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Abstract— We consider the situation where users rank items
from a given set, and each user ranks only a (small) subset of
all items. We assume that users can be classified into C classes,
and users in a given class c have the same ranking for all items.
For this situation we are interested in the following question. As
a function of the number of users N in a given class c and the
numbers of items IN to be ranked, how many rankings mN per
user are needed in order to be able to correctly identify all user in
class c? This question is of interest because correctly identifying
all users in a class allows to accurately predict the ranking of an
item by a given user that the user has not ranked, but that was
ranked by another user in the same class. This is exactly the goal
recommender systems using collaborative filtering. Therefore,
being able to answer the above questions allows us to characterize
how much data (i.e. how many rankings per user) is required by
a recommender system using collaborative filtering to accurately
predict user-item ranking pairs.

We study the above question using a random graph model.
Even though the resulting random graph is not a Erdos-Renyi
graph, this allows us to use for our analysis similar techniques
that have been developed for the analysis of Erdos-Renyi graphs.

I. INTRODUCTION

Consider the situation where users rank items (such as
books, movies, etc.), and suppose that each user typically
only ranks a small subset of all possible items. We assume
that rankings take on a value on the interval [0, 1] indicating
how much the user likes (values) a given item. Recommender
systems using collaborative filtering then try to accurately
predict the ranking of an item by a given user that the user
has not ranked, but that was ranked by other users.

The above problem has many applications. For example,
Amazon.com uses a recommender system to suggest to cus-
tomers books based on the book rankings that customers
have provided. Similarly, the online movie rental company
Netflix uses a recommender system to suggest movies to
customers. Recommender systems can potentially also be used
in the context social networking applications that have become
increasingly popular.

Theoretical work on recommender systems that use col-
laborative filtering have focused on the analysis of specific
algorithms. In particular, there has been interested in char-
acterizing the number of rankings that a given algorithm
requires in order to correctly predict (with high probability)

rankings of all user-item pairs. In this paper, we take another
point of view. Rather than focusing on a specific algorithm,
we investigate the following question: “What is the minimal
number of rankings that any algorithm requires in order to
provide accurate predictions?”.

Due to space constraints, we state several of our results
without providing a proof.

II. PROBLEM FORMULATION

Clearly, in order to be able to predict the rankings for a
given user based on the rankings on other users, there has
to be some correlation between the users’ ranking. There are
several possible approaches to model such a correlation. For
our analysis, we consider a model proposed by Awerbuch et
al. in [2] which assumes that users can be classified into a
fixed number of C classes, and users in the same class have
the same ranking for all items. For a given set I of I items, let
rc = (rc(1), ..., rc(I)) ∈ [0, 1]I be the ranking vector of users
in class c. The model allows for ranking vectors of different
classes to “overlap”, i.e. we can have that rc′(i) = rc′′(i),
c′ 6= c′′, for some items i. For this model, we are interested
in deriving a lower bound on the number of rankings required
to correctly all users in a given class c.

As we are interested in a lower-bound on the number of re-
quired rankings, we assume in this paper complete separation
among the rankings of different classes, i.e. if c′ 6= c′′ then we
have rc′(i) 6= rc′′(i), i = 1, ..., I . Complete separation makes
the ranking prediction problem simpler, and providing a lower
bound on the number of rankings per user needed in order to
accurately predict all user-item ranking pairs for this case will
also provide a lower bound for the general case.

For the case of complete separation, it suffices to consider a
single class and we formulate the problem considered in this
paper as follows. Consider a given class c and let Nc be the
number of users in this class. Let INc be the number total
number of items to be ranked. Suppose that each user ranks
exactly mNc items that are chosen at random and uniformly
over all items, independent of the choices of all other users.
Then we are interested in the following question: “What is
the minimal number mNc of rankings required in order to
correctly identify all users in class c in the limit as Nc

approaches infinity?”. Note that we allow INc
and mNc

to



depend on Nc, i.e. the number of items to be ranked and the
number of ranking that each user makes can grow as the user
population Nc grows.

III. RANDOM GRAPH MODEL

To study the above question, we consider the following
random graph model to which we refer as the user graph.
Let N be the set of the N users (over all classes) that rank
items. Each user u ∈ N represents a node in the graph. There
exists an edge between two users (nodes) u and v if, and only
if, there exists an item i that has been ranked by u and v,
and both u and v have assigned the same ranking to item i.
As we assume complete separation of the ranking between
two different classes, the existence of an edge between two
users is given by the following condition. Let Su be the set
of items that have been ranked by user u. Then there exists
an edge between two users u and v if and only if both u and
v belong to the same class and Su ∩ Sv 6= ∅. Let VN be the
resulting set of edges, and let GN = (N ,VN ) be the resulting
graph. The following lemma follows immediately from the
above definition.

