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Abstract— We use a mathematical model based on Brownian
motion to analyze the performance of Last Encounter Routing
(LER), a routing protocol for ad hoc networks. Our results show
that, under our model, LER outperforms the simple flooding
mechanism employed by reactive protocols.

I. INTRODUCTION

Mobile ad hoc networks have attracted the attention of
the networking community because of their decentralized and
dynamic nature that may give rise to exciting new applications.
However, the non-hierarchical and time-variant nature of ad
hoc networks has also led to a multitude of design challenges.
Many of these challenges are related to the difficulty of
obtaining the global state of an ad hoc network. Information
such as network topology, the positions of nodes or the data
they carry may vary in time and is immediately accessible only
on a local scale. Due to the absence of a central authority or an
underlying infrastructure, approaches used in static networks
that rely on the assessment of the global state are inappropriate
for addressing problems that arise in this area. One of the most
persistent of such problems is routing, which, in addition to
being performed in a distributed manner, should be able to
cope with frequent and abrupt changes in network topology
due to mobility.

Traditional approaches in ad hoc routing include proactive
or table-driven protocols and reactive or demand-driven pro-
tocols. In proactive protocols (such as DSDV [1] and WRP
[2]), nodes maintain routing tables with topology information.
Routing tables are updated through the frequent dissemination
of update packets. Establishing a route to a destination is
therefore straightforward. However, proactive protocols suffer
from prohibitive maintenance overhead when nodes are highly
mobile. In response to this behavior, reactive protocols that do
not rely on routing tables (such as AODV [3] and DSR [4])
were proposed. In such protocols, nodes dynamically discover
routes by flooding the network with route request packets.
Although such protocols outperform proactive protocols under
high mobility (see [5], [6]), they still generate a significant
overhead while flooding during the route discovery phase.

There are several protocols in literature ([7]–[11]) that seem
to belong in a gray area between reactive and proactive
protocols. The general scheme that they conform to can be
described as follows. Although nodes maintain routing tables
as in proactive protocols, the information stored in them is

not updated as often. As expected, this results in inconsistency
since entries in the routing tables become inaccurate. Nonethe-
less, in order to route a packet, this information is used as if
it were accurate and the packet is forwarded accordingly. Due
to the aforementioned inaccuracy, this may lead to a routing
failure. Upon such a failure, the protocols we describe resort
to flooding, just like reactive protocols. However, instead of
flooding to find the destination, as in the route discovery phase
of reactive protocols, flooding is performed with the intention
to locate nodes with more accurate routing information. This
information is then used to initiate a new forwarding attempt.
This process, alternating between forwarding and flooding, is
repeated until the destination is reached.

We refer to these protocols as approximate information
protocols, due to their inherent use of inaccuracy. An implied
assumption here is that one can quantify the accuracy of
information stored in routing tables. This is necessary, since
when the protocol enters a flooding phase, it should be able to
determine whether a node found through flooding has higher
or lower accuracy than the one currently used. In that sense,
a measure of accuracy of this information should exist.

An example of a protocol that conforms with this general
scheme is Last Encounter Routing (LER), originally proposed
by Grossglauser and Vetterli [7]. In LER, each node maintains
in a table the position of each destination at some time in
the past, in the spirit of position-based routing protocols.
This serves as an estimate of where the destination currently
is. The age of this estimate is also stored and serves as a
measure of the estimate’s accuracy. A source can route a
packet based on this position information using any known
forwarding strategy; this constitutes the forwarding phase. If
the destination is not reached thus, i.e. a forwarding failure
occurs, LER resorts to flooding. A node whose estimate of the
destination’s position is better than the current one is sought
out. As the general scheme suggests, this better estimate is
then used for a new forwarding attempt and the process is
repeated until the destination is reached.

LER owes its name to the frugal update mechanism it
employs: nodes update their entries every time a destination is
within their transmission radius, i.e. when two nodes encounter
each other while moving. This has two important implications
with respect to the protocol’s behavior. First, the maintenance
overhead is negligible. Second, network mobility is solely



responsible for the dissemination of routing information.
LER is quite simple, in the sense that it merely outlines a

route discovery phase and does not explicitly address many
of the issues that arise in real life scenarios, such as packet
loss, route maintenance, loop freedom e.t.c. However, we
believe it is worth investigating when viewed in the context of
approximate information protocols. As we discussed, approxi-
mate information protocols route packets based on irregularly
maintained information. A question that thus naturally arises
is the following: When routing a packet, should one exploit
inaccurate routing information by using an approximate in-
formation protocol, or should one avoid maintaining such
information altogether and resort to simple flooding, like the
one employed by reactive protocols?

In this paper, we attempt to answer this question by analyz-
ing LER. Our goal is thus to discover whether LER behaves
better than simple flooding. Compared to other approximate
information protocols, LER is good starting point for such an
investigation due to its simplicity. Furthermore, there are ana-
lytical [7] as well as simulation [7], [12] results in literature,
which support that LER indeed behaves well.

Our main result, presented in Theorem 1, is that, assuming
that nodes in the network perform Brownian motions, the
answer to the above question is affirmative: LER is asymptot-
ically better than simple flooding by a significant factor (see
Section V). Though our result is restricted to LER under a
specific mobility model, we believe that it can be seen as an
indication that approximate information protocols in general
are worth further investigation.

II. THE LER PROTOCOL

We will discuss two variations of the LER protocol in
this paper, which we call LER0 and LER1. LER0 is closer
to EASE, the original version proposed by Grossglauser and
Vetterli [7], though the two are not identical. The algorithm
for LER0 can be found in Fig. 1. Each node i maintains a
routing table RTi and an elapsed time table Ti. For any node
j, RTij contains the coordinates of j at the time of the last
encounter between i and j, and Tij is the elapsed time since
that encounter. More formally, let Xj(t) denote the position of
node j at time t and suppose that nodes i and j meet at time
t1 and then do not meet again up to and including time t2.
Then, at time t2 the routing table of i will contain the entry
RTij = Xj(t1) and the elapsed time table will contain the
entry Tij = t2 − t1. Throughout this paper, we refer to RTij

as the i’s estimate of node j’s current position and to Tij as
the accuracy of this estimate. By definition, each node knows
its own location with perfect accuracy, i.e. RTii = Xi(t) and
Tii = 0 at any time t and for all i.

Routing happens in the above setting as follows. Suppose
that a source s wishes to send a packet to a destination
d at time T . Initially, the source node s can send it to
the position Xd(T − Tsd), using any of the position-based
forwarding strategies that exist in literature. If the destination
is not reached with this forwarding (e.g. because it is not there
anymore) the protocol resorts to flooding. While flooding, the

Route a packet p from s to d at time T .
{

i = s ; forward p towards d using Xd(T − Tid) ;
let a be the node reached at the end

of this forwarding ;
while (a �= d ) {

flood the network from a until a node n
is reached such that Tnd < Tid ;

forward p towards d using Xd(T − Tnd) ;
let a be the node reached at the end

of this forwarding ;
i = n ;

}
}

Fig. 1. The LER0 algorithm

protocol looks for any node n such that Tnd < Tsd. After
locating such a node n, the protocol resumes forwarding using
the position information Xd(T−Tnd). This process is repeated
and the protocol alternates between forwarding and flooding
until the destination is reached. An illustration of this behavior
can be seen in Fig. 2.
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Fig. 2. An illustration of the execution of the LER algorithm.

We note that a node will always be located during the
flooding phase, since at least one node with perfect accuracy
exists, namely the destination. Grossglauser et al. use the term
anchor points for the points a in which forwarding fails and
flooding is initiated, and the term messenger nodes for the
nodes n that satisfy Tnd < Tid, where Tid is the current
accuracy. We also adopt the above terms throughout this paper,
though we differentiate between messenger nodes and the
destination (we will not refer to the destination as a messenger
node, although its accuracy is less than the current one).
Finally, we will refer to the new accuracy obtained through
flooding, i.e. the accuracy of the messenger node closest to
the anchor point, as the improved accuracy.

