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Abstract—A fundamental challenge in peer-to-peer and online
social networks is the design of a simple, distributed algorithm
that allows users to discover, and connect to, peers who closely
match their interests or preferences. In this paper, we consider an
algorithm that is based on simple, local comparisons, and analyze
it to provide insights into why similar peer discovery algorithms
work well in practice. To do so, we use a mathematical framework
to characterize the closeness of individual interests, and formally
introduce the notion of a “perfect network formation” under
the framework. Our analysis shows that the proposed algorithm
indeeds achieves perfect network formation. Our analysis uses
bounding techniques based on Chernoff bounds.

I. INTRODUCTION

In this paper we consider the network formation problem

in peer-to-peer and online social networks. In particular, we

consider the situation where users would like to discover

and connect to peers with similar interests. In peer-to-peer

networks, users would like to connect to peers who are

interested in (and are therefore more likely to have) similar

content, as this will reduce query overhead and query delay

[1]. In online social networks, users would like to become

friends with those who have similar interests. From a practical

perspective, we are interested in network algorithms that are

simple and can easily be implemented in a distributed fashion.

The most simple distributed algorithm is to let users interact

directly with each other to find peers with similar interests.

We refer to this process as neighborhood discovery. In the

context of a peer-to-peer content sharing application, this

could be done by peers polling each other and comparing the

content they have stored locally. In the neighborhood discovery

process, if a user finds another user who has similar interests

(e.g., another peer who stores content in which the user is

interested), then they conclude that they are similar.

However, neighborhood discovery is generally noisy as it

is based on sample ovservations that are available (see for

example [2]), and two users who have similar interests may

falsely conclude that they are dissimilar, or two users may

conclude that they have similar interests even though they are

dissimilar. Therefore, a fundamental question that arises in

the context of network formation is whether it is possible to

devise a mechanism to overcome the noise problem, leading

to a “perfect network formation process” in the sense that: (a)

it allows an individual to discover everyone who has similar

interests; and (b) it makes no mistake of connecting two

dissimilar users.

One simple and intuitive approach, often seen in the litera-

ture, is to introduce a “neighborhood refinement” step where

users compare their initial neighborhood sets obtained from

the neighborhood discovery step (“Who are your Friends?”).

Then two users connect only if their initial sets have a

sufficiently large overlap. Network formation algorithms that

use a neighborhood refinement step have been applied to both

peer-to-peer networks [2] and online social networks [3], and

they have been shown to perform well.

The goal of this paper is to provide insights into why such

simple mechanisms work well from a theoretical perspective.

The main contributions of the paper are as follows: (a)

we introduce the notion of “perfect network formation” as

a formal performance measure to study network formation

algorithms (this criteria is generic and is not limited to the

network formation mechanisms that we study in this paper),

and (b) we rigorously show that a network formation algorithm

based on neighborhood refinement can achieve perfect network

formation. Our analysis also provides new insights into how

the threshold function in the neighborhood refinement step

should be chosen. We illustrate how this insight can be applied

to practical problems with a numerical case study based on a

real dataset.

II. RELATED WORK

The idea of using a “neighborhood discovery” process to

identify other peers that have similar interests has been applied

to peer-to-peer networks, where the underlying observation is

that users with similar interests are likely to have content of

common interest (also called Interest-based locality) [1]. In

[1], the authors propose a mechanism such that a user in

a peer-to-peer file-sharing system (e.g., Gnutella, eDonkey)

queries a cached list of peers with similar interests before

querying the whole network. They show empirically that this

mechanism improves the performance of Gnutella both in

terms of query traffic and query delay.

The mechanism in [1] only uses a neighborhood discovery

step to find other peers with similar interests. In [2], the authors

extend the mechanism of [1] by using a neighborhood refine-

ment step. The authors show empirically that the resulting
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mechanism improves performance in terms of query success

rate.

