
[1], [10], [34], [32], [26], [11]) have proposed schemes that use

Manuscript received February 17, 2009; revised June 17, 2010; accepted
November 23, 2010. Date of current version May 25, 2011. This work was
supported in part by DTRA Grant HDTRA 1-08-1-0016 and NSF Awards:
CAREER-CNS-0953515 and CCF-0916664.

P. Marbach is with the Department of Computer Science, University of
Toronto, Toronto, ON, Canada (e-mail: marbach@cs.toronto.edu).

A. Eryilmaz is with the Department of Electrical and Computer Engineering,
Ohio State University, Columbus, OH 43210 USA. (e-mail: eryilmaz@ece.osu.
edu).

A. Ozdaglar is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: asuman@mit.edu).

Communicated by R. A. Berry, Associate Editor for Communication Net-
works.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2011.2133130

queue-lengths to dynamically perform variety of resource allo-
cation decisions, including medium access, routing, power con-
trol, and scheduling.

Scheduling (or medium access) has traditionally been the
most computationally heavy and complex component of re-
source allocation strategies due to the interference-limited
nature of the wireless medium. The queue-length-based poli-
cies typically have scheduling rules that use the queue-length
information to avoid collisions while prioritizing the service
of more heavily loaded nodes. However, due to the coupling
between the interference constraints of nearby transmissions,
such scheduling decisions can require highly complex and cen-
tralized decisions. This observation has motivated high research
activity in the recent years for the development of distributed
and low-complexity implementations of queue-length-based
schemes (e.g., [37], [13], [7], [25], [8], [30], [41], [9], [42],
[19]). Also, random access strategies have been investigated
in a number of works (e.g., [22], [24], [39], [6], [16], [14],
[35]) that achieve a fraction of the capacity region. In the case
of primary interference model and general network topology
that we consider, this fraction is 1/2 and is tight (i.e., there
exist networks for which no rate outside half of the capacity
region can be supported). These results have suggested that
a significant portion of the capacity region may need to be
sacrificed to achieve distributed implementation with random
access strategies. Besides performance degradation, the prac-
tical implementation of existing resource allocation policies are
also complicated by several factors: they usually rely on global
synchronization of transmissions and require a fair amount of
information sharing (typically in the form of queue-lengths)
between nodes to perform decisions.

In this work, we consider an alternative class of random
access strategies with favorable complexity and practical
implementability characteristics. In particular, we investigate
Carrier Sense Multiple Access (CSMA) policies in which nodes
operate asynchronously and sense the wireless channel before
making an attempt to transmit a packet, which may result in
collisions. We analyze such asynchronous CSMA policies for
scheduling packet transmissions in multihop wireless networks
subject to collisions under primary interference constraints.
For a limiting regime of large networks with a small sensing
period, we derive an explicit characterization of the achievable
rate region of CSMA policies. While an explicit characteri-
zation of the (asymptotic) achievable rate region of CSMA
policies has been established in the special case of single-hop
networks, their analysis for general multihop networks has
been an open problem due to the complexity of the interactions
among coupled interference constraints. Our work resolves this
problem for networks with primary interference constraints
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through the introduction of a novel fixed-point formulation that
approximates the link service rates of CSMA policies.
The main contributions of the paper are as follows.

• We provide an analytical fixed-point formulation to
approximate the performance of asynchronous CSMA
policies operating in multi-hop networks subject to
collisions with primary interference constraints. Our for-
mulation makes interesting connections to work by Hajek
and Krishna on the accuracy of the Erlang fixed point for
stochastic loss networks [17], [20]. While our technical
development focuses on the primary interference model,
we note that it suggests a general approach that can be
used to handle higher-order interference models.

• We rigorously show that our fixed-point formulation to ap-
proximate the performance of asynchronous CSMA poli-
cies is asymptotic accurate under an appropriate limiting
regime where the network size becomes large. We also
demonstrate through simulation results that such accuracy
is achieved for moderately sized network. This is especially
important since it suggests that the approximation will be
useful even in realistic networks.

• We utilize the fixed-point formulation to characterize the
achievable rate region of our CSMA policies, and further
provide a constructive method to find the transmission
attempt probabilities of a CSMA policy that can stably
support a given network load in the achievable rate region.
To the best of our knowledge, this constitutes the first
such characterization of CSMA achievable rate region
in multi-hop networks with the explicit incorporation of
collisions.

• We show that for large networks with a balanced traffic
load, the CSMA achievable rate region takes an extremely
simple form that simply limits the individual load on each
node to 1, which is the maximum supportable load. This
result together with the previous shows that the capacity re-
gion of large multi-hop wireless networks (asymptotically)
takes on a very simple form.

The rest of the paper is organized as follows. We start by
noting several relevant works in the context of CSMA policies
in Section II. In Section III, we define our system model, and in
Section IV we describe the class of CSMA policies we consider
in this paper. In Section V we provide a summary and discus-
sion of our main result, as well as an overview of the analysis.
We provide our fixed-point formulation and prove its asymp-
totic accuracy in Sections VI and VIII, respectively. Then, in
Section VII and IX, we provide a characterization of the achiev-
able rate region of the class of CSMA policies, and show that it
is asymptotically capacity achieving. We end with concluding
remarks in Section X.

II. RELATED WORK

In this section, we provide a summary of the work on CSMA
policies for single-hop and multihop networks that is most rel-
evant to the analysis presented in this paper, and note the key
differences of our work in this paper.

For single-hop networks where all nodes are within transmis-
sion range of each other, the performance of CSMA policies

is well-understood [3]. Furthermore, the well-known “infinite
node” approximations provides a simple characterization for the
throughput of a given CSMA policy, as well as the achievable
rate region of CSMA policies, in the case of a single-hop net-
works [3]. This approximation has been instrumental in the un-
derstanding of the performance of CSMA policies, as well as
for the design of practical protocols for wireless local area net-
works. For the case where nodes are saturated and always have
a packet to sent, the achievable rate region of CSMA policies
is easily obtained [5]. For the case where nodes only make a
transmission attempt when they have a packet to transmit has
also recently been studied [5], [28].

For general multihop networks, results for CSMA policies are
available for idealized situation of instantaneous channel feed-
back. This assumption of instantaneous channel feedback al-
lows the elimination of collisions, which significantly simpli-
fies the analysis, and allows the use of Markov chains to model
system operation. Under such an instant feedback assumption,
an early work [4] has shown that the stationary distribution of
the associated Markov chain takes a product form. A more re-
cent work [18] has utilized such a product-form to derive a dy-
namic CSMA policy that, combined with rate control, achieves
throughput-optimality while satisfying a given fairness crite-
rion. Similar results with the same instantaneous feedback as-
sumption have been independently derived in [33] in the context
of optical networks and later extend to wireless networks [29].
Another relevant recent work [27] suggests a way of handling
collisions under the synchronous CSMA operation.

Our approach differs from much of this literature in that we
do not assume instantaneous feedback or time synchronization,
and explicitly consider collisions, which are unavoidable in a
real implementation. The incorporation of possible collisions
require the development of a completely different modeling of
the CSMA performance than the continuous-time Markov chain
model used for the aforementioned idealized setup. Instead, we
develop a novel fixed-point approximation for a specific inter-
ference model, and show its asymptotic accuracy.

An important byproduct of this development is the quantifica-
tion of the proximity of the CSMA achievable rate region to the
limiting capacity region as a function of the sensing period level.
Such information will be extremely helpful in determining how
small the sensing period should be to achieve a desired fraction
of the capacity region.

Clearly, a non-zero sensing period, however small, must be
considered in the CSMA operation to account for the propaga-
tion delay associated with transmissions. Yet, the inclusion of
such a factor creates non-zero probabilities of collisions. Thus,
in order to keep the collision level at a small level, the aggres-
siveness of the CSMA policy must depend on the particular
value of the sensing period for the given system. In our devel-
opment, we explicitly determine this connection and provide
a constructive method to determine the CSMA parameters as
a function of the sensing period. Moreover, in this paper we
consider a completely asynchronous CSMA operation, which
relaxes any synchronism assumptions amongst the nodes that
will facilitate its practical implementation. Such a relaxation
creates many technical challenges, which are resolved in this
paper.
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Fig. 1. Example of a network where two routes � and �

given by � � ��� � ��� ��� ��� ��� ��� ������ ��� 	 �� and
� � ��� � 
�� �
� ��� ��� ��� ��� ��� ��� 	 ��. In this net-
work: the set of upstream neighbors of node � is given by
� � ��� ��� the set of downstream neighbors of node � is given by
� � ��� � � �� ��� the set of outgoing links of node � is given by
� � ���� ��� ��� � �� ��� ��� ��� ���� the set of links that interfere with ��� �� is
given by � � ���� ��� �� � ��� ��� 
�� �
� ��� ��� � �� ��� ��� ��� ��� ��� ����
the mean rate on link ��� �� is given by � � � � � � and the load on
node � is � � �� � �� .

III. SYSTEM MODEL

Network Model: We consider a fixed wireless network com-
posed of a set of nodes with cardinality and a set of
directed links with cardinality . A directed link in-
dicates that node is able to send data packets to node . We
assume that the rate of transmission is the same for all links and
all packets are of a fixed length. Throughout the paper we rescale
time such that the time it takes to transmit one packet is equal
to one time unit.

For a given node let be
the set of upstream nodes, i.e., the set containing all nodes from
which can receive packets. Similarly, let

be set of downstream nodes, i.e., the set containing
all nodes which can receive packets from . Collectively, we
denote the set of all the neighbors of node as .
Also, we let be the set of outgoing
links from node , i.e., the set of all links from node to its
downstream nodes (see Fig. 1 for an example).

Throughout the paper, we assume that , for all
so that we have for each . This

assumption simplifies the notation as we can use a single set
to represent both and . Our analysis can be extended to
the more general case requiring only notational changes. Thus,
henceforth we will describe a network by the tuple .
Interference Model: We focus on networks under the
well-known primary interference, or node exclusive inter-
ference, model [21], [40], defined next.