Both in the original paper on LER as well as in this one,
flooding is assumed to expand in concentric circles around the
current anchor point a until n, the closest messenger node (or
the destination) is reached. The area flooded is thus defined
as a circle centered at a with radius equal to the distance
between a and n. In practice, this can be implemented by
a TTL mechanism: areas of increasing size can be flooded
sequentially, until a messenger node (or the destination) is
reached. In fact, one can show that, if the area in the initial
step is constant (i.e. it does not depend on the accuracy at the
anchor point) and in each step the area flooded is doubled,



the sum of all areas flooded in order to locate the closest
messenger node will be at most four times the area that we
consider here. Chang and Liu [13] have shown that the factor
of 4 can be improved by using a randomized flooding strategy.
In any case, the area we consider here is of the same order as
the total area flooded by such an implementation.

On the other hand, when one floods a constant initial area,
it is reasonable to use the estimate of the messenger node with
the best accuracy within that area. This is not how LER0, as
defined above, would behave. Furthermore, as we will see in
our analysis, the expected area that we flood in order to find
the closest messenger node or the destination depends on the
accuracy at the current anchor point. It therefore makes sense,
instead of flooding a fixed initial area, to flood an area A(T )
whose size depends on the current accuracy T . In such an
implementation, the sum of all areas flooded would be of the
same order as the sum of A(T ) and the area we consider here.

LER1, the second protocol we consider, aims at capturing
this behavior. It is outlined in Fig. 3. In the flooding phase, an
area A that depends on the present accuracy Tid is flooded. Of
all the estimates of the destination’s position from messenger
nodes in A the most accurate one is used to forward the packet.
However, it is possible that neither a messenger node nor the
destination are within the area A. In this case the protocol
floods again, this time behaving as LER0.

Route a packet p from s to d at time T .
{

i = s ; forward p towards d using Xd(T − Tid) ;
let a be the node reached at the end

of this forwarding ;
while (a �= d ) {

flood an area A(Tid) around a .
let M be the set of nodes k reached thus

such that Tkd < Tid .
if M �= ∅ then let n = arg mink∈M Tkd ;
else flood the network from a until a node n

is reached such that Tnd < Tid ;
forward p towards d using Xd(T − Tnd) ;
let a be the node reached at the end

of this forwarding ;
i = n ;

}
}

Fig. 3. The LER1 algorithm

III. RELATED WORK

In their original paper [7], Grossglauser and Vetterli present
an analysis for EASE, the variation of LER they originally
proposed. Working on a mobility model similar to the one that
we use here, they show that the total flooding cost of EASE
is less than the cost of forwarding a packet over the shortest
path to the destination, a result that they also support with
simulations. Our result for LER1, which we present in detail
in Section V, is an improvement on their bound. Furthermore,
their mathematical analysis is based on certain assumptions
which do not appear in our present work. An analysis based

on our model, under similar assumptions to the ones employed
by Grossglauser and Vetterli yields stronger results than the
ones we present in this paper. Such an analysis can be found
in [14], which also investigates the optimality of the flooding
condition as well as the behavior of the protocol with respect to
the speed of the nodes and the network density. Interestingly,
in spite of the simplifications used in [14], the cost obtained is
roughly of the same order as the cost of LER1 in the present
paper.

Sarafijanovic-Djukic et al. [12] study EASE under the
random waypoint mobility model. They introduce a modifica-
tion of EASE that improves the estimate of the destination’s
position, given that the nodes move according to the random
waypoint model, and demonstrate the relative improvement
on protocol performance through simulations. These simula-
tions also indicate that the cost is comparable to the source
destination distance. FRESH, by Dubois Ferrière et al. [9], is
a simpler version of LER. Its main difference is that nodes
maintain only the accuracy tables Ti; the messenger’s current
position serves as an estimate for the destination’s position.
The authors use simulation results to argue that, as the protocol
improves its accuracy, it also progresses in space and gets
closer to the destination. GREP [8], [15] uses next-hop instead
of position information and piggy-backing instead of last
encounters as an update mechanism. To our knowledge, there
is no performance analysis of GREP in existing literature. A
proof of its loop freedom can be found in [15].

DREAM , by Basagni et al. [10], is a protocol that has some
approximate information routing properties. Nodes maintain
approximate position information and, in the context of the
general scheme, route discovery consists only of a flooding
phase and no forwarding phase; approximate information is
only used to constrain flooding in the sense of directing it
towards the destination. On the other hand, FSR, by Iwata et
al. [11], has only a forwarding phase but no flooding phase.
Using approximate next-hop information, it routes a packet
accordingly and relies on an update mechanism that makes
information at nodes closer to the destination more accurate.

Technically, LER is a position-based routing protocol (such
as GPSR [16]), since the information used to route a packet to
a destination is its position on the plane. Typically position-
based protocols consist of a forwarding strategy, which spec-
ifies how a packet is routed given the destination’s position,
and a location service, which describes how the destination’s
position can be obtained. LER combines these two by in-
troducing inaccuracy: each node has its own approximate
location service, namely its routing table, whose information
is gradually refined while routing.

IV. MODEL

Below we describe the mathematical model we use to
analyze LER. Our network model consists of the distribution
of nodes in the plane as well as the process that characterizes
their mobility. Furthermore, we define a cost function, in order
to evaluate protocol performance.



A. Network Model

Our network consists of an infinite, countable number of
nodes. As in Section II, Xi(t) ∈ R

2 will denote the position of
node i at time t. Each one of these nodes moves independently
according to a two-dimensional Brownian motion of variance
proportional to a parameter v, which models the speed of node
movement. This means that the displacement Xi(t2)−Xi(t1)
of a node i in a time interval [t1, t2] is normally distributed
with variance v(t2 − t1) on each axis.

Furthermore, the set π(t) = {X1(t),X2(t), . . .} of the
positions of all nodes in the network is a Poisson field of
density ρ spanning over the entire plane R

2. In other words,
at any given time nodes are uniformly distributed in R

2 with
density ρ. We note that there is no inconsistency in this
assumption and the fact that nodes move: if at any time t0 the
network forms a Poisson field, and nodes move independently
according to Brownian motions, the network also forms a
Poisson field with density ρ at any t ≥ t0 -a proof of this can
be found in Révész [17]. Route discoveries are considered to
last for a negligible period of time, so that nodes are static
while they take place. In addition, we assume that the node
density ρ is large enough so that the network is connected and
that a packet can always be forwarded successfully from one
anchor point to another.

The destination is a node, not belonging to π, that also
performs a Brownian motion of variance proportional to v,
independent of the rest of the nodes. We denote it with the
index 0 and its trajectory with X0(t). An encounter between
a node i and the destination occurs at time t if their distance
is less than or equal to a transmission radius r0, i.e. if
|Xi(t) − X0(t)| ≤ r0. To simplify notation, we assume that
the length unit is normalized so that the transmission region
around a node has unit area, i.e. r0 = 1/

√
π. Under this

assumption, our network model is fully characterized by two
parameters: the variance v, which indicates the speed of nodes,
and the density ρ. Finally, we assume that nodes have been
moving in the time interval (−∞, 0] so that every node has
encountered the destination with probability 1.

B. Cost Model

To discuss whether LER is better than simple flooding, one
needs to introduce a cost as a performance metric under which
the protocol’s behavior can be evaluated. We would like to
describe the expected total area flooded by the protocol from
an anchor point that has accuracy T . However, computing this
explicitly is quite difficult, so we actually define a cost that is
slightly different.

Suppose that the destination is at the origin at time 0, and
that at time T a flooding is initiated from the origin. We denote
with G(T ) the expected area around the origin flooded in order
to locate the destination or a messenger node, i.e. a node
that met the destination in the time interval (0, T ]. We will
call G(T ) the expected one-step flooding area. Furthermore,
we denote with p(t, T ) the density of the accuracy achieved
though this flooding. In other words, p(t, T ) is the density of
the accuracy of the node that we locate through this flooding.