Lemma 1: Let G′ = (N ′,V ′) be a connected component of
the graph GN . Then all users in N ′ belong to the same class.

Using the the above defined user graph, we derive in
the following a necessary condition for any algorithm to
correctly identify all users in a given class c. To do that we
use the following adversary model. After a given algorithm
has decided on how cluster users into classes based on the
available ranking information (i.e. given the user graph GN ),
the adversary decides on all the missing rankings (i.e. the
rankings for all user-item pairs for which no prior ranking is
available) where these rankings have to be consistent with the
above model, i.e. all users that belong to the same component
in GN have the same ranking vector (see Lemma 1). We then
have the following impossibility result.

Lemma 2: Suppose that the graph GN has two discon-
nected components G1 and G2, and let I1 (I2) be the set
of items ranked by users in G1 (G2). If I1 ∩ I2 = ∅ then
there exists no algorithm that can correctly predict whether
the users in G1 and G2 belong to the same class, or not.

Proof: Let r ∈ [0, 1]IN be a ranking vector such that for
all items i ∈ I1 the ranking r(i) is as the ranking given by
users in the graph G1, and for all items i ∈ I2 the ranking r(i)
is as the ranking given by users in the graph G2. In addition,
let r1 ∈ [0, 1]IN be a ranking vector such that for all items
i ∈ I1 the ranking r(i) is as the ranking given by users in the
graph G1, and for all items i ∈ IN\I1 the ranking r1(i) is
different from all rankings given by users u ∈ N to item i.
Similarly, let r2 ∈ [0, 1]IN be a ranking vector such that for
all items i ∈ I2 the ranking r(i) is as the ranking given by
users in the graph G2, and for all items i ∈ IN\I2 the ranking
r2(i) is different from all rankings given by users u ∈ N to
item i. Suppose that a given algorithm decides that the users
in G1 and G2 belong to the same class, then an adversary can
assign ranking vector r1 to the users in G1 and ranking vector
r2 to the users in G2, making the decision of the algorithm

the wrong decision. Similarly, if the algorithm decides to that
the users in G1 and G2 belong to different classes, then an
adversary can assign assign the ranking vector r to users in
both G1 and G2.

The following necessary condition for an algorithm to be
able to correctly identify all users in a given class c is obtained
immediately from the above lemma. We use the following
notation. Let Nc be the set of users in class c, let Vc,N be the
set of edges between users of class c in GN , and let Gc,N =
(Nc,Vc,N ).

Corollary 1: A necessary condition for an algorithm to be
able to correctly identify all users in a given class c is that the
graph Gc,N is fully connected.

Corollary 1 states that a necessary condition for being to
identify all users in class c is that the corresponding user graph
formed is fully connected. Therefore, studying the question of
when it is possible to correctly identify all users in class c can
be recast as deriving conditions on the number of rankings
mN required for the graph Gc,N to be fully connected.

IV. MAIN RESULTS

Consider a fixed class c, and in order to simplify notation
let N (instead of Nc) denote the number of of users in class c.
Recall that IN is the total number of items to be ranked, and
that mN is the number of rankings each user provides where
items are uniformly and independently chose over the set of all
possible items. The following theorem provides necessary and
sufficient conditions for the probability that the graph Gc,N is
fully connected to converge to 1 as N approaches infinity.

Theorem 1: Let PN the the probability that the graph Gc,N

is fully connected. If

Nm2
N

IN
= ω(logN),

then we have limN→∞ PN = 1. If

Nm2
N

IN
= logN + a + o(1)

for a positive constant a, then we have

lim
N→∞

PN ≤ e−e−a

.

In the following we prove Theorem 1 by considering sepa-
rately the following three cases: the many-user case where we
have many more users than items and

lim
N→∞

N

IN logIN
= ∞,

the balanced case where the number of users and items are
of the same order and we have

lim
N→∞

Nc

IN
= b

for a positive constant b, and the many-item case where we
have many more items than users and

lim
N→∞

NmN

IN
= 0.



V. RELATED WORK

To the best of our knowledge there is no prior working on
providing a lower-bound on the number of rankings required in
recommender systems using collaborative filtering. However,
there is prior work on the analysis of specific algorithms as
we discuss below.