Definition 1 (Primary Interference Model): A packet trans-
mission over link is successful if only if within the
transmission duration1 there exists no other activity over any
other link which shares a node with . For each
link , we use denote the set of links that interfere

1Notice that our definition of interference model does not require a time
slotted operation of the communication attempts, and hence applies to asyn-
chronous network operation.

with link , i.e., the set of all links that have a node in
common with link .

The primary interference model applies, for example, to
wireless systems where multiple frequencies/codes are avail-
able (using FDMA or CDMA) to avoid interference, but each
node has only a single transceiver and hence can only send to
or receive from one other node at any time (see [31], [7] for
additional discussion).
Traffic Model: We characterize the network traffic by a rate
vector where is the set of routes used by the
traffic, and , is the mean rate in packets per unit time
along route . For a given route , let be its source
node and be its destination node, and let

be the set of links traversed by the route. We allow several routes
to be defined for a given source and destination pair

.
Given the rate vector , we let

(1)

be the mean packet arrival rate to link . Similarly, we let

(2)

be the mean packet arrival rate to node (see Fig. 1 for an
example).

To keep the notation light, we will in the following at times
use the notation instead of .

IV. POLICY SPACE AND CSMA POLICY DESCRIPTION

In this section, we introduce the space of scheduling policies
that we are interested in, and provide the description of CSMA
policies that we consider. We also define the notions of stability
and achievable rate region that we use for our analysis.

A. Scheduling Policies and Capacity Region

Consider a fixed network with traffic vector
. A scheduling policy then defines the rules that are

used to schedule packet transmissions on each link .
In the following, we focus on policies that have well-defined
link service rates as a function of the rate vector .

Definition 2 (Service Rate): For a given network the
offered service rate for link under policy

and traffic vector is equal to the fraction of time
that policy allocates for successfully transmitting packets on
link under the primary interference model, i.e., the
fraction of time node can send packets on link that
will not experience interference from any link .

Let be the class of all policies that have well-de-
fined link service rates. Note that this class contains a broad
range of scheduling policies, including dynamic policies
such as queue-length-based policies that are variations of the
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MaxWeight policy [38], as well as noncausal policies that know
the future arrival of the flows. We then define network stability
as follows.

Definition 3 (Stability): For a given network , let
be the vector of link service rates

of policy , for the rate vector . We say
that policy stabilizes the network for if

.
This commonly used stability criteria [38] requires that for

each link the link service rate is larger than the
arrival rate . The capacity region of a network is
then defined as follows.

Definition 4 (Capacity Region): For a given network ,
the capacity region is equal to the set of all traffic vectors

such that there exists a policy that stabilizes
the network for , i.e., we have

B. CSMA Policies

In this paper, we are interested in characterizing the per-
formance of CSMA policies that operate by actively sensing
the channel activity and, when idle, performing random trans-
mission attempts according to the parameters of the particular
CSMA policy. Before we describe the details of CSMA policy
operation in Definition 6, we present our modeling of hetero-
geneous channel sensing delay that must exist in the real-world
implementation of such policies.

Definition 5 (Sensing Delay ): Consider a given link
. When a link in the interference region of

a link becomes idle (or busy), then transmitting node of link
will not be able to detect this instantaneously, but only after

some delay, to which we refer to as the sensing delay2 .

We note that the sensing delay given in the above definition
is lower-bounded by the propagation delay between node and

. The exact length of the sensing delay will depend on the
specifics of the sensing mechanism deployed. In Appendix A,
we describe two possible approaches to how channel sensing
could be performed for networks with primary interference con-
straints.

While the sensing delay of different node-link pairs may
differ, throughout this work, we make the assumption that all
sensing delays are bounded by a constant measured with
respect to the normalized packet transmission duration. We
refer to this upper bound as the sensing (or idle) period of a
CSMA policy.

Assumption 1: There exists a constant to which we refer to
as the sensing (or idle) period of a CSMA policy such that for
all links we have that

2In our subsequent discussion, for ease of exposition we will typically refer to
links as performing sensing or scheduling a packet transmission. This must be
understood as the transmitting node of the (directed) link performing the action.

Recall that throughout the paper we rescale the time such that
the time it takes to transmit one packet is equal to one time unit.
Hence, the duration of an idle period is measured relative to
the length of one packet transmission, i.e., if the length of an
idle period is seconds and the length of a packet transmission
is seconds, then we have . For a fixed , the
duration of an idle period will become small if we increase
the packet lengths. Hence, we can control the value of by
modifying for a fixed .

Definition 6 (CSMA Policy): A CSMA policy
is given by a transmission attempt probability vector

and a sensing period (or idle
period) , that satisfies Assumption 1.

Given and , the policy works as follows: each node, say
, senses the activity on its outgoing links . We say that
has sensed link to be idle for a duration of an idle

period if for the duration of time units we have that (a) node
has not sent or received a packet and (b) node has sensed that

node has not sent or received a packet. If node has sensed
link to be idle for a duration of an idle period ,
then starts a transmission of a single packet on link with
probability , independent of all other events in the network.
If node does not start a packet transmission, then link has
to remain idle for another period of time units before again
has the chance to start a packet transmission. Thus, the epochs
at which node has the chance to transmit a packet on link
are separated by periods of length during which link is
idle, and the probability that starts a transmission on link
after the link has been idle for time units is equal to .

In the event that the idle periods of two links and that
both originate at node end at the same time, we use the fol-
lowing mechanism to prevent the possibility that node starts
in this case a transmission on both links and simultaneously
(leading to sure collision): letting denote the set of links
in for which an idle period ends at time , for each link

the probability that node starts a transmission
on link at time is given by
independently of all other attempts by any node in the network.

Finally, we assume that packet transmission attempts are
made according to above description regardless of the avail-
ability of packets at the transmitter. In the event of the absence
of a data packet, the transmitting node transmits a dummy
packet, which is discarded at the receiving end of the transmis-
sion (see also our discussion in Section X), but is counted in
the service rate provided to that link.

We note that while all the nodes use the same sensing time
to detect whether a given link is idle, the actual time that it takes
a node to detect that another node has stopped (or started) trans-
mitting a packet is determined by its individual sensing delay as
given in Definition 5, which can be different for different nodes.
Different sensing delays will lead to an asynchronous operation
of the network where the sensing and packet transmission pe-
riods of different nodes are not aligned.

Also note that, under our CSMA policy, links make a trans-
mission attempt with a fixed probability after the channel has
been sensed to be idle, independent of the current backlog of the
link. This may seem to be an unreasonable scenario as it implies
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Fig. 2. Pentagon network with flows � � � � � � � on each link, and the five possible simultaneous transmissions that can occur under the primary interference
model. The rate � � ��� ����� � � �� � � � � �, for any � � ��� ���	 is not achievable by any policy for this scenario.

that a link might make a transmission attempt even if there is no
packet to be transmitted. However, there are at least two rea-
sons why this situation is of interest. First, such a policy could
indeed be implemented (where links send dummy packets once
in a while) Second, and more importantly, being able to charac-
terize the throughput of such a policy opens up the possibility of
studying more complex, dynamic CSMA policies where the at-
tempt probabilities depend on the current backlog. In particular,
the results of our analysis can be used to formulate a fluid-flow
model for backlog-dependent policies, where the instantaneous
throughput at a given state (backlog vector) is given by the ex-
pected throughput obtained in our analysis. Such policies are of
interest as they might allow for dynamic adaptation of the traffic
load in the network (e.g., see [23]).

Given the length of an idle period , in the following we will
simply use to refer to the CSMA policy. Next, we define
the achievable rate region of a CSMA policy.

C. Achievable Rate Region of CSMA Policies

We show in Appendix C-F that a CSMA policy has a well-
defined link service rate vector to which we refer as

, i.e., CSMA policies are contained in the set
. Note that for a given , the link service rate under a CSMA

policy depends only on the transmission attempt probability
vector , and not on the arrival rates . The achievable rate re-
gion of CSMA policies is then given as follows.

Definition 7 (Achievable Rate Region of CSMA Policies):
For a given network and a given sensing period , the
achievable rate region of CSMA policies is given by the set
of rate vectors for which there exists a CSMA
policy that stabilizes the network for , i.e., we have that

.

V. OVERVIEW OF THE MAIN RESULTS AND ANALYSIS

This section provides an overview of the main results of this
work along with an outline of the analysis.

In Section IX, we derive an approximation for the
achievable rate region of CSMA policies for a given network
and a given sensing period , and show that in the limit as the
sensing period approaches 0 we have that

Since it is impossible for any policy to stabilize the network if
for a node we have that , this result suggest that in
the limiting regime as becomes small, the capacity region for

scheduling policies in wireless networks with primary interfer-
ence constraints includes all rate vectors such that

(3)

We verify this intuition for large networks with many small
flows, i.e., we show that asymptotic achievable rate region of
CSMA policies under the limiting regime large networks with
many small flows and a small sensing is of the above form. We
will provide a precise description of the limiting regime that we
consider in Section IX.

The result that the achievable rate region of CSMA policies
is asymptotically such that it can support any rate vector satis-
fying (3) may seem very surprising and counter-intuitive at first.
And indeed, it is important to stress that our result does not state
that the achievable rate region of CSMA policies is always of the
form as given by (3), but only under the conditions that (a) be-
comes small and (b) the network resources are shared by many
small flows. Let us briefly comment on these two conditions.

The fact that needs to be small in order to obtain a large
achievable rate region is rather intuitive; clearly if is large
(let’s say close to 1) then the above result will not be true. The
fact that we need the assumption of many small flows in order
to obtain our result is illustrated by the following example.

Example 1: For the pentagon network of Fig. 2, let
and for each . Then, the

load on each node is given by for each . Al-
though the resulting traffic vector satisfies (3), no scheduling
policy can stabilize the network for . This can be seen by noting
that at most two links out of five can transmit successfully at a
given time, as shown in the figure. Hence, even an optimal cen-
tralized controller cannot achieve a maximum symmetric node
activity of more than , and clearly, our result cannot hold for
this network.