We will call p(t, T ) the density of the improved accuracy.
Using this notation, we model the cost with a function Q that
satisfies the following equation:

Q(T ) = G(T ) +
∫ T

0

Q(t)p(t, T )dt. (1)

This equation is an integral equation of a form known as a
linear Volterra equation of the second kind (see e.g. Brunner et
al. [18] for an exposition on the subject). From a probabilistic
perspective, eq. (1) can be seen as the expected reward of a
Markov chain with an uncountable number of states; p(t, T )
is then the conditional transition probability density and G(T )
the expected reward per transition. It is motivated by the fact
that the total flooding area can be expressed as the area flooded
at the first flooding step, plus the area flooded in all other
steps. However, it differs from the expected total flooding area
in the sense that flooding at subsequent steps should depend
on flooding on previous ones, a behavior not captured by (1).
As we will see though, this equation does capture many of
the other features of the flooding phase of LER through the
functions G(T ) and p(t, T ).

We use equation (1) to model the cost for both LER0 and
LER1. More specifically, the cost of LER0, denoted by Q0(T ),
will be defined by (1) with expected one-step flooding area
G0(T ) and density of the improved accuracy p0(t, T ), whereas
Q1(T ), the cost of LER1, will be similarly defined in terms
of G1(T ) and p1(t, T ).

C. Discussion on the Model

In a real network, the movement of nodes is not described
by Brownian motions. In that sense, assuming that nodes
move according to Brownian motions is unrealistic. On the
other hand, we believe that our analysis may be helpful
in investigating different mobility models as well, including
deterministic models. This is due to the fact that computing
the cost of the protocol is reduced by our analysis to finding
functions G(T ) and p(t, T ). Furthermore, there is intuition
that suggests that the results for LER under different mobility
models should not deviate considerably from the ones we
observe here. We revisit these issues in more detail in our
concluding remarks.

V. OVERVIEW OF THE RESULTS

Our main result, presented in the following Theorem, is an
asymptotic upper bound1 for the cost of LER1.

Theorem 1: For any α > 0, there exists an initial area A(T )
such that the cost Q1(T ) of protocol LER1 is o(log2+α T ).
This theorem states that, by choosing an appropriate A(T ), the
cost Q1 of LER1 can be asymptotically upper-bounded by a
polylogarithmic function of T . In fact, the exponent to which
the logarithm is raised can be arbitrarily close to 2. Under our
model, the cost of simple flooding (i.e. the cost of looking for
the destination without using any approximate information) is

1Recall that f = O(g) iff lim supt→∞ |f(t)|/g(t) ≤ k, for some k ≥ 0,
f = o(g) iff limt→∞ |f(t)|/g(t) = 0 and f = Θ(g) if f = O(g) and
g = O(f).



a linear function of T . Therefore, Theorem 1 implies that the
cost of LER1 is significantly lower than the cost of simple
flooding under our model.

Before proving the above theorem, we first provide an
analysis of LER0 from which we obtain a much weaker result.

Theorem 2: The cost Q0(T ) of protocol LER0 is O(T ).
Theorem 2 states that Q0, the cost of LER0, is asymptotically
upper-bounded by a linear function. We thus merely prove that
LER0 is no worse than simple flooding.

Due to the relative simplicity of the LER0 protocol com-
pared to LER1, many concepts that appear in the proofs of
both of the above theorems are easier to introduce for LER0.
For this reason, in spite of the weak result it yields, we present
the analysis of LER0 first and then proceed with the analysis
of LER1.

VI. AN ANALYSIS OF LER0

One can compute the cost Q0(T ) directly from functions
G0(T ) and p0(t, T ) using equation (1). In the following two
sections we describe these two quantities in terms of our model
and then use them in the final section to derive an asymptotic
upper bound for Q0(T ).

A. The expected one-step flooding area of LER0

To compute expected one-step flooding area G0(T ), one has
to describe the process that generates messenger nodes in our
model. In particular, one needs to know how many messenger
nodes exist at the time of a flooding and where these nodes and
the destination are positioned on R

2. Since we are interested in
an asymptotic analysis, it suffices to find an asymptotic upper
bound for G0(T ) instead of an exact description.

To make these notions more precise we first give a formal
definition of G0(T ) in terms of our model. Suppose that at
time 0 the destination was at the origin (i.e. X0(0) = 0) and
that at time T a flooding is initiated from X0(0). The set of
messenger nodes is then defined as

C(T ) = {i : ∃t ∈ (0, T ] s.t. |Xi(t) − X0(t)| ≤ r0}. (2)

We can then define G0(T ) as follows

G0(T ) = E
[

min
i∈C(T )∪{0}

π|Xi(T )|2
]

. (3)

To compute this quantity, one has to describe the size of
the set C(T ) as well as the positions Xi(T ), i ≥ 0. All of
the above are dependent random variables under our model.
Before attempting to obtain a bound for G0(T ), we discuss
certain properties of these random variables in detail.

1) The number of nodes the destination encounters: We
first try to describe the number of nodes that the destination
meets in the interval [0, T ]. This set differs from the set of
messenger nodes because it includes the nodes that met the
destination at time 0 but not at (0, T ]. Before presenting this
process for a destination that moves according to a Brownian
motion, as it does in our model, we first consider the case
where the destination follows a deterministic path. Suppose
that the destination’s trajectory is a continuous function f :

[0,+∞) → R
2, i.e. X0(t) = f(t), t ≥ 0. The number of

nodes the destination meets in [0, t] is:

Nf (t) = |{i : ∃s ∈ [0, t] s.t. |Xi(s) − f(s)| ≤ r0}|. (4)

Then the following lemma holds.
Lemma 1: Let Nf (t) be the number of nodes the destina-

tion meets in the interval [0, t] given that it follows the fixed
deterministic path f(t). Then

P {Nf (t) = k} =
(µf (t))k

k!
e−µf (t) t ≥ 0, k ≥ 0, (5)

where µf (t) = E [Nf (t)] is an increasing function and
µf (0) = ρ. Furthermore, Nf (t) satisfies the independent
increment property.
This is a generalization of a result given by Révész [17] for the
case where f(t) is a constant function (i.e. the destination is
static). A proof of the general case can be found in [19]. This
lemma indicates that {Nf (t), t ≥ 0} is a non-homogeneous
Poisson process in which bulk arrivals can happen at time
t = 0. The bulk arrivals at 0 are due to the fact that the number
of nodes in the unit-area disk around the destination at time 0
is positive with non-zero probability. In fact, Nf (0) is Poisson
distributed with density ρ, by the nature of the Poisson field.

The expected values µf cannot be described with known
functions in most cases. However, Révész cites the following
result from Spitzer [20] regarding the asymptotic behavior of
the expectation of number of nodes if f is constant, which we
denote with N0(t):

µ0(t) = E [N0(t)] = ρ

(
2πvt

log vt
+ (c1 + o(1))

vt

log2 vt

)
(6)

where c1 is a constant, independent of v,t and ρ. A very useful
fact about µ0(t), due to Quastel [21], is the following:

Lemma 2: Let f be any continuous function from [0,+∞)
to R

2. Then µ0(t) ≤ µf (t).
A proof of this can be found in [19]. The above lemma states
that any node that moves will meet, on average, more nodes
than one that remains static.