Mechanisms that use a neighbourhood refinement step have

also been used for the link prediction problem in social

networks [4]: given a past snapshot of a social network,

what links will be added in the next time step? In [4], it is

shown that in scientific collaboration networks the probability

of two scientists collaborating increases with the number of

collaborators they have in common. This motivates neighbor-

hood refinement for the use of link prediction. Surprisingly,

simple proximity measures such as the number of common

neighbors, and Adamic/Adar [6] (giving higher weighting

to rarer common neighbors) outperform more sophisticated

measures based on random walks and shortest paths [5]. While

the studies performed in [4], [6], [5] are experimental, [7]

presents a formal analysis on neighborhood refinement applied

to the link prediction problem. The perfect network formation

problem (that we consider in this paper) is different from the

link prediction problem in the sense that we try to identify

all users who have similar interests (without making any

mistakes), whereas the link prediction problem focuses on

identifying, for a set of given users, the N links that are most

likely to be created at the next time step. This difference in

the objective function makes the perfect network formation

problem a considerably harder problem compared with the

link prediction problem.

The model that we use to characterize similarities between

users falls within the class of latent space models [8] which

assume that each node (user) lies in a latent space with an

unobserved position, and edge probabilities depend on node

positions (more specifically, edges are conditionally indepen-

dent given nodes’ positions). To simplify the analysis, we

consider a one-dimensional lattice as the latent space model.

The extension to more general settings is future work.

Our work is also related to the study of planted partition

model [9], where the set of nodes can be partitioned into

a finite number of clusters such that nodes within the same

clusters have exactly the same interests [10], [11]. Two nodes

in the same cluster (or different clusters) are connected by

an edge with probability p (or q) with p > q. Note that

this is a different model from the latent space model that

we consider in this paper. The analysis in this paper can be

interpreted as extending the work in [10] to the latent space

model. This extension requires a different set of mathematical

tools: whereas the analysis in [10] relies on techniques from

spectral analysis, here we use bounding techniques based on

Chernoff bounds.

III. MODEL AND PROBLEM STATEMENT

In this section we introduce the mathematical model uses for

our analysis, and provide a formal description of the proposed

algorithm. We use a latent space model [8] to characterize and

measure the closeness of the interests of two users, as well as

to characterize noise in the neighborhood discovery process.

User Distance Function: We begin with a model to

characterize users’ interests and the closeness of the interests

between two users. To do this, we assume that the interests

of a given user u can be characterized by a feature vector

fu that is an element of a metric space. The distance of the

interests d(u, v) between two users u and v is then given by

d(u, v) = d(fu, fv), where d(fu, fv) is the distance between

the corresponding feature vectors fu and fv in the metric

space.

We consider a sequence of systems (networks) indexed by

n, where n = 1, 2, ..., and the nth system has 2n+1 users. In

the following, we denote N (n) as the set of users in system

n. To simplify the analysis, we assume that in each system the

feature vectors of users are arranged on a ring as illustrated

in Fig. 1, and that the distance d(fu, fv) between the feature

vectors fu and fv is given by the ring distance between fu
and fv , which is the minimum number of hops between them

as illustrated by Fig. 1 (left).

u v

x y

12 3

d(1, 2) = 1 d(1, 3) = 1

d(1, 2n) = n d(1, 2n+ 1) = n

Fig. 1. Set N (n) and ring distance that is used as a metric.

Neighborhood Discovery We assume users cannot directly

observe the distance d(u, v), i.e., users have no direct knowl-

edge of which others are close to them. Instead, users have

to interact with others and use the information obtained to

identify users with similar interests, i.e., those who are within

a short ring distance. We refer to this process as neighborhood

discovery.

As mentioned, the neighborhood discovery process is noisy

and users who have similar interests might conclude during

the neighborhood discovery process that they are dissimilar,

and vice versa. We model this noise for system n with 2n+1
users as follows. Consider two users u and v who are at a

ring distance d(u, v) from each other. User u concludes in the

neighborhood discovery process that v has similar interests as

itself (u connects to v) with probability Pr(u → v), given by

Pr(u → v) = Cuα(n)
d(u,v), (1)

where α(n) is such that 0 < α(n) < 1, and Cu is a constant

depending on u such that 0 < Cu ≤ 1. This model captures

the intuition that user u is more likely to connect to a user v
with a smaller distance d(u, v).

Furthermore, we assume that α(n) is of the form

α(n) = e−2/λ(n) (2)

where λ(n) is an increasing function with lim
n→∞

λ(n) = ∞.
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Let Su be the set of nodes to which user u connects during

the neighborhood discovery process. In the following, we refer

to Su as the initial neighborhood set.

Under the above model, it can be shown that the expected

size of the initial neighborhood set Su satisfies E[#Su] =
Cuλ(n)(1+o(1)), i.e., λ(n) captures how the size of the initial

neighborhood set scales with n, and Cu captures the “relative

socialness” of a user, i.e., how large the initial neighborhood

set of user u is, relative to other users.