The reason that in the pentagon network a node cannot
achieve a throughput of more than is that under each
“maximal” schedule given in Fig. 2, if one of the neighboring
nodes of a given node is busy transmitting, then node has
to wait for a duration of 1 time unit to get a chance to make
a transmission attempt. However, if we have a network where
each node has many neighbors with which it exchanges data
packets (many flows), then nodes will typically have to wait
for much less than 1 time unit before they get the chance to
start a packet transmissions. Intuitively, the larger the number
of neighbors of a node, the shorter a node has to wait until



MARBACH et al.: ASYNCHRONOUS CSMA POLICIES IN MULTIHOP WIRELESS NETWORKS 3649

it gets a chance to start a packet transmission. In addition to
having many flows, we need the assumption that each flow
is small in order to avoid the situation where the dynamics
at each node is basically determined by a small number of
large flows, essentially leading to a similar behavior as in the
case where each node has only a small numbers of neighbors.
Note however that these assumptions aren’t sufficient in order
to obtain our result; we also need to show that there exists a
CSMA policy under which nodes (a) do not wait too long before
making a transmission attempt (and hence waste bandwidth),
(b) are not too aggressive such that a large fraction of packet
transmissions result in collisions, and (c) share the available
network resources such that the resulting link service rates
indeed support a given traffic vector that satisfies (3).

Below, we provide a brief description of the different steps
taken in our analysis. Our first step is to derive a tractable for-
mulation to characterize the link service rates for a given CSMA
policy. Specifically, inspired by the reduced load approxima-
tions utilized in the loss network analysis [20], in Section VI-B
we propose a novel fixed-point formulation to model the perfor-
mance of a CSMA policy . Similar to the reduced load approx-
imation in loss networks, the fixed-point equation is based on an
independence assumption. We show that the fixed point is well-
defined, i.e., there exists a unique fixed point. Our second step
is to use the CSMA fixed point to characterize the approximate
achievable rate region in Section VII, and show that this charac-
terization suggests that CSMA policies are throughput-optimal
in the limit as the sensing time becomes small. In our third
step, we show that the formulated CSMA fixed point is asymp-
totically accurate in the sense that it accurately characterizes
the link service rates of a CSMA policy as becomes small for
large networks with many small flows. A technical issue that
requires care in the proof is the scaling with which the sensing
delay decays as a function of the network size . We identify
a proper scaling, as given in Assumption 2 of Section VIII, that
yields the asymptotic accuracy result. Moreover, in the deriva-
tion of the achievable rate region using the CSMA fixed point,
we obtain an algorithm that allows the constructive computa-
tion of the CSMA policy parameters that stabilize the network
for any given rate vector within the achievable rate region. Fi-
nally, in Section IX, we derive the asymptotic achievable rate
region of CSMA policies for the limiting regime of large net-
works with many small flows and a small sensing period. This
result shows that in this asymptote the CSMA achievable rate
region can be described by a condition in the form of (3).

VI. APPROXIMATE CSMA FIXED POINT FORMULATION

In the first part of our analysis, we introduce a fixed-point ap-
proximation, called the CSMA fixed point, to characterize the
link service rates under a CSMA policy . The fixed-point ap-
proximation extends the well-known infinite node approxima-
tion for single-hop networks (see for example [3]) to multihop
networks which we briefly review below.

In the following we will use to denote the services rates
obtained under our analytical formulations that we use to ap-
proximate the actual service rates under a CSMA policy

as defined in Section IV-C.

A. Infinite Node Approximation for Single-Hop Networks

Consider a single-hop network where nodes share a single
communication channel, i.e., where nodes are all within trans-
mission range of each other. In this case, a CSMA policy is given
by the vector where is the prob-
ability that node starts a packet transmission after an idle pe-
riod of length [3].

Suppose that the single-hop network is synchronized, i.e., the
sensing delay is the same for all node pairs and we
have that

Then the network throughput, i.e., the fraction of time the
channel is used to transmit packets that do not experience a
collision, can then be approximated by (see for example [3])

(4)

where . Note that captures the expected
number of transmissions attempt after an idle period under a
CSMA policy .

This well-known approximation is based on the assumption
that a large (infinite) number of nodes share the communication
channel. It is asymptotically accurate as the number of nodes
becomes large and each node makes a transmission attempt with
a probability that approaches zero while the offered
load stays constant (see for example [3]).

The following results are well-known. For , one can
show that

(5)

and for , we have that

(6)

Using (4), the service rate of node under a given
CSMA policy can be approximated by

(7)

In the above expression, is the probability that node tries to
capture the channel after an idle period and characterizes
the probability that this attempt is successful, i.e., the attempt
does not collide with an attempt by any other node.

Similarly, the fraction of time that the channel is idle can be
approximated by

(8)

where we have that .

B. CSMA Fixed Point Approximation for Multihop Networks

We extend the above approximation for single-hop networks
to multihop networks that operate in an asynchronous manner
as described in Section IV-B as follows.
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For a given a sensing period , we approximate the fraction
of time that node is idle under the CSMA policy by
the following fixed-point equation

(9)

where

(10)

Note that the fixed-point equation can be given both in terms of
the fraction of idle times by substituting (10) in (9) or in terms
of the transmission attempt rates by substituting (9) in (10).
Given this equivalence, we refer to either one as the CSMA fixed-
point equation. We further let and

denote particular CSMA fixed
points, and and denote the set of all fixed points of
(9) and (10), respectively.

The intuition behind the CSMA fixed-point equation (9) and
(10) is as follows: suppose that the fraction of time that node
is idle under the CSMA policy is equal to , and suppose
that the times when node is idle are independent of the pro-
cesses at all other nodes. If node has been idle for time units,
i.e., node has not received or transmitted a packet for time
units, then node can start a transmission attempt on link

, only if node also has been idle for an idle period of
time units. Under the above independence assumption, this will
be (roughly) the case with probability , and the probability
that node start a packet transmission on the link ,
given that it has been idle for time units is (roughly) equal to

. Similarly, the probability that node starts a
packet transmission on the link after node has been idle
for time units is (roughly) equal to . Hence, the
expected number of transmission attempts that node makes or
receives, after it has been idle for time units is (roughly) given
by (10). Using (8) of Section VI-A, the fraction of time that node

is idle under can then be approximated by (9).
There are two important questions regarding the CSMA

fixed-point approximation. First, one needs to show that the
CSMA fixed point is well-defined, i.e., that there always ex-
ists a unique CSMA fixed point. In the above notation this
corresponds to proving that the sets and have a
single element for any feasible . To that end, the following
result, proven in Appendix B, establishes the uniqueness of a
fixed-point solution for all such .

Theorem 1: For every CSMA policy each of the
set of fixed-point solutions and has a single element,
denoted henceforth by and respectively.

Second, we need to check the accuracy of the above CSMA
fixed-point approximation. This is postponed to Section VIII,
where we show that the CSMA fixed-point approximation is
asymptotically accurate for large networks with a small sensing
period and appropriately decreasing link attempt proba-
bilities. In what follows, we focus on the CSMA achievable
rate region characterization based on the above fixed-point
approximation.

VII. APPROXIMATE CSMA ACHIEVABLE RATE REGION

In this section, we use the CSMA fixed-point approximation
(9) and (10) to characterize an approximate achievable rate re-
gion of CSMA policies. In Section IX, we will show that this
characterization is asymptotically accurate for large networks
with many small flows and a small sensing time, .

We start by noting that, for a given sensing period , we can
use the CSMA fixed point for a policy to approximate
the actual link service rate under the CSMA policy
by that satisfies

(11)

where

represents the rate at which node receives transmission at-
tempts by its neighbors, and hence its difference from .

Note that the above equation is similar to (7) where
captures the probability that node makes an

attempt to capture link if it has been idle for time units,
and is the probability that this attempt
is successful, i.e., the attempt does not overlap with an attempt
by another link that shares a node with . Note that

(12)

as .
The next result provides an approximate achievable rate re-

gion of the CSMA policy based on the CSMA fixed-point ap-
proximation and the approximate service rates
given in (11).

Theorem 2: Given a network with sensing period
, let be given by

(13)

where is as defined in (4), and
for each .

Then, for every , we can explicitly find [cf. (14)] a
CSMA policy parameter for which the corresponding CSMA
fixed-point approximation yields

where is as defined in (11). In other words, by a proper
selection of the approximate service rates can be made to
exceed the traffic load on each link as long as .

Proof: For brevity, we will denote as which, by
definition, satisfies for all . For
each node , choose such that
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and let

Such a exists since the function

is continuous in with and

Using for as defined above, consider the
CSMA policy given by

(14)

By applying the above definitions, at every node
we have that

This implies that the above choices of and
define the CSMA fixed point of the static

CSMA policy given by (14), i.e., we have that

Using (12), the service rate on link under is
then given by

where we used in the last inequality the fact that by construction
we have . The proposition then follows.

The proof of Theorem 2 is constructive in the sense that given
a rate vector , we construct (cf. (14)) a CSMA policy

such that . We will use this con-
struction for our numerical results in Section IX-C. Theorem 2
also leads to the following interesting corollary, which indicates
the capacity achieving nature of CSMA policies in the small
sensing delay regime.

Corollary 1: In the small sensing delay regime, i.e., as
the approximate achievable rate region converges to the
following simple set:

Proof: The proof follows immediately from the definition
of once we recall from Section VI-A that

and .
Since any rate vector for which there exists a node with

cannot be stabilized by any policy, Corollary 1 estab-
lishes that for networks with a small sensing time, the approx-
imate achievable rate region of static CSMA policies get arbi-
trarily close to the above limiting rate region described purely in
terms of per node traffic load. As we noted in Example 1, such a
rate region is not achievable for all networks. In Section IX, we
show that the capacity region does take on the above simple form
for large networks with many small flows and a small sensing
period .

To that end, in the next section, we first establish conditions
on the network and CSMA parameters for which CSMA fixed-
point approximation becomes accurate.

VIII. ASYMPTOTIC CSMA FIXED POINT ACCURACY

In this section, we study the accuracy of the CSMA fixed-
point approximation proposed in Section VI [cf. (9) and (10)] in
capturing the service rate and idle fraction performance of the
actual CSMA policy (cf. Definition 6). Our analysis establishes
a large network and small sensing delay regime in which the
approximation becomes arbitrarily accurate.