Coming back to our model, in the case where the desti-
nation moves according to a Brownian motion with variance
proportional to v (i.e. X0(t) = B(t), t ≥ 0), we can again
define N(t) similarly to eq. (4) as

N(t) = |{i : ∃s ∈ [0, t] s.t. |Xi(s) − B(s)| ≤ r0}|. (7)

The expectation of N(t) can be described in terms of µ0(t).
Lemma 3: Let µ(t) = E [N(t)] be the expected number of

nodes met by a destination that moves according to a Brownian
motion in the interval [0, t], and µ0 = E [N0(t)] the expected
number of nodes that a fixed destination meets in the same
interval. Then µ(t) = µ0(2t).
A proof of this can be found in [14]. Contrary to the above
expectation, the actual distribution of N(t) is not as easily
described explicitly: N(t) can be expressed as an average of
variables Nf (t) over all possible paths f the destination may
follow, and the average of Poisson random variables is, in
general, not Poisson. Moreover, we note that N(t) cannot be



characterized by assuming that the destination is fixed and all
other nodes move according to independent Brownian motions
with variance 2v; the distance between the destination and any
point in the Poisson field is indeed such a Brownian motion,
but these motions are not independent.

2) The spatial distribution of messenger nodes: As stated,
apart from the number of nodes that the destination meets,
G0(T ) also depends on the positions of these nodes and the
destination at time T . In particular, according to (3) one needs
to know Xi(T ) for all i ∈ C(T ) ∪ {0}.

We define for each node i the epoch of the first encounter
with the destination Si as

Si = min{t ≥ 0 : |Xi(t) − X0(t)| ≤ r0}, i ≥ 1. (8)

We note that if {N(t), t ≥ 0} is the counting process presented
in the previous section, i.e. it is the number of messenger
nodes encountered by the destination in the time interval [0, t],
then Si, i ≥ 1, coincide with the arrival epochs of this
process (though they are not necessarily ordered the same
way). Turning back our attention to (3), we try to describe
the distributions of Xi(T ), i ∈ C(T ) ∪ {0}. The destination
moves according to a Brownian motion in the interval [0, T ],
and thus X0(T ) is normally distributed around the origin with
variance vT . The positions of the messenger nodes at time T
can be written as

Xi(T ) = X0(Si) + (Xi(Si) − X0(Si)) + (Xi(T ) − Xi(Si))
(9)

for 1 ≤ i ≤ |C(T )|. The first summand is normally distributed
with variance vSi. The third is also normally distributed with
variance v(T − Si). Finally, |Xi(Si) − X0(Si)| is upper-
bounded by the transmission radius r0 = 1/

√
π.

Equation (9) indicates that messenger nodes are normally
distributed around the origin with variance vT , with an “er-
ror” displacement whose Euclidean length is bounded by a
constant. In fact, when computing the asymptotic behavior of
G0(T ), one can safely ignore the effect of this displacement
and consider messenger nodes normally distributed around the
origin (see Lemma 10 in Appendix I).

Although the individual distribution of the position of each
messenger node and the destination is easy to obtain, the same
cannot be said for their joint distribution. To see this, note
that these distributions are not independent; although the latter
of the displacements eq. (9) comprises of are independent
of each other and the destination’s trajectory2, the first ones
are not. Xi(T ) are independent on the other hand given the
trajectory of the destination, in which case however the first
displacements are no longer normal -they are deterministic.

3) An asymptotic upper bound for G0(T ): According to
the above, while computing G0(T ), one has to address two
issues: first, the distribution of the number of messenger nodes
is not easy to describe. Second, messenger nodes may be

2We note that this is true because Si is the first meeting times of node i
with the destination, and node i may meet the destination again in the interval
[Si, T ]. If Si were last meeting times, this would not hold.

(almost) normally and identically distributed, but they are not
independent.

Not knowing the distribution of the messenger nodes can
be overcome by using Lemmas 1 and 2: one can compute G0

by considering the distribution of the number given that the
destination moves according to a fixed path, and then obtain an
upper bound by taking the expectation over all paths. Lemma 2
makes this computation easier, as it lower-bounds µf for every
f . For more details can be found in the proof of Lemma 4.

We work around the dependence between messenger node
positions using the following idea: Suppose that, while flood-
ing, instead of looking for the destination or any node that
met the destination in the interval (0, T ], we only look for the
destination or any node that met the destination in the interval
(0, τ ], where τ ≤ T . These nodes are a subset of the nodes
that we would look for in our original setting, hence the area
that we flood is an upper bound on G0(T ). On the other hand,
as seen in eq. (9), the dependent parts of the displacements
are the ones up to the time of the first encounter. Therefore,
if τ is very small, the nodes that met the destination in the
interval [0, τ ] can be considered “approximately” independent.
This is formalized in the following lemma, whose proof is in
Appendix I.

Lemma 4: If τ = τ(T ) such that τ(T ) ≤ T and
limT→∞ τ(T )/T = 0, then

G0(T ) = O

(
2πvT

µ0(τ(T )) − µ0(0)

)

where µ0(t) is the expected number of nodes met by a static
destination described by eq. (6).
By properly choosing τ(T ) one can obtain an upper bound of
G0(T ) from Lemma 4. In fact, one can show that G0(T ) is
logarithmic in terms of T :

Lemma 5: G0(T ) = O(ρ−1 log vT ).
The proof of this lemma can be found in Appendix II.

B. The density of the improved accuracy of LER0

The density of the improved accuracy p0(t, T ) depends not
only on the number of messenger nodes and their positions
on the plane, as G0(T ) does, but also on the estimates these
nodes have. This makes p0(t, T ) harder to describe. Since
we are interested in an upper bound, we do not need to
calculate p0(t, T ) explicitly: it suffices to find a density p̂0

that stochastically dominates p0. i.e. one with the property∫ T

t

p0(τ, T )dτ ≤
∫ T

t

p̂0(τ, T )dτ.

This means that an accuracy distributed according to p̂ is
more likely to be worse (take large values) than one following
p0. Roughly, this implies that more flooding steps would be
necessary to reach the destination, a behavior that would
increase the cost described by the corresponding Volterra
equation.

One such accuracy, whose distribution stochastically dom-
inates p0(t, T ), is the largest accuracy in the interval [0, T ],



i.e. the accuracy of the node that met the destination at the
earliest time possible. This yields the following result:

Lemma 6: For 0 < t ≤ T and µ(t) = µ0(2t),∫ T

t

p0(τ, T )dτ ≤ 1 − eµ(t)−µ(T ). (10)

The proof of this statement can be found in Appendix III.

C. An asymptotic upper bound for the cost of LER0

Lemmas 5 and 6 imply Theorem 2. One can compute an
asymptotic upper bound for Q0(T ) by solving a Volterra
equation in which the functions G(T ), p(t, T ) are obtained by
the above two lemmas. The proof can be found in Appendix
IV.

We note that the bound in Theorem 2 indicates that the cost
Q0(T ) is asymptotically upper-bounded by the cost of simple
flooding, which is linear. However, as observed in Section V,
this fails to show that employing LER actually pays off, in the
sense that our bound is at most linear but not better than linear.
We believe however that this bound is not tight. We obtained
it assuming that p0 behaves as the distribution of the worse
messenger; this suggests that we misestimated the improved
accuracy at each step.

A more precise description of p0(t, T ) should improve
this bound. However, this would be quite involved, since it
would entail understanding how the quantities we studied
above (the number of messenger nodes, their positions and
their accuracies) behave conditioned on the position of the
closest messenger node to the origin. LER1 however allows
us to avoid such an analysis, as, under proper assumptions,
the messenger node with the best accuracy in the initial area,
instead of the closest one to the origin, will be chosen.

VII. AN ANALYSIS OF LER1

Recall that protocol LER1 differs from LER0 in how flood-
ing is conducted at each anchor point. Instead of looking for
the closest messenger node, the protocol first floods an area
A(T ) and, if any messenger nodes are in this area, it uses
the most accurate estimate among the ones these nodes have.
If, on the other hand, no messenger nodes are located thus, it
floods again looking for the closest messenger node, as LER0.