Neighborhood Refinement: As the neighborhood discov-

ery process is probabilistic (see Eq. (1)), it is noisy in the sense

that the initial neighborhood set Su of user u may include

a user v that is in fact at a large distance d(u, v) from u.

Similarly, the initial neighborhood set Su of user u may not

include some users that are very close to u. To overcome this

problem, we consider the following neighborhood refinement

mechanism.

Given the initial neighborhood sets obtained during the

neighborhood discovery process, user u forms a final neighbor-

hood set Nu as follows. Using a threshold parameter kuv > 0,

user u includes user v in its final neighborhood set Nu if and

only if the overlap between the two sets Su and Sv is no less

than the threshold kuv . More precisely, let Su,v = Su ∩ Sv

be the intersection of the initial neighborhood sets Su and Sv .

User u then includes user v in its final neighborhood set Nu

if the size #Su,v is no less than the threshold kuv , i.e., if we

have #Su,v ≥ kuv . We also set kuv(n) to be a function of n.

Research Questions: There are two main research ques-

tions that arise for the above network formation algorithm

consisting of the network discovery and refinement steps: (1)

how should one choose the threshold parameters kuv , and (b)

is the network refinement step indeed able to overcome the

noise of the neighborhood discovery process?

IV. MAIN RESULTS

The goal of this paper is to study and characterize the

effectiveness of the proposed algorithm. In particular, we

would like to study whether the neighborhood refinement step

can lead to perfect network formation despite the noise in

the neighborhood discovery process. Ideally, perfect network

formation should have the property that there exists a threshold

value ∆(n) such that the final neighborhood Nu of user u
obtained by the proposed algorithm is equal to the set of users

whose interests lie within a distance ∆(n) of user u, i.e., we

have Nu = {v ∈ N (n) : d(fu, fv) ≤ ∆(n)}. However, this

is too stringent a criterion (probably no algorithm can achieve

it), and we define a slightly weaker notion instead.

We use the following notation to formally define the criteria

for perfect network formation. Fix a user u. Let ρu(n) be the

accuracy ratio given by

ρu(n) =
#{v ∈ Nu : d(fu, fv) ≤ ∆(n)}

#{v ∈ N (n) : d(fu, fv) ≤ ∆(n)}
, (3)

i.e., ρu(n) is the fraction of users within a distance of ∆(n)
from u that are included in the final neighborhood set Nu, and

let the false positive ratio τu(n) be given by

τu(n) =
#{v ∈ Nu : d(fu, fv) > ∆(n)}

#{v ∈ N (n) : d(fu, fv) ≤ ∆(n)}
, (4)

i.e., the relative size of the set of users in the final neighbor-

hood set Nu that are further than ∆(n) away from u (and

therefore should not be included in Nu).

Using the above notation, we then define perfect network

formation as follows.

Definition 1. We say the algorithm leads to perfect network

formation with resolution ∆(n) for user u if there exist thresh-

old functions kuv(n) such that ρu(n) and τu(n) converges to

1 and 0 respectively in probability, i.e., for all ξ > 0,

lim
n→∞

Pr(|ρu(n)− 1| ≥ ξ) = 0

lim
n→∞

Pr(|τu(n)− 0| ≥ ξ) = 0

Note this definition captures the notion that perfect network

formation should have the properties that it allows a user (a)

to connect to all other users who have similar interests (i.e.,

at distance less than ∆(n)) and we have

lim
n→∞

Pr(|ρu(n)− 1| ≥ ξ) = 0,

and (b) not to connect to any users who have dissimilar

interests (i.e., at distance larger than ∆(n)) and we have

lim
n→∞

Pr(|τu(n)− 0| ≥ ξ) = 0.

The main result from our analysis is to derive sufficient

conditions under which the network formation mechanism

using a neighborhood refinement step leads to perfect network

formation. We have the following result.

Theorem 1. Fix any user u. If λ(n) satisfies

λ(n) = ω(log n) and λ(n) = o(n/ log n),

then for all ∆(n) satisfying

∆(n) = ω(λ
3
4 (n) log

1
4 n) and ∆(n) = O(λ(n)),

choosing threshold functions kuv(n) as kuv(n) = CuCvk(n)
with

k(n) =

[(

λ(n)

2
+ ∆(n)− 2

)

e−
2∆(n)
λ(n) +O

(

1

λ(n)

)]

, (5)

leads to perfect network formation with resolution ∆(n).