More precisely, we consider a sequence of networks for
which the number of nodes increases to infinity, and let
and respectively denote the set of all links and the set of
neighbors of node for the network with nodes. Similarly,
as increases, we consider a corresponding sequence of
CSMA policies with a sequence of sensing periods

, where defines the CSMA policy
for the network with nodes as described in Definition 6.
We make the following assumptions on the parameters of the
CSMA policy.

Assumption 2: For the sequences and
introduced above:

a) .
b) Letting we have

.
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Fig. 3. Network topology for our numerical results consists of a set of� sender
nodes � � ��� � � � � ��, and a set of � receiver nodes � � �� �
�� � � � � ���. The set of links � consists of all directed links ��� �� from a
sender � � � to a receiver � � � .

c) There exists a positive constant and a finite integer
such that for all we have

(15)

These technical assumptions have the following interpre-
tation: Assumption 2(a) characterizes a small sensing delay
regime by specifying how fast decreases to zero as the
network size increases; Assumption 2(b) implies that the
attempt probability of each link becomes small as becomes
large, assuring that no single link dominates the service pro-
vided by its transmitting node; and Assumption 2(c) states that
the total rate (given on the left of (15) by the expected number
of transmission attempts per sensing period ) with which
links incident to a given node start a packet transmission, is
upper-bounded by a positive constant.

Below we provide two examples of networks that satisfy As-
sumption 2.

Example 2: Consider an switch (depicted in Fig. 3)
with traffic flowing from the set, of input
(or sender) ports to the set, of output
(or receiver) ports. For this setup where the degree of each node
is we can select the CSMA policy parameters as follows to
satisfy the Assumption 2:

(16)

Example 3: Consider a network consisting of nodes and
assume that each node communicates with neighboring
nodes. This setup resembles randomly generated dense network
within a unit area, where the nodes within the communication
range of each other are connected. Such a model is widely studied
in earlier works (e.g., [15]) that establish that if the communica-
tion radius is optimally selected for connectivity, the degree of
each node scales as for a network with nodes.

The following parameters as a function of the network size
will satisfy Assumption 2:

(17)

Next, we analyze the accuracy of the CSMA fixed-point ap-
proximation for the limiting regime given by Assumption 2, i.e.,
we let be the CSMA
fixed point for the network of size , and let be the
actual fraction of time that node is idle under the CSMA
operation. Then, we use the following metric to measure the dis-
crepancy of the two:

which quantifies the maximum approximation error of the
CSMA fixed point across the network. Similarly, we let

be the approximate CSMA service rate for link
defined in (11), and let be the actual CSMA

service rate for link . Then, we define the following metric
to measure the discrepancy between the two:

which quantifies the maximum relative approximation error of
the link service rates under the CSMA fixed point. Note that
under Assumption 2 the link service rate will ap-
proach zero as increases and the error term

will trivially vanish; this is the reason why we con-
sider the relative error when studying the accuracy of the CSMA
fixed-point equation for the link service rates.

The following result, proven in Appendix C, establishes that
in the limit as approaches infinity, the fixed-point approxima-
tion for CSMA polices with the above scaling becomes asymp-
totically accurate.

Theorem 3: Under the CSMA policy scaling of Assumption
2, we have that

i.e., the fixed-point approximation becomes asymptotically ac-
curate both in terms of idle fraction and service rate approxima-
tions.

A. Numerical Results

In this section, we illustrate Theorem 3 using numerical re-
sults obtained for the switch network discussed in Ex-
ample 3 and depicted in Fig. 3. The switch topology is selected
for numerical comparison since such a topology is the sim-
plest non-trivial one that also leads to an analytically tractable
fixed-point solution under symmetric conditions. Yet, we em-
phasize that Theorem 3 applies to any large network as long as
CSMA policy satisfies Assumption 2. Besides confirming the
asymptotic accuracy of the approximations, our results also in-
dicate that the accuracy is observed even for relatively small
networks.

For this network, we consider a sequence of CSMA policies
and the corresponding sequence of

sensing periods as in (16) by setting . Recall that
a CSMA policy with parameters determines the
link probabilities with which sender starts a

transmission of a packet to receiver after link
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Fig. 4. Comparison of the actual fraction of idle time under the CSMA policy and the predicted values based on the fixed-point formulation.

Fig. 5. Error terms of Theorem 3 for different values of � .

has been sensed to be idle for sensing period of time units.
Given a sensing period , the CSMA fixed point for a policy

is then given by

where a

Then, due the symmetry of the network topology as well as of
the constructed CSMA policies , the CSMA fixed point

is uniform and satisfies

In Figs. 4 and 5, we evaluate the performance of the above
sequence of CSMA policies for varying size of the sender set

. In particular, Fig. 4 depicts the measured mean fraction of
times that nodes are idle and mean node throughput under the
actual CSMA policy operation, compared with the performance
predicted by the CSMA fixed point. Fig. 5 shows the error terms
of Theorem 3 for the approximation error in the fraction of time
that nodes are idle, and the link service rates.

Note that the above numerical results not only confirm
the asymptotic claims of Theorem 3 but also indicate that
the CSMA fixed-point approximation is remarkably accurate
even for smaller values of . This suggests that the CSMA
fixed-point approximation may be used to characterize the
performance for moderate-size networks where each nodes has

a relatively small number of neighbors. An extensive investiga-
tion of this implication in more general network topologies is
of practical interest and is left to future research.

IX. ASYMPTOTIC CAPACITY REGION

In this section, we derive the asymptotic achievable rate re-
gion for CSMA for a limiting regime of large networks with
many small flows and a small sensing period that is formally
defined in Section IX-A.

A. Many Small Flows Asymptotic

In Section VIII, we introduced a sequence of networks for
which the number of nodes increases to infinity, and let
be the set of all links in the network with nodes, and be
the set of neighbors of node in the network with nodes. In
this section, we introduce a similar scaling for the traffic arrival
rate vectors to assure that the load on any link do not dominate
the load in its neighborhood. To that end, we use the notation

for the arrival rate vector for the network
with nodes. Furthermore,

respectively, denotes the mean packet arrival rate on link
and the mean packet arrival rate at node .

Definition 8 (Many Small Flows Asymptotic): Given a se-
quence of networks , we define as the set
of all rate vector sequences such that
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We say that satisfies the many small flows asymp-
totic if it belongs to .

The above definition characterizes the limiting regime where
the mean arrival of each flow becomes small as the network size
scales, i.e., the network traffic consists of many small flows.
It is important to note that, while the load on each link van-
ishes under the many small flows asymptote, the total load on
a node may be non-vanishing if the number of neighbors also
increases. We shall see that this key characteristic of the many
small flows regime will allow CSMA policies to achieve max-
imal per node loads under large and well-connected network
topologies. Before we establish this main result, we define the
asymptotic achievable rate region of CSMA policies under the
many small flows asymptotic as follows.

Definition 9 (Asymptotic CSMA Achievable Rate Region):
The asymptotic achievable rate region of static CSMA policies
under the many flow limit is the set of flow rate sequences

for which there exists a sequence of CSMA
scheduling policies such that

Thus, every flow rate sequence in the asymptotic
CSMA rate region can be stabilized by the sequence of CSMA
policies for large enough .

Note that a sequence for which there exists
a node with

cannot be stabilized by any policy as service rate at each node
is bounded by 1. Hence, the achievable region under the many
flow limit is contained in the set

(18)

We refer to as the capacity region under the many small
flows asymptotic.

B. Asymptotic CSMA Achievable Rate Region

In this subsection, we characterize the asymptotic achiev-
able rate region of CSMA policies under the many small flows
asymptotic for networks with a small sensing period. To do this,
we again consider a sequence of sensing periods
that satisfies Assumption 2(a). The next theorem, proven in
Appendix D, shows that in this case the achievable rate region
of CSMA policies converges to the capacity region under the
many small flows asymptotic .

Theorem 4: Given a sequence of networks
, a sequence of sensing periods

satisfying Assumption 2(a), and a sequence of flow
rates , we can explicitly find a sequence of

CSMA policy attempt rates that asymptotically
stabilizes the network, i.e., that satisfies

It is interesting to note that the proof of Theorem 4 in
Appendix D is constructive in that sense that it provides explicit
expressions for the link transmission attempt probabilities
that stabilize the network for a given rate vector sequence

in .

C. Numerical Results

In this section, we verify the statement of Theorem 4 using
the same switch topology we used for the numerical results
in Section VIII-A (see also Fig. 3). As the network size in-
creases, we consider a sequence of idle periods

and traffic vectors with

Notice that satisfies the many small flows asymp-
totic (cf. Definition 8) and that the per node load satisfies

which is non-vanishing. Also note that the selected rate vector
is within that approximate CSMA achievable rate region

[cf. (13)] for each .
In the proof for Theorem 2 we derive an explicit construction

for obtaining a policy that supports a given traffic vector
. Following this construction for the above choice

of flow rates, we choose such that

which is shown to exist in the proof. Then, letting

we construct a sequence of CSMA policy parameters sat-
isfying

Theorem 4 then states that for such constructed sequence of
CSMA policies we have, for a large enough that

for all . Also, noting that
for the above choice of flow rates, we have
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Fig. 6. Performance of the CSMA policy for the network in Fig. 3 with symmetric load. The graph on the left shows that the policy achieves rates close to the
aimed value of 0.95 per sender node even for moderate values of � . The graph on the right shows the distribution of the ratio of achieved rates to load on each
link amongst 400 existing links in the network in Fig. 3 with � � ��.

To confirm these asymptotic claims and to investigate their
correctness for moderate values of we simulate the above
network to measure the true link service rates for increasing .
Fig. 6 shows the average node throughput that we obtained. Note
that the average node throughput indeed is above the value
for which we designed the CSMA policy . Furthermore, as

increases, the average node throughput becomes larger then
0.95 as predicted by our theoretical result. Moreover, these re-
sults indicate that the results are quite accurate even for small
network sizes and that CSMA policies can be close to capacity
achieving even if the number of neighbors of each node is rela-
tively small.