The process that generates messenger nodes is the same in
both protocols. Therefore, the facts we presented in Sections
VI-A.1 and VI-A.2 also apply for LER1. However, since
the process that defines which messenger node is picked is
different, G1(T ) and p1(t, T ) are not the same as G0(T ) and
p0(t, T ). In the following two sections, we give an asymptotic
upper bound for G1(T ) and, after deriving an asymptotic
property of p1(t, T ), we prove Theorem 1.

A. The expected one-step flooding area of LER1

One can express G1(T ), the expected one-step flooding
area of LER1, in terms of A(T ), the initial flooding area,
and G0(T ), the expected one-step flooding area of LER0. The
upper bound for G0(T ) in Lemma 5 can be used to compute
an upper bound for G1(T ), giving the following result:

Lemma 7: G1(T ) = O(A(T ) + ρ−1 log vT ).

Proof: Let Γ(T ) be the area that we flood under protocol
LER0, i.e. G0(T ) = E [Γ(T )]. Note that, if X is a positive
random variable, then E [X] =

∫ ∞
0

P {X > y} dy (see e.g.
[22]). G1(T ) can be written as

G1(T ) = A(T ) + E [Γ(T ) | Γ(T ) > A(T )]P {Γ(T ) > A(T )}
= A(T ) + . . .∫ ∞

0

P {Γ(T ) > y | Γ(T ) > A(T )} dyP {Γ(T ) > A(T )}

= A(T ) +
∫ ∞

0

P {Γ(T ) > y ∩ Γ(T ) > A(T )} dy

= (1 + P {Γ(T ) > A(T )}) A(T ) + . . .∫ ∞

A(T )

P {Γ(T ) > y} dy ≤ 2A(T ) + E [Γ(T )]

The above inequality along with Lemma 5 completes the
proof.

B. An asymptotic upper bound for the cost of LER1

The key idea behind the proof of Theorem 1 is the follow-
ing. If the initial flooding area A(T ) is taken to grow faster
than the expected area G0(T ), which is O(log T ) by Lemma
5, with high probability a messenger node will be within this
area for large enough T . In fact, in the following lemma we
prove that, if the area grows as Θ(log1+2α T ), a > 0, not
only will this area include a messenger node, it will actually
include one with an accuracy smaller than T − τ(T ), where
τ(T ) = β T

logα T and β any value in (0, 1).
Lemma 8: Let α > 0, 0 < β < 1. Let A(T ) =

Θ
(
log1+2α T

)
and define τ(T ) = β T

logα T . Finally, let Hτ(T )

be the event that a node with accuracy better than T − τ(T )
is located by LER1. Then

lim
T→∞

P
{
Hτ(T )

}
= lim

T→∞

∫ T−τ(T )

0

p1(t, T )dt = 1

Proof: Define τ1(T ) = τ(T ) = β T
logα T and τ2(T ) =

T
logα T . Let Γτ1,τ2(T ) be the area one would need to flood (as
in LER0) in order to find the destination or a messenger node
that met the destination in the interval [τ1(T ), τ2(T )]. Then,
by proceeding as in the proof of Lemma 4 one can show that

E [Γτ1,τ2(T )] = O

(
2πvT

µ0(τ2(T ) − τ1(T ))

)
= O

(
log1+α T

)
Note that {Γτ1,τ2(T ) ≤ A(T )} implies Hτ(T ) . By Markov’s
inequality

P {Γτ1,τ2(T ) > A(T )} ≤ E [Γτ1,τ2(T )]
A(T )

= O(1/ logα(T ))

and the Lemma follows.
Intuitively, for large values of T the improved accuracy will

be smaller than T − τ(T ) with high probability. This however
allows us to derive an asymptotic upper bound on the number
of times the protocol will resort to flooding: one can show that
this will be of the order of log1+α T . This observation gives
us the following lemma, the proof of which can be found in
Appendix V:



Lemma 9: Let A(T ) = Θ
(
log1+2α T

)
, for some α > 0.

Then Q1(T ) = O(log2+3α(T )).
Theorem 1 is an immediate corollary: to obtain the theorem
for some α > 0, apply Lemma 9 with α′ = α

4 .
We note that our choice of the function τ(T ) was made

in order to make the result of Theorem 1 concrete. In fact,
by choosing τ(T ) as T

g(T ) , provided that g(T ) satisfies certain
conditions, Theorem 1 can be extended to a bound of the form
o(g(T ) log2 T ) where g(T ) grows arbitrarily slow.

VIII. CONCLUSIONS

Theorems 2 and 1 suggest that LER outperforms simple
flooding under a Brownian mobility model. It remains an open
question whether the bound on the behavior of LER0 can be
improved. An analysis under a simplified model [14] suggested
that the cost Q0 may grow at most as log2 T , a bound that is
slightly better than our bound for LER1. However, Theorem
1 suggests that LER1 provides a provably low cost that can
be arbitrarily close to log2 T , which should be sufficient in
practice. Therefore, if flooding is implemented with a TTL
mechanism as described in Section II, and an initial area has
to be flooded at each flooding step, one should choose this
area as a function of the current accuracy, as LER1 dictates.

An aspect not investigated was how the protocol’s behavior
is influenced by the network density ρ and the speed of the
nodes, modeled here by parameter v. The simplified analysis
of [14] indicated “nice scalability” properties of the protocol
with respect to these parameters; in particular, the cost was
asymptotically indifferent to the values of these parameters.
Intuitively, LER exhibits an interesting counter-balance effect
with respect to mobility, which explains the aforementioned
invariance to node speed: a destination that moves fast or,
more generally, its trajectory is described by a mobility process
which is quite versatile, is likely to move far away from
the anchor point and thus be harder to locate. On the other
hand, a destination that moves fast should also encounter more
nodes on the way, thus generating more messenger nodes and
facilitating flooding, which in turn should decrease the cost.
Similar intuition also exists with respect to node density. We
note that the analysis of LER1 could be extended towards
showing such properties, though such an extension lies beyond
the scope of this paper.

It is not easy to speculate whether analyses under different
mobility models, such as the random waypoint model, would
confirm the results that we see here. However, the counter-
balance effect with respect to node speed mentioned above
suggests that results under other mobility models may also
confirm the good performance of LER. We note that, in the
context of our approach, analyzing the protocol under different
models reduces again to describing the expected one-step
flooding area and the density of the improved accuracy, and
solving the corresponding Volterra equation.

In LER, routing table updates happen through node encoun-
ters. However, it is not realistic to assume such encounters
will happen among any two mobile nodes in a real-life
network. An update mechanism that relies on transmission

of routing information, such as by piggypacking a source’s
current location over data packets (in the spirit of GREP [8])
seems more appealing in a real-life scenario. It would thus
be interesting to see whether the mathematical framework
presented here can be used to analyze such a protocol.
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[15] H. Dubois-Ferriére, M. Grossglauser, and M. Vetterli, “Space-time
routing in ad hoc networks,” in Ad Hoc Now 03, Montréal, Canada,
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APPENDIX I
PROOF OF LEMMA 4

Let τ be a time such that 0 ≤ τ ≤ T . Then C(τ) is the set of
messenger nodes that met the destination in the interval (0, τ ].
Let C ′(τ) be the set of nodes that met the destination in the
interval (0, τ ] but not at time 0. Then C ′(τ) ⊆ C(τ) ⊆ C(T ).
We therefore have that G(T ) is less than or equal to

Gτ
0(T ) = E

[
min

i∈C′(τ)∪{0}
π|Xi(T ))|2

]
. (11)

Let Si be the epoch of first encounter of node i with the
destination, as defined in (8). Then, for all i ∈ C ′(τ), we
have 0 < Si ≤ τ . Furthermore, if {N(t), t ≥ 0} is the
process defined in eq. (7), |C ′(τ)| = Ñ(τ), where Ñ(t) =
N(t) − N(0). W.l.o.g. we assume that nodes are indexed so
that C ′(τ) = {1, 2, . . . , Ñ(T )}. Under this convention Gτ (T )
can be written as:

Gτ
0(T ) = E

[
min

0≤i≤Ñ(τ)
π|Xi(T ))|2

]
. (12)

By abusing notation, we define S0 = τ . We can show then
that assuming that nodes are normally distributed around the
origin (i.e. ignoring the bounded displacement in (9)) gives
the same upper bound on the asymptotic behavior of Gτ

0(T ).
This is merely a simple consequence of the triangle inequality
and the fact that r0 = 1/

√
π:

Lemma 10: Let

Ĝτ
0(T ) = E

[
min

0≤i≤Ñ(τ)
π|X0(Si) + (Xi(T ) − Xi(Si))|2

]
,

where Si, i ≥ 1 is defined by eq (8) and S0 = τ . Then
Gτ

0(T ) ≤ Ĝτ
0(T ) + 1.