To illustrate the conditions and the result of Theorem 1,

suppose that λ(n) = n1/3; note this function satisfies the

conditions on λ(n) in Theorem 1. Then Theorem 1 states that

the network refinement mechanism allows user u to perfectly

detect its neighborhood with resolution ∆(n), where ∆(n) can

be, for example, any np with 1/4 < p ≤ 1/3.

Recall that Cuλ(n) is roughly the expected size of user

u’s initial neighborhood set, and ∆(n) is the desired distance

in the network formation process, i.e., a user would like

to identify all other users whose interests are closer than

∆(n), and exclude all users that are further away than ∆(n).
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Theorem 1 then gives (a) sufficient conditions on λ(n) and

∆(n) for perfect network formation to be possible, and (b) an

explicit expression for the threshold values kuv(n) that should

be used in the neighborhood refinement step in order to achieve

perfect network formation.

More precisely, Theorem 1 states that λ(n) and ∆(n) cannot

be too small or too large in order to be able to achieve perfect

network formation. The intuition is as follows. On one hand,

note that the smaller λ(n) (i.e., the smaller the initial set

obtained in the neighborhood discovery step) the less likely

it is for the initial neighborhood sets of two users to overlap.

Therefore, if λ(n) is too small then the initial sets of two

users may not overlap even if they have similar interests—

and perfect network formation cannot be achieved. On the

other hand, if λ(n) is too large (i.e., close to n) then all users

will have a large overlap, even when they have very dissimilar

interests—again, in this case perfect network formation cannot

be achieved. On the other hand, the fact that the resolution

∆(n) of network formation cannot be larger than the size

of the initial set obtained in the neighborhood discovery step

(which is of the order λ(n)) is intuitive. In addition, Theorem 1

also states that ∆(n) cannot be too small. Note that if ∆(n)
is very small, the differences in the probabilities Pr(u → v)
between nodes that are just below/above the resolution ∆(n)
is too small to achieve a perfect network formation.

Theorem 1 gives an explicit expression for the threshold

values kuv(n) that should be used in the neighborhood re-

finement step to achieve perfect network formation. However,

evaluating this expression requires the explicit knowledge

of the the parameters Cu for all users u, as well as the

explicit knowledge of the function λ(n), which is unrealistic in

practical situations. As a result, in order to apply the algorithm

in a practical setting, the parameters Cu need to be estimated,

and the threshold k(n) needs to be determined through a

training (“trial and error”) phase. In Section V, we provide

a numerical case study to show how this can be done.

A. Comparison with Network Discovery Process

One can show that under the latent space model of Sec-

tion III, the network formation mechanism consisting only

of a network discovery process is unable to achieve perfect

network formation. This results shows that the mechanism

using a network refinement step is indeed superior to one that

only uses the network discovery process.

V. NUMERICAL CASE STUDY

We use a numerical case study to illustrate how the above

network formation algorithm can be implemented in a practical

setting. For the case study, we use a real-life dataset that was

provided for the Netflix competition [12]; the dataset consists

of actual ratings (from 1 to 5) that users gave to movies rented

from the online video rental company Netflix. The dataset that

we used for our case study consists of 1785 users and 5000
movies (not all users rated all movies).

We divide the dataset into two disjoint sets D1 and D2. We

use the set D1 for the above network formation mechanism,

and use the set D2 to evaluate the quality of the obtained

network. More precisely, we use the network formation mech-

anism of Section III to identify for each user u a set of other

users Nu who have similar preferences for movies, i.e., who

tend to give similar movie ratings (we provide below a precise

describtion of the algorithm that we use). We then use the

obtained neighborhood sets Nu to try to predict the actual

ratings that user u gave to a particular movie in the set D2 by

taking the average rating of users in the set Nu for this movie.

To evaluate the quality of the network formation process, we

determine how well the average ratings over a neighborhood

set predicts the actual ratings by computing the Root-Mean-

Square-Error (RMSE) for a total of d = 602 movies in the

dataset D2 by computing RMSE =
√

1
d

∑d
i=1(T̂i − Ti)2,

where Ti and T̂i are respectively the actual and predicted

ratings of the i-th movie in the dataset D2.

The algorithm that we use for network formation is given

as follows.