Fig. 6 shows the distribution of the ratio of link service rates
to link loads. We know from Theorem 4 that this ratio will even-
tually exceed 1 for all links as tends to infinity. We observe
in Fig. 6 that already at a moderate value of more than
95% of the links exceed 1 and the rest of the links achieve rates
close to 1.

X. CONCLUSION

In this work, we provided an extensive analysis of asyn-
chronous CSMA policies operating in multi-hop wireless
networks subject to collisions with primary interference con-
straints. To that end, we first introduced a CSMA fixed-point
formulation to:(a) approximate the performance of such CSMA
policies; (b) approximate their achievable rate region; and (c)
provide a constructive method for determining the transmission
attempt probabilities of the CSMA policy that can support a
given rate vector in the achievable rate region.

We then showed that the CSMA fixed-point formulation
becomes asymptotically accurate for an appropriate limiting
regime where the network size increases and the sensing
delay decreases. Using this result we established that for large
networks with a balanced traffic load, the CSMA achievable
rate region takes an extremely simple form that simply limits
the individual load on each node to 1, which is the maximum
supportable load by any other scheduling policy. This result has
proven not only that the class of asynchronous CSMA policies
is asymptotically throughput-optimal, but also that the capacity

region of such large networks takes an extremely simple form,
describable by per node loads.

Despite the asymptotic nature of our theoretical results, our
simulation results have indicated that the CSMA fixed-point ap-
proximate is remarkably accurate even for moderately sized net-
work, which suggests that the approximation is useful for real-
istic network topologies.

APPENDIX A
EXAMPLE CHANNEL SENSING MECHANISMS

In this section, we discuss two specific channel sensing mech-
anisms that operate under heterogeneous sensing delay charac-
teristics. We note that our model is flexible enough to allow other
mechanism designs.
Mechanism 1: Suppose that each node is assigned a
channel over which it receives data packets, and suppose
that the sensing radius and transmission radius of the nodes
are different. The channel could either be a frequency range,
or a code, if a FDMA-based, or a CDMA-based, approach re-
spectively is used to obtain a network with primary interfer-
ence constraints (see also our discussion in Section III). Nodes
that are within the transmission radius of a node can success-
fully receive its packet transmission if there are no collisions
by another transmission within the transmission radius of the
receiver. Nodes that are within the sensing radius of the trans-
mitting node can only detect the presence or absence of activity
together with its destination. The activity within the sensing ra-
dius does not cause collisions, but it signals the presence of ac-
tivity. In this setting, a node can sense whether node
is currently sending a packet by scanning the channels used
by node for transmission on its outgoing links .
Furthermore, if the sensing radius is at least twice the transmis-
sion radius, then a node can sense whether node is
currently receiving a packet by scanning channel . Note that
the time (measured in seconds) that it takes a node to detect
whether a neighboring node is busy, will increase as the number
of neighbors of a node increases; however, the sensing delay

measured relative to the time it takes to transmit a packet
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Fig. 7. Nodes �� �� �� and � are connected as shown on the left. Node � starts a
packet transmission to node � at � � which is overheard starting at � by node �.
Thus, the sensing delay � ��� �� is equal to �� � � �. Node � starts reception
of the packet at � (hence its sensing delay satisfies � ��� �� � �� � � �) and
generates a signal over its control channel �� to indicate the activity of link ��� ��.
Node � senses the control signal of node � at time � (hence its sensing delay
is � ��� �� � �� � � �. The transmission of the packet ends at time � which
equals �� � �� since the packet transmission duration is normalized to one.
Nodes �� �� and � sense the end of the activity at � � � � and � , respectively.

can still kept low by increasing the size of a packet, and hence
increase the time it takes to transmit a packet.
Mechanism 2: Again, suppose that each node is assigned
a communication channel over which it receives data packets,
and that in addition it is assigned a control channel , where the
bandwidth of the communication channel is much larger than
the one of the control channel . Then, if node is currently re-
ceiving a packet transmission on its communication channel ,
then it can send out a busy signal on the control channel . In
this setting, a node can sense whether node is currently
sending a packet by scanning the channels used by node for
transmission on its outgoing links . Furthermore, a
node can sense whether node is currently receiving
a packet by scanning the control channel . Again, the time
(measured in seconds) that it takes a node to detect whether a
neighboring node is busy, will increase as the number of neigh-
bors of a node increases; but the sensing delay measured
relative to the time it takes to transmit a packet can still kept low
by increasing the size of a packet. Fig. 7 gives a timing-diagram
for this case.

APPENDIX B
EXISTENCE AND UNIQUENESS OF CSMA FIXED POINTS

In this section, we prove Theorem 1 which states that for each
choice of there exists a unique CSMA fixed point.
We first establish the existence of a CSMA fixed point.

Lemma 1: For every CSMA policy there exists a
CSMA fixed point and , i.e., the sets and
are non-empty.

Proof: The proof uses the continuity properties of the
fixed-point equation given (9), and is a straightforward applica-
tion of the Brouwer’s fixed-point theorem.

We next establish the uniqueness of the CSMA fixed point
for any . Unlike standard methods in establishing
the uniqueness of a fixed point, our proof method does not re-
quire additional assumptions on the fixed-point mapping, there-
fore may be of independent interest. The proof follows a number
of steps, which is outlined here for clarity: Proposition 1 shows
the existence of a unique solution to the fixed-point equation
for a particular choice of , i.e., that for
some ; Proposition 2 proves the upper-semicontinuity of the
correspondence given by (10); Proposition 3 proves that
for any CSMA policy and is uniquely
defined in an open neighborhood of ; finally Theorem
1 combines the preceding results to establish the global unique-
ness of the CSMA fixed point for any .

Proposition 1: For any network topology and any
there exists a for which there is a unique point

that solves the fixed-point equation described in (9)
and (10).

Proof: We restrict our choice of to the symmetric case
of for all and set to any value in the
non-empty range , where denotes the maximum
degree of the network and is any positive constant strictly less
than 1. For this symmetric choice of link attempt probabilities,
the fixed-point equation (10) becomes

which also introduces the mapping of
to that must hold for any . More
compactly, we can define the mapping as

and write the fixed-point
equation as .

Next, we will show that the mapping is a contraction
mapping under the norm: for

which directly implies that the fixed point of the
mapping is unique. For any two feasible vectors and with
non-negative entries, we have
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which establishes that is a contraction mapping, and there-
fore has a unique fixed point. To complete the proof, we justify
the inequalities (a)–(c) in the above derivation. To get inequality
(a), we note that the arising real function is

a decreasing convex function with , and hence
satisfies for all . In-
equality (b) follows from the fact that for each , the difference

appears at most times in the previous double
summation. Finally, inequality (c) follows from the assumption
that .

We note that the proof of Proposition 1 can be slightly modi-
fied to establish that, as long as the link attempt probabilities are
chosen sufficiently small, the fixed-point equation has a unique
solution. However, we shall take a different direction to show a
stronger result that the uniqueness holds for any ,
not only for sufficiently small values. To that end, we next study
the continuity properties of . The proof uses the continuity
of the mapping

(19)

Note that for , we have that
.

Proposition 2: The correspondence is
upper-semicontinuous; i.e., has a closed graph.

Proof: Note that for all is given by

(20)

We will show that has a closed graph. Let be
a sequence which satisfies for all and con-
verges to some . Assume to arrive at a contradiction that

. By (20), this implies that there exists some
such that . Assume without loss of

generality that there exists some such that

(21)

By the continuity of the functions , we have

which implies the existence of some such that

Combined with (21), this yields

contradicting the fact that [cf. (20)].

Recall the definition of the mapping
given by (19). The next proposition

establishes the local uniqueness of the correspondence .

Proposition 3: For all CSMA policies and all
CSMA fixed points , there exist open neighborhoods

of and of such that for each
the equation has a unique solution .

Moreover, this solution can be given by a function
where is continuously differentiable on .

Proof: We prove this statement by using the implicit func-
tion theorem (see, e.g., [2]). For node , we have

with

Note that the function is continuously differentiable. There-
fore, in order to use the implicit function theorem we need to
show that the matrix

(22)

has linearly independent rows. Before we proceed, we note that
this matrix is a non-negative matrix.

Suppose that the rows are not linearly independent, then there
exists a coefficient vector such that

Using the special structure of the Jacobian matrix, we obtain

Consider node such that for all , we have

(23)

Then

(24)
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where follows from (23), follows from the fact that
, and follows from (5). This proves that the

Jacobian matrix in (22) is non-singular. The result follows from
the implicit function theorem.

We next combine Propositions 1–3 to complete the proof of
Theorem 1.

Proof of Theorem 1: By Proposition 1, for the choice of in
the proposition, there exists a unique fixed point . For any
given policy define the convex combination of
and as

(25)

By Lemma 1, the set is nonempty, i.e., there exists at
least one CSMA fixed point at for each . We use
the following lemma to complete the proof.

Lemma 2: For every , there exists a continuous
function that satisfies:

for where is defined in (25); and
.

Proof: We define the set of functions

For each , let denote the set of points at which
is discontinuous. Clearly, the set is either empty, or non-

empty and bounded for each . To arrive at a contradiction,
suppose is nonempty for some and define the point

as

Note that since is unique (from Proposi-
tion 1) and is uniquely defined in a neighborhood
of (from Proposition 3), we must have . More-
over, by the upper-semicontinuity of (cf. Proposition 2),
the function can be chosen to be right continuous at , im-
plying that is continuous at all . By the definition of ,
there exists some such that for all sufficiently small,

This contradicts the fact that for all and ,
is uniquely defined in a neighborhood of (cf. Proposition
3). Thus, the function must be empty, implying that is a
continuous function, as claimed.

Back to the Proof of Theorem 1: Assume, to arrive at a con-
tradiction, that there exist and such that

. By Lemma 2, it follows that there exist contin-
uous functions, and such that

and . Then, there must exist a
. Since

we know that is unique, there must be a bifurcation of
the as exceeds . But, this contradicts the local
uniqueness result of Proposition 3. Hence, [and therefore

] has a unique element for all .