Since we are only interested in asymptotic behavior, we can
focus on computing Ĝτ

0(T ). Consider Ĝ
τ |f
0 (T ), the above

quantity conditioned on the fact that the destination follows
a deterministic path f in the interval [0, τ ]. Formally,

Ĝ
τ |f
0 (T ) = E

[
min

0≤i≤Ñf (τ)
π|f(Si) + (Xi(T ) − Xi(Si))|2

]
.

where Ñf (τ) = Nf (τ) − Nf (0), and Nf (t) is the number
of nodes met by the destination described by (5) in Lemma
1. We note that Ñf is Poisson distributed with expectation
µ̃f (τ) = µf (τ) − µf (0). Then, Ĝτ

0(T ) is the expectation of
Ĝ

τ |f
0 (T ) over all possible paths the destination may follow

in the interval [0, τ ]. The quantities Xi(T ) − Xi(Si) are nor-
mal, independent random variables with variances v(T − Si),
whereas |f(Si)| are upper-bounded by αf = maxt∈[0,τ ] |f(t)|,
i.e. the maximum Euclidean distance of the destination from
the origin in the interval [0, τ ].

We further condition Ĝ
τ |f
0 (T ) on the number of nodes met

by the destination in [0, τ ]:

Ĝ
τ |f,n
0 (T ) = E

[
min

0≤i≤n
π|f(Si) + (Xi(T ) − Xi(Si))|2

]
.

Ĝ
τ |f
0 (T ) can then be written as

Ĝ
τ |f
0 (T ) =

∞∑
n=0

Ĝ
τ |f,n
0 (T )P

{
Ñf (τ) = n

}
(13)

Let Γ(T ) = min0≤i≤n π|f(Si)+(Xi(T )−Xi(Si))|2. Then

Ĝ
τ |f,n
0 (T ) =

∫ ∞

0

P {Γ(T ) > y} dy (14)

It thus suffices to upper-bound P {Γ(T ) > y}. We have that

P
{
Γ(T ) > πr2

}
= P

{
min

0≤i≤n
|Xi(T ) − Xi(Si) + f(Si)| > r

}

By independence, the r.h.s. is equal to the product of
P {|Xi(T ) − Xi(Si) + f(Si)| > r} for 0 ≤ i ≤ n. This is
equal to

n∏
i=0

P {|(Xi(T ) − Xi(Si))/σi + f(Si)/σi| > r/σi}

where σ2
i = v(T − Si) the variances of Xi(T ) − Xi(Si).

Then, (Xi(T ) − Xi(Si))/σi are normal with variance 1, We
will make use of the following fact:

Lemma 11: Let X = (X1,X2) where X1, X2 are indepen-
dent, normal, zero-mean, one-dimensional random variables
with variance 1. Let α ∈ R

2, |α| ≥ 0. Then there exists a
random vector Y = (Y1, Y2) where Y1,Y2 are independent,
normal, zero-mean, one-dimensional random variables with
variance 2 exp(2|α|2) s.t. P {|X + α| > r} ≤ P {|Y | > r}.
The above states that the Euclidean length of a normal random
variable with variance 1 centered at a is stochastically domi-
nated by the length of a normal random variance centered at
the origin with a variance that depends on |a|. It can be proved
from basic principles of normal random variables. Hence, by
Lemma 11 we get that

P
{
Γ(T ) > πr2

} ≤
n∏

i=0

P {|Yi(|αi|/σi)| > r/σi}

where Yi(x) are independent normal with variance σ2(x) =
2 exp(2x2). Since v(T − τ) ≤ σ2

i ≤ vT and |αi| ≤ αf , the
r.h.s is upper-bounded by

n∏
i=0

P
{
|Yi(αf/

√
v(T − τ))| > r/

√
vT

}

The last quantity can be computed explicitly for normal
densities and gives us

P {Γ(T ) > y} ≤ exp


− (n + 1)y

2πvTσ2( αf√
v(T−τ)

)


 . (15)



In other words, Γ(T ) is stochastically dominated by an expo-
nentially distributed random variable and therefore by (14)

Ĝ
τ |f,n
0 (T ) ≤ 2πvT

n + 1
σ2(αf/

√
v(T − τ)).

Using the above bound, eq. (13) and the fact that, by Lemma
1, Ñf (τ) is Poisson distributed with expectation µ̃f (τ) we get
that

Ĝ
τ |f
0 (T ) ≤ 2πvT

µ̃f (τ)
σ2

(
αf/

√
v(T − τ)

)
.

By Lemma 2 however, µ̃f (τ) ≥ µ̃0(τ), as µf (0) = µ0(0) = ρ.
By first using this to strengthen the above inequality and then
taking the expectation over all f we get

Ĝτ
0(T ) ≤ 2πvT

µ̃0(τ)
E

[
σ2

(
α/

√
v(T − τ)

)]
where α = maxt∈[0,τ ] |B(t)| is the maximum distance from
the origin in [0, τ ] of a two-dimensional Brownian motion of
variance proportional to v. Suppose now that τ = τ(T ) is such
that the limit of τ(T )/T as T goes to infinity is 0. We remind
the reader that σ2(x) = 2 exp 2x2 . We state the following
Lemma without proof, for reasons of brevity.

Lemma 12: Let αn be the maximum value of the radial part
of a standard two-dimensional Brownian motion on an interval

[0, ξn], i.e. an = max0≤t≤ξn

(
(B1(t))

2 + (B2(t))
2
)1/2

where

B1(t) and B2(t) are independent one-dimensional standard
Brownian motions and ξn ≥ 0 with limn→∞ ξn = 0. Then,
for c > 0 and for large values of n, E

[
exp ca2

n

] ≤ 4
1−2cξn

,
i.e. E

[
exp ca2

n

]
is upper-bounded by a constant for large n.

We note that a Brownian motion of variance proportional
to v in the interval [0, T ] can be transformed to a standard
Brownian motion in [0, 1] if it is divided by

√
vT . This fact

along with Lemma 12 above complete the proof.

APPENDIX II
PROOF OF LEMMA 5

Before proving Lemma 5, we first give an intermediate
result, which is an implication of Lemma 4.

Lemma 13: Let g : [0,∞) → R be such that g(t) = o(t)
and lim

t→∞ g(t) = +∞. Then, the expected one-step flooding

area G0(T ) is O(g(T )ρ−1 log vT ).
Proof: Since g(t) = o(t) and limt→∞ g(t) = +∞, there

exists a t0 such that, for all t > t0, g(t) > 1 and g(t) < vt.
Let µ̃(t) = µ0(t) − µ0(0). We define τ(T ) as

τ(t) =

{
t, t ≤ t0

µ̃−1
(

µ̃(t)
g(t)

)
, o.w.