The above ranking model, i.e. the assumption that users can
be clustered into different classes and the users in the same
class have all the same ranking vector, has been proposed
by Awerbuch et al. in [2] for the analysis of algorithms for
interactive recommender systems. In interactive recommender
systems, users actively probe items and share their rankings
with all other users by posting them on a public billboard. As
probing incurs a cost, the goal of in interactive recommender
systems is for each user to learn its full ranking vector with
minimal cost, i.e. with probing as few items as possible. An
algorithm for interactive recommender systems decides (in a
distributed manner) which and how many items a user probes.
Note that this situation is different from the one considered
in this paper: whereas in interactive recommender systems
the question is how to sample, the problem that we consider
here is how to interpret prior ranking information. In [2],
Auwerbuch et al. propose and analyze two algorithms in which
each user has to roughly probe O((1 + IN/N)logN), and
O((IN/N)logN + 1), items respectively, in order to discover
(with high probability) their full ranking vector. Alon et al.
extend in [3] the work by Auwerbuch et al. to a more general
ranking model that no longer assumes that users can be
clustered can be clustered into different classes and the users
in the same class have all the same ranking vector.

Kleinberg and Sandler consider in [4], [5] collaborative
filtering for a slightly different recommender system than the
system above, where the goal is to predict for each user the
item that the user values the highest. Assuming a probabilistic
mixture model for how valuations are generated, Kleinberg
and Sandler show that it is possible to give recommendations
whose quality converge to optimal as the amount of data
grows, given that the model parameters are bounded. In their
model, Kleinberg and Sandler assume that the number of items
to be ranked is fixed, but the number of users and number of
rankings per user increases.

Papadimitriou et al. [6] and Azar et al. [7] study recom-
mender systems for which it is assumed that the full user-
item matrix has a fixed rank as the number of users increases.
For this case, they show that methods based on the singular-
value decomposition are able (under suitable assumptions) to
accurately predict the full user-item ranking matrix as the
number of users approaches infinity given that each user ranks
at least a constant fraction of all items.

VI. PROBABILITY THAT AN EDGE EXISTS IN THE USER
GRAPH

In this section, we derive the probability that an edge
between two users in the user graph exists in the random graph
Gc,N that we defined in the previous section.

Lemma 3: Let p(IN ,mM ) be the probability that there
exists an edge between two users in the graph Gc,N . If

lim
N→∞

m2
N

IN
= 0

then we have that

p(IN ,mN ) =
m2

N

IN
+ o(

m2
N

IN
).

Proof: Here we only provide a rough sketch of the proof.
Let Su be the set of items that have been ranked by a user u
in Gc,N . The probability p(IN ,mN ) that there exists an edge
between two users u, v in Gc,N is then given by

p(IN ,mN ) = P (Su ∩ Sv 6= ∅) = 1− P (Su ∩ Sv = ∅)

By assumption, for N large enough we have mN ≤ IN

2 and

P (Su ∩ Sv = ∅) =
CmN

IN−mN

CmN

IN

=
(IN−mN )!

mN !(IN−2mN )!

IN !
mN !(IN−mN )!

=
(IN −mN ) · ... · (IN − 2mN + 1)

IN · ... · (IN −mN + 1)
,

where for positive integers n, m, n ≥ m, we have

Cm
n =

n!
m!(n−m)!

.

We then have

P (Su ∩ Sv = ∅) ≈
(

IN −mN

IN

)mN

=
(

1− mN

IN

)mN

≈ e
−m2

IN .

We then obtain

p(IN ,mN ) = 1− P (Su ∩ Sv) ≈ 1− e
−m2

I ≈ m2
N

IN
.

Using the above lemma, the conditions in Theorem 1 are the
same as the conditions that a Erdos-Renyi G(N, p(IN ,mN )
random graph is fully connected. However, the graph Gc,N

is not a Erdos-Renyi graph as the probabilities that edges
exist are not independent of each other. To see this note
the following. Consider a user u and suppose that this user
has mN neighbours in Gc,N such that there exists no edge
between any of these neighbours. Now consider another user
v ∈ Gc,N . Given that v does not have an edge to any of the
neighbour nodes of node u, the probability that there exists an
edge between u and v is equal to 0, as each user makes mN

rankings.

VII. THE MANY-USER CASE

In this section we prove Theorem 1. To do that we first
consider the three cases of a many-user, balanced, and many-
item case separately. We conclude the section with a discussion
of the general case. Recall that we focus on our analysis on a
fixed class, where N is the total number of users in this class.
Whenever we refer in the following to “users” then we mean
users in this class.



The many-user case is the easiest to analyze. For this case
where

lim
N→∞

N

IN logIN
= ∞

we show that the probability that the graph Gc,N is fully
connected converges to 1 as N approaches infinity, as long
as each user ranks at least 2 items, i.e. we have mN ≥ 2.