Theorem 1 combined with the upper-semicontinuity of
Proposition 2 directly implies the continuity of the unique
fixed-point solution and hence of . This is stated in
the following corollary.

Corollary 2: The unique CSMA fixed points and
are both continuous in .

APPENDIX C
PROOF OF THEOREM 3

Recall that Theorem 3 concerns a sequence of networks for
which the number of nodes increases to infinity. Let be
the set of all links in the network with nodes, and let
be the set of neighbors of node . Furthermore, let
be a sequence of CSMA policies where defines a CSMA
policies for the network with nodes, and let be
the corresponding sequence of sensing periods. By Assumption
2, the following conditions hold.

a) For the sequence we have

b) For we have that

c) There exists a constant and an integer such that for
all we have that

For this setup, Theorem 3 states that

where and are as defined in Section VIII.
To prove Theorem 3, we use techniques and results that were

presented by Hajek and Krishna in [17] for their analysis of
blocking probabilities in loss networks. Before we start the anal-
ysis, we provide in the next section a brief summary of [17] as it
relates to our analysis. In Section C-B, we provide an overview
of the proof.

A. Result by Hajek and Krishna

Here we provide a brief summary of the work by Hajek and
Krishna, we refer to [17] for a more detailed description. Con-
sider a wired (loss) network consisting of a set of undirected
links , where each link has capacity 1. The network
serves connections (calls) where each connection uses 1 unit of
the capacity at each link it traverses, i.e., when active each link
can accommodate at most 1 connection. Furthermore, suppose
that all connections use routes that consist of exactly two links.
Connection requests arrive according to independent Poisson
processes where denotes the arrival rate for connec-
tions that use links and . Once a connection is accepted, it
stays in the system for an amount of time that is exponentially
distributed with mean one. If a new connection that uses links
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and in its route arrives and one of these links is already
serving another connection, then it is blocked and lost. Then,

is defined as the solution of the following
Erlang fixed-point equation

(26)

where approximates the probability that link is busy, i.e.,
the probability of serving an incoming connection. In [17],
Hajek and Krishna obtain the following result:

Proposition 4: Consider a loss network as defined above and
let

Then, the actual steady-state probability , that link is
busy satisfies, for all

where , is the solution to the Erlang fixed-point equa-
tion given by (26).

The above proposition implies that for small and the so-
lution to the Erlang fixed-point equation approximates well the
actual steady-state probability of a link being busy. Our analysis
follows a similar argument whereby we show that our CSMA
fixed-point equation can be closely approximated by an Erlang
fixed-point equation, which, in turn, is an accurate estimate of
the actual performance of the CSMA policy in the asymptotic
regime of large networks and small sensing time. Next section
outlines the steps of this argument more explicitly.

B. Main Steps in the Proof of Theorem 3

In this section, we list the main steps leading to the proof of
Theorem 3, and then provide the proof based on those results.
The proof of the statements of the steps are moved to subsequent
subsections to avoid disruption of the flow.

Step 1) Recall that we previously defined and studied the
(9)–(10) as fixed-point equations with respect to the parameters

or . For this proof, we find it move convenient to work
with a new parameter where
for each node that approximates the fraction of busy time of
that node under CSMA policy . To that end, in Section C-C,
we let with and define as the
solution to the CSMA fixed-point equation:

(27)

Then, in Lemma 4, we relate this CSMA fixed point (27) to the
following generalized version of the Erlang fixed-point equation
(26) where solves

(28)

where (in contrast to the Erlang fixed-point equation) it is not
required that but it is allowed

Using the generalized Erlang fixed-point equation, it is shown
that there exists a nonnegative vector close to , po-
tentially, with that satisfies . Fur-
ther, we provide bounds on the proximity of values to (see
Lemma 4 for details).

With this motivation, in Section C-D, we prove the existence
and uniqueness of the generalized Erlang fixed point
for any nonnegative potentially, with . Then, in
Section C-E, we provide a sensitivity analysis of the fixed point

to bound the change in the fixed-point solution when
is locally perturbed.
Using this analysis we obtain Corollary 3 which allows to

tightly bounds the CSMA fixed-point solution with the
Erlang fixed-point solution , i.e., Corollary 3 states that
the CSMA fixed point and the Erlang fixed point
become (asymptotically) identical for large . The generalized
Erlang fixed point serves in this step as a vehicle to
related that CSMA fixed point to the Erlang fixed point.

Step 2) In this step, we study the characteristics of the ac-
tual asynchronous CSMA policy performance. To that end, in
Section C-F, we first prove that the asynchronous CSMA policy
has well-defined steady-state distribution, and hence falls within
the set of policies with well-defined link service rates

and probabilities of links being idle . Then,
in Section C-G, we derive several properties of which are then
used in Section C-H to prove that the steady-state probabilities
of nodes being idle become asymptotically independent in the
large network and small sensing delay limit.

Step 3) Combining the results from Steps 1 and 2, we show in
Section C-I that under Assumption 2 the solution to the CSMA
fixed-point equation is asymptotically accurate. In particular, we
derive the following important result (see Section C-I for its
proof).

Proposition 5: Consider a CSMA policy
for a wireless network consisting of nodes and let

and let be as defined in As-
sumption 2(c).

Then, there exist constants positive and that do not de-
pend on , and an integer , such that for the actual
steady-state probability , that node is idle
under the CSMA policy satisfy,

where is the solution to the CSMA fixed-point equa-
tion for and

Based on Steps 1–3 and Proposition 5, we can now prove
Theorem 3.
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Proof of Theorem 3: Consider a sequence of CSMA
policies that satisfies Assumption 2. To keep the notation
light, we use in the following only instead of instead
of instead of instead of ,
and instead of . Furthermore, we use instead of

to denote the link service rate for link under
the CSMA policy , and instead of to
denote the approximation of link service rate for link
under the CSMA fixed-point approximation for the CSMA
policy .

We first show that

This result follows immediately from Proposition 5 which states
that the steady-state probabilities asymptotically converge to the
solution of the CSMA fixed-point equation if

And indeed, these conditions hold by Assumption 2.
The proof that

requires results that we obtain in Section C-G and C-H (outlined
in Step 2 above); we will provide references to these results in
the derivations below.

We are going to use the following convention. We say that
a node is idle if node is currently neither sending, nor re-
ceiving, a data packet. Otherwise, we say that node is busy.
Accordingly, we say that a link is idle if both node
and are idle. Otherwise, we say that link is busy.

Let be the indicator whether node is idle or
busy , and let be the steady-state
probabilities that node and are jointly idle. In Section C-F, we
show this steady-state probability exists. Then, using the same
argument as we give in Section C-G to prove Lemma 20, we can
see that

where is a lower-bound (see Section C-G) on the
probability that a packet transmission on link is successful,
i.e., does not experience a collision.

Also, by Proposition 8 in Section C-H, we have that

Using this result in the previous expression yields

Combining this result with Proposition 5, we obtain that

where and are the solutions to the CSMA fixed-point equa-
tion (9)-(10) for the CSMA policy .

As we have that (see Sections VI-B and VII, and (11) and
(12))

or

it follows that

Finally, note that under Assumption 2, we have

Therefore, it follows that .

C. Alternative Formulation of the CSMA Fixed Point

In this section, we derive an alternative formulation for the
CSMA fixed point for a CSMA policy , which is then used to
relate the CSMA fixed point to the Erlang fixed point for loss
networks (as outlined in Step 1 of Section III-B). To keep the
notation light, we use in the following instead of

instead of instead of , and instead of .
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Recall that for a CSMA policy with sensing period , the
CSMA fixed-point equation is given by

where . First we observe that for
large the offered load becomes small at all nodes.

Lemma 3: Under Assumption 2, we have

Proof: By Assumption 2, we have that

Let be the CSMA fixed point as given by
(27), i.e., is the solution to the fixed-point equation

where . Note that we can
rewrite the expression for as

(29)

which is previously posed as (27) in our outline. We then have
the following result.

Lemma 4: Given a CSMA policy for a network with
nodes, let

and let be given as in Assumption 2(c). Let
, be the CSMA fixed point as given by (27).

Then, for and , we have that

for some potentially, with satisfying

and if . More compactly, we have
where is defined in (28).

Proof: For

note that

Furthermore, we have

To see this, note that
and for . Since, by Assumption
2, we have , it also follows that

Furthermore, since , it follows that

Finally, for we have

Combining the above results, it then follows that for
and we have

and, using (29)

The result then immediately follows from continuity and the fact
that for node the vector , can be determined
independently from the other nodes.

Thus, the above lemma establishes that the CSMA fixed point
that solves (27) can alternatively be expressed as the fixed

point that solves the generalized Erlang fixed point (28) where
the true transmission rates are replaced by “approximate
transmission rates” .

D. Existence and Uniqueness of a Fixed Point

Consider the generalized Erlang fixed-point equation of
Lemma 4 that is given by

with
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where we allow that

In this section, we will show that there exists a unique fixed point
by using an argument that is similar to the one in Section B that
we used to prove the existence and uniqueness of the CSMA
fixed point.

We first rewrite the above fixed-point equation as

(30)

where .
Given vector with , let

be the set of fixed points for (30). Then we have the
following result.

Lemma 5: For all fixed points , there
exist neighborhoods of and
of such that for each the equation

where

has a unique solution . Moreover, this solution can
be given by a function where is continuously
differentiable on .

Proof: For , we have

Note that the function is continuously differentiable. Next we
show that the Jacobain matrix

has linearly independent rows. Having established this result,
the lemma then follows from the implicit function theorem. Be-
fore we proceed, we note that this matrix has non-negative en-
tries.

Suppose that the rows are not linearly independent, then there
exists a coefficient vector such that

Using the special structure of the Jacobian matrix, we obtain

Consider a node such that

Then

Hence, we obtain a contradiction and the result follows.

We then obtain the following result by the same argument
as given to prove the uniqueness of the CSMA fixed point in
Section B.

Lemma 6: There exists a unique fixed point to (30).