Neighborhood Discovery: For user pair u and v we com-

pute a similarity measure suv ∈ [0, 1] given by

suv = 1−
∑

m∈Muv

|Rum −Rvm|/(4 ·#Muv),

where Muv is the set of movies in the set D1 for which

both users u and v provide a rating, and Rum and Rvm are

the ratings that users u and v gave to movie m. The initial

neighborhood set Su of user u then consists of users v such

that suv is within the top λu highest scores for user u. Here

λu is a parameter that we can tune to test how the variance in

the “relative socialness” of users influence the quality of the

network formation process.

Neighborhood Refinement: Given a parameter k, the final

neighborhood set Nu of user u consists of all users v in the

initial neighborhood set Su of user u such that the size of

their initial neighborhood overlap is larger than the threshold

kuv = (λuλv/λ
2
average

)k.

Note that in the above algorithm, we use the size of the

initial neighborhood set λu as an estimate for Cu in the

algorithm given in Section III. In our simulations, we choose

the parameter k in the neighborhood refinement step through

“trial and error” as described below.

A. Full Information and Homogeneous Socialness

We first consider the case where each user computes the

similarity measure for all other users and where all users

are “equally social”, i.e., we have λu = λ for all users.

Fig. 2(a) shows the performance of the network formation

mechanism for different values of λ, where for each value of

λ we choose through “trial and error” the threshold value k that

minimizes the RMSE. Fig. 2(a) also shows the performance for

the case where the network formation mechanism only uses

the neighborhood discovery step, but not the neighborhood

refinement step, i.e., uses the initial neighborhood set Su to

predict the ratings for user u. Note that the neighborhood

refinement step improves the performance by at least 1%,

which is a significant improvement in this context [13].
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(a) Performance for different values for λ in
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(b) Peformance for λ = 136 and different
values of k, in homogeneous socialness case.
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(c) Performance for values for the mean de-
gree m and with λ = 0.3 and k = 5.

Fig. 2. Results for numerical case study.

Fig. 2(b) shows the performance of the network formation

mechanism with the neighborhood refinement step for λ = 136
and different values of k. We note that the performance of the

mechanism is surprisingly robust with respect to the threshold

value k; this is a highly desirable property as it implies that

picking a threshold value k in a practical setting is not too

difficult.

B. Partial Information and Heterogeneous Socialness

Next we consider the more general (and realistic) setting

where (a) users are able to compute the similarity measure only

for a random subset of all users, and (b) users have different

relative socialness resulting in different values of λu.

To do this, we first generate an undirected random graph

G where the node degrees follow a Gaussian distribution [14]

with mean m (a varying parameter) and standard deviation

taken as one-fourth of the mean. The graph G determines “who

meets who”, i.e., for which other users v a given user u is able

to compute the similarity measure suv .

The parameter λu used in the neighborhood discovery step

to form the initial set Su is then given by λu = 0.3eu, where

eu is the node degree of user u in the random graph G. The

parameter k in the neighborhood refinement step is set to be 5.

Purposely, we do in this case not carefully choose the threshold

parameter k for the refinement step, to investigate how robust

the mechanism is in more realistic settings.

Fig. 2(c) shows the performance of the two network for-

mation mechanisms for different values of the mean node

degree m in the random graph G. Note that the network

formation mechanism with the neighborhood refinement step

again significantly outperforms the mechanism that only uses

a neighborhood discovery step, until the mean degree reaches

m = 200. The reason for the performance drop of the

mechanism for m = 200 is that the initial neighborhood

sets Su become too small (the expected size of the initial

neighborhood set in this case is equal to 60) and it becomes

unlikely that the initial neighborhood sets of two users overlap

(even if these users have very similar interests). As a result,

the final neighborhood sets are too small to provide a good

estimate of a users rating. Note this result is consistent with

Theorem 1, which states the size of the initial neighborhood

set, i.e., λ(n), cannot be too small if one wants to achieve

perfect network formation.

Fig. 2(c) suggests that choosing the size λu of the initial

neighborhood set Su is a good way to estimate the parameter

Cu of the original algorithm, and that the network formation

mechanism works well even without carefully choosing the

threshold parameter k for the neighborhood refinement step.

As it has been experimentally observed elsewhere [2], [4], [6],

[5], these properties make the network formation mechanism

with neighborhood refinement an algorithm that can be used

well in practice.
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