Note that τ(t) ≤ t for all t ≥ 0, by the monotonicity of µ0

(it is increasing by Lemma 1) and the fact that g(t) > 1 for
t ≥ t0. We claim that, for t > t0, the following inequality
holds:

µ̃(t)
g(t)

≤ µ̃

(
t

g(t)

)
. (16)

From (6) we have that µ̃(t) = ρ
(

2πvt
log vt + (c1 + o(1)) vt

log2 vt

)
as −µ0(0) gets absorbed in the o(1) term. The above inequal-
ity can thus be written as

2π

log vt
+ (c1 + o(1))

1
log2 vt

≤ 2π

log vt
g(t)

+ (c1 + o(1))
1

log2 vt
g(t)

It suffices thus that 1/ log vt ≤ 1/ log(vt/g(t)), which is true
since vt > g(t) and g(t) > 1. We therefore get that

lim
t→∞

τ(t)
t

= lim
t→∞

(
µ̃−1

(
µ̃(t)
g(t)

))
t

≤ lim
t→∞

(
µ̃−1

(
µ̃

(
t

g(t)

)))
t

from inequality (16) and the monotonicity of µ̃−1. The above
however is equal to limt→∞ 1/g(t) which is zero by our
second assumption on g(t). Hence, the conditions of Lemma

4 apply for τ(T ) and G0(T ) = O
(

2πvT
µ̃0(τ(T ))

)
. For T ≥ t0,

2πvT

µ̃(τ(T ))
=

2πvT

µ̃
(
µ̃−1

(
µ̃(T )
g(T )

)) =
2πvT
µ̃(T )
g(T )

=
g(T )

ρ
log vT · O(1)

and therefore G0(T ) = O( g(T )
ρ log vT ).

Note that g in Lemma 13 can grow arbitrarily slow -
provided that it goes to infinity. Showing that Lemma 5 holds
thus requires to extend Lemma 13 to the case where g is a
bounded function. Let f(T ) be

f(T ) =

{
0, vT ≤ 2
G0(T )/ log vT, o.w.

To show that G0(T ) is O(log(vT )), it suffices to show that
there exist a T0 > 0 and an M > 0 such that, for all T > T0,
f(T ) ≤ M . We will prove this by contradiction.

Suppose that for all T0 > 0, M > 0 there exists a
T > T0 such that f(T ) > M . We can define the following
sequence {ti, i ≥ 1}: Let t1 = 1, and ti+1 be such that
ti+1 > max(ti, i) and f(ti+1) > max(f(ti), i). Our hypothe-
sis implies that such a sequence exists (take T0 = max(ti, i)
and M = max(f(ti), i)). By construction, the sequence f(ti)
is increasing and, since f(ti+1) > i, its limit is +∞. For the
same reasons ti is also increasing and unbounded. Further-
more, note that, by Lemma 13, G0(T ) = O(log T log vT ),
hence the limit of f(ti)/ti ≤ K log ti/ti as i increases is 0.
Hence the sequence f(ti) satisfies the conditions of Lemma
13, and so does

√
f(ti). Thus, for a large enough i,

G0(ti) ≤ c
√

f(ti) log vti. (17)

On the other hand, as i → ∞ we have
√

f(ti)/f(ti) → 0,
hence for large enough i it is true that

√
f(ti) < 1

cf(ti) where
c the constant in (17). Hence, for large enough i, we have that
G0(ti) < f(ti) log vti = G0(ti), a contradiction.

APPENDIX III
PROOF OF LEMMA 6

We first define p0(t, T ) formally. Suppose that at time 0
the destination was located at the origin and that at time T



a flooding is initiated at the origin. For each node i ≥ 1 the
elapsed time since the last encounter with the destination is

S∗
i = min{t ≥ 0 : |Xi(T − t) − X0(T − t)| ≤ r0}. (18)

W.l.o.g. we assume this time that nodes are indexed according
to their accuracies. Under this convention, S∗

1 ≤ S∗
2 ≤ . . . By

abusing notation, we denote the accuracy of the destination
as S∗

0 = 0. Furthermore, let {N∗(t), t ≥ 0} be the counting
process of the number of messenger nodes with accuracy in
the interval [0, t] at time T , defined by N∗(t) = |{i : S∗

i ≤
t}|. In other words, N∗(t) is the number of nodes whose
last encounter with the destination was in the time interval
[T − t, T ]. By definition, {N∗(t), t ≥ 0} is a counting process
whose corresponding arrival process is {S∗

i , i ≥ 1}.

It is easy to see that N∗(T ) = N(T ). The two processes
are not necessarily equal for other values of t. However, their
distributions are the same, as stated in the following lemma.

Lemma 14: Processes {N(t), t ≥ 0} and {N∗(t), t ≥ 0}
are stochastically equivalent.

A proof can be found in [19]. The intuition is that, if one
reverses the “arrow of time”, the last times nodes exit the
transmission region around destination become the first times
they enter it. This lemma implies that corresponding versions
of Lemmas 1, 2 and 3 hold for N∗(t) as well.

Let I(T ) be the index of the node that is chosen at
a flooding initiated at time T at the origin defined as
I(T ) = arg min

i:S∗
i <T

Xi(T ). Then p0(t, T ) is the density of

S∗
I(T ). Consider P

{
S∗

I(T ) ≥ t
}

where t > 0. For t > 0,

the event {S∗
I(T ) ≥ t} implies the event {S∗

I(T ) > 0},
which in turn implies that at least one messenger node
with accuracy greater than zero exists (namely I). The latter
is represented by the event {N∗(T ) − N∗(0) ≥ 1}. On
the other hand, {S∗

I(T ) ≥ t} also implies {S∗
N∗(T ) ≥ t},

since, by definition, S∗
N∗(T ) ≥ S∗

I(T ). Hence, for t > 0,

P
{

S∗
I(T ) ≥ t

}
≤ P

{
S∗

N∗(T ) ≥ t ∩ N∗(T ) − N∗(0) ≥ 1
}

Let Ñ∗(t) = N∗(t) − N∗(0). Then, by Lemmas 14 and
3 E [N ]∗ (T ) = µ0(2t) − µ0(0), where µ0(t) is described
by eq. (6). The r.h.s. of the above inequality can then be
written as P

{
S̃∗

Ñ∗(T )
≥ t ∩ Ñ∗(T ) ≥ 1

}
where {S̃∗

i , i ≥ 1}
is the arrival process corresponding to the counting process
{Ñ∗(t), t ≥ 0}. This probability can be written as the ex-

pectation of P
{

S̃∗
Ñ∗

f (T )
≥ t ∩ Ñ∗

f (T ) ≥ 1
}

over all possible

paths f the destination may follow in the interval [0, T ].
By Lemmas 14 and 1, Ñ∗

f (t) is Poisson distributed with
expectation µf (t) − µf (0). The above probability is equal to

∞∑
n=1

P
{

S̃∗
n) ≥ t | Ñ∗

f (T ) = n
}

P
{

Ñ∗
f (T ) = 1

}
.

Since Ñ∗
f is a Poisson process however, we have that

P
{

S̃∗
n > t | Ñ∗

f (T ) = n}
}

=
∫ T

t

n(µ̃f (s))n−1

(µ̃f (T ))n
dµ̃f (s) and

P
{

Ñ∗
f (T ) = n

}
= eµ̃f (T ) µ̃f (T )n

n
.

Therefore P
{

S̃∗
Ñ∗

f (T )
≥ t ∩ Ñ∗

f (T ) ≥ 1
}

= 1−eµ̃f (t)−µ̃f (T ).

Taking the expectation over all paths gives the lemma, noting
that µ̃f (t) − µ̃f (T ) = µf (t) − µf (T ), E

[
eµf (t)−µf (T )

] ≥
eE[µf (t)−µf (T )] and that E [µf (t)] = µ0(2t) by Lemma 3.

APPENDIX IV
PROOF OF THEOREM 2

We first note that p0(t, T ) contains a δ0 term, a “jump” at
0: there is a non zero probability q that the node that we locate
will have accuracy zero -in fact, one can lower-bound this by
e−µ0(2T ). The Volterra equation (1) can thus be written as

Q0(T ) = G0(T ) + qQ0(0) +
∫ T

0

p̂(t, T )Q(t)dt

= G0(T ) +
∫ T

0

p̂(t, T )Q(t)dt

where p̂(t, T ) is p(t, T ) without the δ0 term (i.e. p̂(t, T ) =
p(t, T ) for t > 0 and

∫ T

0
p̂(t, T )dt = 1 − q). Working on

basic principles of Volterra equations, one can show that the
following two lemmas hold. We omit their proofs for reasons
of brevity.