E. Sensitivity Analysis

In this section, we show that asymptotically (as becomes
large) the solution to the CSMA fixed-point equation converges
to the solution of the Erlang fixed-point equation given by (26).
To show this, we use a sensitivity analysis for the generalized Er-
lang fixed point that is the same as given by Hajek and
Krishna in [17, Section IV] with only minor notational changes.
For convenience, we provide below the analysis of Hajek and
Krishna applied to the generalized Erlang fixed point .

Given vector with , let
be the fixed point to the

equation

(31)

where we allow that . Furthermore, let the links
be indexed with numbers .

Consider then
where the

function is given by

with .
We then have

Let be the diagonal matrix with



MARBACH et al.: ASYNCHRONOUS CSMA POLICIES IN MULTIHOP WIRELESS NETWORKS 3663

Furthermore, let be the matrix given by

and let be the matrix given by

Using the above definitions, we then have that

Finally, let

where is the identity matrix. Then we have the following result.

Lemma 7: The matrix is well-defined and

where .
Proof: Recall that

which we can rewrite as

By Lemma 5, the matrix is invertible. It follows that
is invertible and is well defined.

To show that

we can use the same argument as given to prove Lemma 1 in
[17]. That is, let , so the diagonal elements of
are all equal to zero and the off-diagonal elements are given by

Note that the elements of are all non-negative and that

Let denote the vector with all elements being equal to 1. Then
we have that

where the inequality is understood to be coordinate-by-coordi-
nate. By induction, we obtain for that

and is given by the absolute convergent series

Moreover, for the matrix given by

we have

and the lemma follows.

From the proof of Lemma 7, we have that

We use this result as follows. Let be the solution to the
fixed-point equation

(32)

with

Note that as we vary in the interval and in the
interval will vary in the interval .

Using the fact that

and the chain rule

we obtain for , that
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As we have that for , we obtain that

We then have the following result.

Proposition 6: Let and let be the solution
to the fixed-point equation

with

Then for , we have that

Proof: For the proof, we use the same analysis as given to
prove Theorem 2 and Corollary 2 in [17]. That is, for
and we have

Combining this bound with the fact that is the solution to
(32), we have that

Combining the above result with Lemma 7, it then follows that

(33)

Recall that is the solution to

with

As

and by Assumption 2 we have that

it follows that

Combining this result with (33), we obtain that

and the proposition follows.

We have the following corollary.

Corollary 3:
Let . The solution to

the CSMA fixed-point equation given by (27) then satisfies

where is the solution to the
Erlang fixed-point equation

with

Proof: Recall that if we vary in the interval
and in the interval , , then

will vary in the interval .
The corollary then follows immediately from Proposition 6

and from Lemma 4 which states that the CSMA fixed point
is equal to the a solution to the fixed-point equation

where is such that

and if .

The above corollary states that the solution to the
CSMA fixed-point equation given by (27) and the solution

to the Erlang fixed-point equation become (asymptoti-
cally) identical for large , as by Assumption 2 we have hat
approaches 0 as increases. We are going to use this result in
Section C-I to prove Proposition 5.
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F. Existence of Steady-State Probabilities

In this section, we show that the family of CSMA policies
provided in Definition 6 is contained in the set of all

policies that have well-defined link service rates.
Consider a CSMA policy with sensing period . Further-

more, recall that is the amount of time link requires to
detect that link has finished transmitting a packet, i.e.,
is the sensing delay of link for link (see also Section IV-B).

Recall that we say that a node is idle if node is currently
neither sending, nor receiving, a data packet. We say that a link

is idle if both node and are idle. Otherwise, we say
that node (link ) is busy.

For a given directed link , we refer to node as the
source node of link . We then say that link is sensed to
be idle by its source node, if node is (a) currently idle and (b)
senses node to be idle. Otherwise, we say that node senses
link to be busy.

Suppose that at time node has sensed link to be
idle for exactly the duration of a sensing period , i.e., node
first detect that link is idle at time . Furthermore, suppose
that at time node starts a packet transmission on link . Then
we say that link has been idle in the interval .

If at time , link just became busy (either because
node started a packet transmission on link , or because a link

that interferes with link started a packet transmission)
and that time is the first time after time that link is idle
again, then we refer to the interval as a busy period of
link .

Let indicate whether link is busy or idle
. In this section, we show that the steady-state prob-

abilities

for all and

for all and exist.
Note that the state of the system at time can be characterized

by the vector where

indicates for each link whether is busy or
not , and

indicates the remaining time until node has the chance to start
a packet transmission on link (if link is currently idle), or the
time until link becomes idle again (if link is currently busy).

The existence of the steady-state probabilities and
, can easily be established for the

special case where (a) all sensing delays are equal to , i.e., we
have

(b) the sensing times of all nodes are aligned, i.e., all nodes are
initial idle and start sensing links at time , and (c) we
have that

for some integer .
In this case, the system dynamics are given by a finite-state

Markov chain , such that

where and

Furthermore, the Markov chain has a single-recurrent class con-
taining the state given by

and is aperiodic as the recurrent state has a self-tran-
sition. It then follows that the above steady-state probabilities
exist.

For the general case where not all sensing times are the same,
we define a renewal process [12] to establish the existence of
the above steady-state probabilities. Without loss of generality
we assume for the rest of this section that:

a) for all links we have that , and;
b) the interference graph consists of one connected compo-

nent, where the vertex set of the interference graph is
equal to and there exists an edge between two vertices

in the interference graph if link and interfere with
each other.

1) Recurrent State : In the following, we construct a
recurrent state that we use to define a renewal process
for the general case where not all sensing times are the same.
To do this, we first iteratively number the links in the following
way. At step 1, let be an arbitrary link in and let be the
set of links that have an interference constraint with link , i.e.,
we have

In addition set , set , and set
, i.e., set contains all links except for link and the

links that interfere with . We then apply this procedure recur-
sively as follows. Suppose that we are given the sets ,
and , of step . These three sets have the following interpre-
tation. Set contains all links that have been chosen at step

or an earlier iteration. Set contains all links that interfere
with at least one link in set , and set contains all links
that are not contained in set or . Given these three sets,
we proceed at step as follows. If the set is empty, then
we stop. Otherwise, we pick an arbitrary link from the set
and label it as . Let be the set of links in set that
interfere with link , i.e., we have
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Set , set ,
and set .

Without loss of generality, we assumed that the interference
graph is connected, and the above procedure will terminate after

steps with .
Having labeled the links as given above, we then construct

the following sample path of the system to which we will refer
to as sample path .

a) Sample Path : Suppose that during in the interval
all links are idle. Then let time be given by

and let link start a packet transmission at time
while all other links remain idle during in the interval

). Note that in this case the packet transmission of link
will not experience a collision. Let be
the time when finishes its transmission and let all other links
remain idle during the interval .

Then proceed iteratively as follows. Let , be
the time when link finishes its packet transmission, and let all
links be idle in the interval . Set

and let link start a packet transmission at time
while all other links remain idle during in the interval

. Let be the time when link
finishes its transmission and let all other links remain idle during
the interval .

Let time be the time when link finishes its packet
transmission and let all links to remain idle during the interval

.
Finally, let

be the time when link has a chance to start a packet transmis-
sion in the interval , given that the source node
of link continues to sense link to be idle during the interval

.
Having defined the sample path , we show next that the

state variable at the end of the sample path
does not depend on the state at time , but is uniquely

determined by the sequence of how all links make their trans-
mission attempts and the fact that all links were idle at time .
To do this, for a scalar let be the modulo function
given by

and let

be the difference (offset) between the time when the current ac-
tive period ends for link and . We have the following result.

Lemma 8: Let the time be as given in
the definition of the sample path . Then at time

, for all links in the set the offset is
given by a function that does not depend on , but depends
only on the constants , , and the sequence of the
first links that are activated in the sample path .

Proof: As we do not require the transmission time 1 to be
divisible by , let be given by

We prove the lemma by induction. For the sample path ,
recall that is the time when link finishes its transmission
and is given by

It follows that

and for all links in the set we have

where is the time link requires to sense that link has
finished a packet transmission. It follows that for all links in
the set we have

and the condition given in the lemma is true for .
Suppose that the lemma is correct for , and let be

the link th link that is activated in the sample path . Recall
that is the time when link finishes its transmission and
is given by

We first note that when link does not interfere with link ,
i.e., we have , then the transmission of link does not
affect the offset between and for all links .
Using this observation, we consider the following two cases.

First suppose that . Then for all links
such that , we have that

and for link we have that

For all links such that , we have that

Next suppose that . Then for link we have that
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and for all links such that , we have that

For all links such that , we have that

As by the induction hypothesis does not depend on
but only on the constants , , and the se-

quence of the first links that activated in the sample path ,
the statement of the lemma is true for step . The results then
follows.

We then have the following lemma.

Lemma 9: Let and be as given in the definition of the
sample path . The state in the
sample path is given by a function that does not depend
on , but only on the constants , and
the sequence of links activated in the sample path

Proof: This result follows immediately from Lemma 8 and
the fact that

Next, we show that there exists a positive constant such
that the probability that the above sample path reaches state

within at most time units is lower-
bounded by .

Lemma 10: Let

Then, the probability that we reach the state within
time units from any given initial state

is lower-bounded by

Proof: Note that from any initial state , with
probability at least

we have for

that all links are idle during the interval .
Consider the sample path . The probability that link

starts a packet transmission in the interval and all
other links remain idle in the interval , is lower-
bounded by

The probability that no other link starts a packet transmission in
the interval is lower-bounded by

Let be the time when link finishes its packet transmission;
note that

If all other links remain idle during the interval ,
then all links are idle during the interval .

The result follows by applying the above argument iteratively
to the case where link , start a packet transmis-
sion under the sample path .

2) Renewal Process: Using Lemma 10, we can define a re-
newal process where renewal epochs are marked by visits to the
recurrent state .

Lemma 11: The expected length of the interval between visits
to state is bounded, and the visits to the state
define a renewal process.

We have the following result for the resulting renewal
process.

Lemma 12: The renewal process defined by visits to the state
is either aperiodic, or has a period where is a

positive integer.
Proof: The lemma follows immediately from the fact that

if then with probability at least
, we have that

Combining the above lemmas, we obtain the following result.