Lemma 15: Let Qa(T ), Qb(T ), T ≥ α > 0 be the solutions
of the equations

Qa(T ) = Ga(T ) +
∫ T

0

p(t, T )Qa(t)dt and

Qb(T ) = Gb(T ) +
∫ T

0

p(t, T )Qb(t)dt

respectively, where Ga(T ) ≥ 0, Gb(T ) ≥ ε > 0, p(t, T ) > 0,
and Ga(T ) = O(Gb(T )). Then Qa(T ) = O(Qb(T )).
This lemma indicates that, to obtain an asymptotic upper
bound for Q(T ), one may do so by computing such a bound
for G(T ).

Lemma 16: Let Qa(T ), Qb(T ) be the solutions of the
equations

Qa(T ) = G(T ) +
∫ T

0

pa(t, T )Qa(t)dt and

Qb(T ) = G(T ) +
∫ T

0

pb(t, T )Qb(t)dt

respectively, where G(T ) ≥ 0, G′(T ) ≥ 0 in [0,+∞), for all
0 ≤ τ ≤ T ∫ T

τ

pa(t, T )dt ≤
∫ T

τ

pb(t, T )dt < 1, (19)

and or any fixed τ ≥ 0, ∂
∂T

∫ T

τ
pb(t, T )dt ≥ 0 for all T in

[τ,+∞). Then Qa(T ) ≤ Qb(T ).



The above formalizes the concept that we stated in Section VI-
B regarding stochastic domination. Lemma 5 indicates that
G0(T ) = O(log(T + 2)) and makes Lemma 15 applicable.
Furthermore, Lemma 6 allows us to make use of Lemma 16.
Hence Q0(T ) is asymptotically upper-bounded by the solution
of

Q(T ) = log(T + 2) +
∫ T

0

exp(µ(t) − µ(T ))Q(t)dµ(t).

The kernel of this Volterra equation is separable (see [18]) and
the solution can be computed. It is equal to

Q(T ) = log(T + 2) +
∫ T

0

log(t + 2)dµ(t))

≤ log(T + 2)(1 + µ(T )) = O(T )

since µ(t) = µ0(2t) = O(2πvt/ log vt).

APPENDIX V
PROOF OF LEMMA 9

Lemma 7 implies that, if A(T ) = Θ(log1+2α T ), the ex-
pected one-step flooding area G1(T ) is O(log1+2α T ). Using
this result, one can show that Q1(T ) ≤ Q∗(T )O(log1+2α T ),
where Q∗(T ) is the expected number of flooding steps the
protocol makes, given by:

Q∗(T ) = 1 +
∫ T

0

Q∗(t)p1(t, T )dt. (20)

From Lemma 8, we know that, if A(T ) = Θ(log1+2α T ), for
every 0 < ε < 1 there exists a T0 > 0 such that for all T > T0∫ T−τ(T )

0

p1(t, T )dt ≥ 1 − ε, (21)

where τ(T ) = β T
logα T , and 0 < β < 1. Note that F (T ) =

T − τ(T ) and τ(T ) are strictly increasing for large enough T .
One can thus take T0 such that (21) holds and F (T ), τ(T )
are strictly increasing in [T0,∞).

Let M = sup[0,T0] Q
∗(T ). Based on the fact that the

probability that the destination is located through flooding in
LER1 is positive, one can show that M < ∞. Similarly one
can show that sup[T1,T2] Q

∗(T ) < ∞ for any T1, T2. Using
M , we construct a function S(T ) such that Q∗(T ) ≤ S(T )
for all T . Let S(T ) be the solution of the set of equations:

S(T ) =
1

1 − ε
+ S(T − τ(T )), T > T0 (22a)

S(T ) = M, 0 ≤ T ≤ T0 (22b)

We will show that Q∗(T ) ≤ S(T ) for all T .
Note first that S(T ) has the following form: As F (T ) =

T −τ(T ) is strictly increasing in [T0,∞), a strictly increasing
inverse F−1 exists in this interval. Furthermore, F (T ) < T ,
hence F−1(T ) > T . We define the sequence T1 = F−1(T0),
T2 = F−1(T1),. . . which is strictly increasing. By definition,
for i ≥ 1,

Ti − Ti−1 = τ(Ti) (23)

and, as τ(T ) is strictly increasing in [T0,+∞), the sequence
{Ti} is divergent and Ti → +∞. The solution of (22) can
then be written as S(T ) = M for T ∈ [0, T0], S(T ) = M +
1/(1−ε), for T ∈ (T0, T1],. . . , S(T ) = M +i/(1−ε) for T ∈
(Ti−1, Ti]. By definition of M , Q∗(T ) ≤ S(T ) for all T ≤ T0.
Consider some T ∈ (T0, T1]. Then S(T ) = 1/(1 − ε) + M
and, by (20),

Q∗(T ) ≤ 1 + sup
[0,T−τ(T )]

Q∗(t)
∫ T−τ(T )

0

p1(t, T )dt + . . .

sup
[T−τ(T ),T ]

Q∗(t)
∫ T

T−τ(T )

p1(t, T )dt

≤ 1 + M

∫ T−τ(T )

0

p1(t, T )dt + . . .

sup
[0,T1]

Q∗(t)
∫ T

T−τ(T )

p1(t, T )dt

On the other hand, sup[0,T1] Q
∗(t) ≥ sup[0,T0] Q

∗(t) = M .

Furthermore, by (21),
∫ T−τ(T )

0
p1(t, T )dt ≥ 1 − ε and thus

Q∗(T ) ≤ 1 + (1 − ε)M + ε sup
[0,T1]

Q∗(t).

The above inequality holds for all T ∈ (T0, T1]. It trivially
holds for all T ∈ [0, T0] as well. Hence

sup
[0,T1]

Q∗(t) ≤ 1 + (1 − ε)M + ε sup
[0,T1]

Q∗(t)

which gives us that Q∗(T ) ≤ S(T ) in (T0, T1]. Finally,
Q∗(T ) ≤ S(T ) for all T > T1 can be shown by induction, by
setting M ′ = sup[0,Ti] Q

∗(t) ≤ M+i/(1−ε) and constructing
as above an S′ ≤ S which upper-bounds Q∗(T ) in (Ti, Ti+1].

As Q1(T ) ≤ Q∗(T )O(log1+2α(T )) and Q∗(T ) ≤ S(T )
for all T , it suffices to show that lim sup S(T )

log1+α T
is upper-

bounded by a constant. To see this, note that

S(Ti) − M =
i

1 − ε
=

1
1 − ε

i∑
k=1

1 =
1

1 − ε

i∑
k=1

Tk − Tk−1

Tk − Tk−1

=
1

1 − ε

i∑
k=1

(Tk − Tk−1)
1

τ(Tk)
, by (23)

≤ 1
1 − ε

∫ Ti

T0

1
τ(t)

dt =
1

1 − ε

∫ Ti

T0

logα t

βt
dt

as τ(T ) = β T
logα T is increasing in [T0,+∞). For any T > T0,

let T̂ = Ti such that T ∈ (Ti, Ti+1]. Then

lim sup
T→∞

S(T )
log1+α T

≤ lim sup
T→∞

S(T̂ ) + 1
1−ε

log1+α T̂
= lim

i→∞
S(Ti) + 1

1−ε

log1+α Ti

≤ lim
i→∞

1
(1−ε)β

∫ Ti

T0

logα t
t dt + M + 1

1−ε

log1+α Ti

≤ 1
(1 − ε)β

as
∫ Ti

T0

logα t
t dt ≤ logα Ti

∫ Ti

T0

dt
t .