Proposition 7: For every sensing period , the family of
CSMA policies is contained in the set of all policies that
have well-defined link service rates.

Proof: Let be the indicator function for whether
link is transmitting at time a packet that does not ex-
perience a collision during its entire transmission time. Using
Lemma 12, we then we have that (see for example [12])

G. Properties of Balance Equations

In this section, we characterize the balance equations for the
steady-state probabilities

under a CSMA policy with sensing period .
We are going to use the following notation. If node is busy

at time , i.e., if , let , denote the time
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until node becomes idle again, i.e., until stops sending, or re-
ceiving, the current packet transmission. Furthermore, if node
and are jointly idle at time , i.e., we have that

, then let be the amount of time that node
and haven been jointly idle. Note that if node and have to
be jointly idle for at least the duration of sensing period before
node can potentially start a packet transmission on link .

1) Preliminary Lemmas: For a given link , recall
that be the set of links that interfere with . Suppose that at
time node and have been jointly idle for at least time
units, i.e., we have that and .
Given a CSMA policy , the probability that node starts a
packet transmission on link during the interval is
then lower-bounded by

upper bounded by .
Note that from the definition of a CSMA policy, it immedi-

ately follows that is an upper-bound on the probability that
node starts a packet transmission on link during the interval

. To see that is a lower-bound,
we observe the following. Given that at time node and have
been jointly idle for at least time units, let be the earliest
time after when node has the chance to start a packet trans-
mission on link , if link remains idle in the interval .
Note that

In the worst case, all links have an opportunities to start
a packet transmission in the interval . In this case,
the probability that no link starts a packet transmission
during the interval , and link has the opportunity to
start a packet transmission at time is lower-bounded by

and the probability that link starts a packet transmission in the
interval is lower-bounded by .

We have the following result.

Lemma 13: Suppose that at time node and have been
jointly idle for at least time units, i.e., we have that

and . Then there exists a constant such
that the probability that the link starts a packet transmission in
the interval is lower-bounded by

and upper-bounded by

Proof: For we have that

From the mean value theorem, it then follows that

By Assumption 2 we have that

and it follows that

Note that for

we have that

The result then follows.

Below, we derive additional lemmas that we are going to use
in Section III-G.2.

Lemma 14: The probability that a packet transmission expe-
riences a collision is upper-bounded by .

Proof: Suppose that node starts a packet transmission on
link at time . Then this packet transmission will ex-
perience a collision only if another node starts a packet trans-
mission on a link in the interval . This
is because by Assumption 1, we have that for links we
have that the sensing delay and is bounded by .
Furthermore, by Assumption 2 we have that

and the lemma follows.

Lemma 15: We have

Proof: The above lemma follows immediately from the
fact that a packet transmission takes 1 time unit.

Lemma 16: We have

Proof: The results follows immediately from the fact that
the length of a busy period is bounded between 1 (the length of
a successful transmission) and (the maximal length of a
collision).
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Lemma 17: We have

Proof: Note that the event
indicates that a packet transmission resulted in a collision. By
Lemma 14, the probability of this happening is upper-bounded
by , and the lemma follows.

Lemma 18: We have

Proof: Suppose that at time node and have just become
jointly idle, and let denote the time it takes starting from
until either node or become busy. Note that by Assumption
2, we have that

Furthermore, we have that

As

we obtain that

Furthermore as

it follows that

2) Bounds on the Steady-State Probabilities: In the fol-
lowing, we derive bounds on the steady-state probability

. We start with the following lemma.

Lemma 19: For

there exists a constant such that

Proof: Suppose that the system is in steady-state at time
and that we observe the evolution of the system from time
to . Using Lemma 12, which states that the renewal

process is either aperiodic, or has a period of where is a
positive integer, it follows that at time the system is again
in steady-state. Furthermore, suppose that at time nodes and

have been jointly idle for at least time units, i.e., we have
that and . Then by Lemma
13, for there exists a constant such that
the probability that link starts a packet transmission during
the interval is bounded between and

. Furthermore, these two bounds provided by
Lemma 13 are independent of the states of all other links, and
hence independent of states of the states of nodes other than
node and . By Lemma 14 the probability that this transmission
will result in a collision is upper-bounded by . When the
transmission does not result in a collision, then at the
remaining time until node finishes the packet transmission will
be in the interval , i.e., we have .

Combining the above results, we obtain that

where the last term accounts for the
probability that at time node is experiencing a collision that
will last another time units with .

Using Lemma 18, we obtain for the first inequality that

Furthermore, using Lemma 17, we obtain that

Note that for and we have
that

The lemma then follows.

Using Lemma 19, we obtain the following bound for the
steady-state probability .
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Lemma 20: For there exists a constant
such that

where

Proof: Using Lemma 15–19, for we have

and there exists a constant such that

Combing the above results, we have that

where

Note that for and

we have that

The lemma then follows.

H. Characterization of the Steady-State Probabilities

In this section, we characterize the steady-state probabilities

that a node is busy under a CSMA policy with sensing period
, using the same analysis as given by Hajek and Krishna in [17,

Section III and IV] with only minor changes.

Throughout this section, we set

with if and .
Note that by Lemma 20 there exists a constant such that

We have the following result.

Lemma 21: Let be the constant of Lemma 20. Then for
, we have that

Proof: Note that we have

Therefore, to obtain the result, it suffices to show that

The above inequalities are obtained by the same argument as
given in the proof for Lemma 20.

We then have the following result.

Proposition 8: Let be the constant of Lemma 20. For
we then have that

with and is as given in Assumption 2.
Proof: Let be the steady-stated probability

that node is idle, let be the steady-stated probability
that nodes and are jointly idle, and let

be the steady-stated probability
that nodes , and , are jointly idle.
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We use a proof by induction on the number of nodes in the
network, as given in [17]. For a network with node the
proposition is trivially true, and suppose that .

Using Lemma 21, we have that

Furthermore, starting with the equation

and using the result from Lemma 20, which states that

we obtain

Combining the above inequalities, we obtain by the same ap-
proach as in [17] that

(34)

Using the fact that and by Assumption 2, we have

it follows that

(35)

Furthermore, from the induction hypotheses applied to the net-
work with nodes, we obtain, by deleting node

(36)

Using (35) and (36) in (34), we obtain

The result then follows.

We then obtain the following corollary.

Corollary 4: Let be the constant of Lemma 20, and let
be the actual steady-state probability that node is busy. Then

where is such that

where is as given in Proposition 8.
The above results follows immediately from Proposition 8

and Lemma 20. Using the above Corollary 4, we obtain the fol-
lowing result.

Corollary 5: Let be the constant of Lemma 20. Then there
exists an integer such that for the actual steady-
state probability
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that node is idle in a network of size satisfies

where is the solution to the
Erlang fixed-point equation given by

where

and is given in Proposition 8.
Proof: Note that

Furthermore, recall that and, by Assumption 2

It follows that there exists an integer such that for ,
we have

where we used the fact that the function is convex and that
. Similarly, for , we have

Using Corollary 4, for we then have

where is such that

Using the same argument as given in the proof of Proposition 6
and Corollary 3 in Appendix III-E, we then obtain the result of
this corollary.

I. Proof of Proposition 5

In this section, we combine the results of Sections C-E and
C-H to prove Proposition 5.

Proof: Consider a CSMA policy for a wireless network
consisting of nodes and set

Let , be the CSMA fixed point given by
(27), and let be the actual steady-state probability that
node is idle under the CSMA policy . Then by Corollary 5,
there exists a integer such that for we have that the
steady-state probabilities , satisfy

where is the solution to the Erlang fixed point given by
the equations

and is as given in Corollary 5.
Let be the CSMA fixed point given by (27) and recall

the relation that

Then by Corollary 3 we have that there exists a constant such
that

Combining the above results, we immediately obtain Proposi-
tion 5.

APPENDIX D
PROOF OF THEOREM 4

Proof: Recall that the set is given by

and that in Theorem 4 we consider a sequence of net-
works and a sequence of sensing periods

such that

Theorem 4 then states that for every sequence there
exists a sequence of CSMA policies that asymptot-
ically stabilizes the network, i.e., we have

We prove Theorem 4 as follows. By definition, for each se-
quence there exists a scalar and an
integer such that for we have
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Let then be given by

and let

(37)

Using these definitions, let

For all , we then have

As and (see (6)),
there exists an integer such that for we have

Using this result, for a given network size let
be such that

(38)

and let

Such a exists as shown in the proof of Theorem 2.
For , consider then the CSMA policy given by

Using the proof of Theorem 2, we then have for that

Also, using Theorem 3, the approximation of the
service rate of link is asymptotically accurate as in-
creases if the sequence satisfies Assumption 2.
Next, we complete the proof of Theorem 4 assuming Assump-
tion 2 holds and then confirm that it does

To verify Assumption 2 for the sequence , we
first show that for

we have that

Note that by definition, we have for the equation
(39), as shown at the bottom of the page, where is the constant
of (37).

Suppose that we can show that there exists a constant and
an integer such that for all , we have that

(40)

(39)
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In this case, for all we have

and it follows that

As

(41)

(42)

it then follows that

where

Combining the above results with the fact that for
we have

it follows that

Furthermore, using (39) we have

Using (37), (41), and (42), it then follows that there exists a
integer such that for , we have

Hence, the sequence satisfies Assumption 2 and
the theorem follows if we can verify (40), i.e., if we can show
that there exists a constant such that for all and
all , we can find a , that satisfies the
inequality

and is a solution to (38), i.e., for we have that

where

Note that the function

is continuous in with , and recall that by definition
there exist a positive constant and a integer such that for
all we have that

Therefore, in order to verify (40) it suffices to show that there
exists a constant such that

we have

Using the definition of , this is equivalent to showing
that

Recall that

and . Combining the above results, it follows that for



MARBACH et al.: ASYNCHRONOUS CSMA POLICIES IN MULTIHOP WIRELESS NETWORKS 3675

and , we have

This verifies (40) and completes the proof.
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