To do that we consider the item graph denoted by KN . Each
item i ∈ IN represents a node in KN . There exists an edge
in KN between two item i, j ∈ IN if and only if there exists
a user u that t ranks both i and j.

The following lemma makes a connection between the user
graph Gc,N and the above defined item graph. It states that if
Gc,N is not fully connected then there exists two non-empty
sets A,B ⊂ IN such that A ∩ B = ∅ and A ∪ B = IN , and
all user either rank items exclusively in set A or B.

Lemma 4: Suppose that the item graph KN is fully connect,
i.e. for all non-empty subsets A,B ⊂ IN , such that A∩B = ∅
and A∪B = IN we have that there exists a user u that ranks
an item in set A and B. Then the user graph Gc,N is fully
connected.

Proof: Let us consider two users u and v. We have to
show that under the above conditions there exists a path from
u at v in Gc,N . Suppose that no such path exists, and let
S1 be the set of all users that can be reached from user u.
Furthermore, let I1 be the set of all items that are ranked by
users in S1. Note that there will exist a path from u to v if
we have that I1 = IN ; hence I1 6= IN . Set A = I1 and
B = IN\I1.

By assumption, there exists a user w that ranks an item in
the set A and B. This implies that user w ranks an item that
has also been ranked by at least one user in S1, and there exists
a path from u to w. Therefore, user w is in S1. However, this
contracts our assumption that A contains all the items ranked
by users in S1, and the result follows.

The next lemma provides a necessary condition for the item
graph to be fully connected.

Lemma 5: Let PN be the probability that the item graph
KN is fully connected. If

lim
N→∞

N

IN logIN
> ∞,

then we have limN→∞ PN = 1.
Proof: Here we provide a sketch of the proof. Without

loss of generality, we can assume that mN = 2. In this
case, each user creates one edge in the item graph KN (i.e.
the edge between the two items that the user ranks), where
each of the IN (IN − 1) possible edge is equally likely to be
created by a given user independent of the choices of the other
users. Note however that not all of the edges created by users
lead to distinct edges, i.e. two (or more) users may rank the
same two items and hence duplicate an edge (but this will
happen with a small probability if IN is large). However, as
by assumption we have that limN→∞

N
logNIN

> ∞, one can
show that for every constant c we have that the users create at

least IN logIN +c distinct edges with probability 1. The result
the follows using standard results for random graphs [1].

Combining Lemma 4 and 5, we immediately obtain the
following result.

Corollary 2: Let PN be the probability that the user graph
Gc,N is fully connected. If

lim
N→∞

N

IN logIN
> ∞,

then we have limN→∞ PN = 1.

VIII. THE BALANCED CASE.

Next we consider the balanced case where

lim
N→∞

N

IN
= b

for some positive constant b. We distinguish between two cases
for this situation, namely the two cases where

lim
N→∞

NmN

IN logIN
= ∞

and
lim

N→∞

NmN

IN logIN
< ∞.

Suppose that limN→∞
NmN

IN logIN
= ∞. Furthermore, suppose

that rather than choosing mN items at random and uniformly
over all items, each user will choose mN times an item out
of all possible items, where items are chosen independently
and uniformly over all possible items. Note that in this case,
a user may choose a given item several times (although this
will happen with a small probability if IN is large), and the
total number of items a user ranks is strictly less than mN . We
then immediately have the following lemma which we state
without proof.

Lemma 6: Let P ′N be the probability that the graph Gc,N is
fully connected for the case where each user choose mN times
an item with possible repetitions, and let PN be the probability
that the graph Gc,N is fully connected for the case where each
user chooses mN distinct items. If limN→∞P ′N = 1 then we
have that limN→∞PN = 1.

Assuming that users choose mN = 2l items as given above,
we create an item graph as follows. Each user creates l =
mN/2 edges in the item graph KN , where the lth edge is the
edge between the items chosen at stage (2l− 1) and 2l. Note
that because of the above assumption, the l edges are chosen
independently and each edge in the item graph is equally likely
to be chosen. Using this fact, we obtain the following result.

Lemma 7: Let PN be the probability that the item graph
KN is fully connected. If limN→∞N/IN = b for some
positive constant b and

lim
N→∞

NmN

logNIN
> ∞,

then we have that limN→∞ PN = 1.
The proof for the above lemma is similar to the proof of

Lemma 5. Combining Lemma 7 with Lemma 4, we immedi-
ately obtain the following result.



Corollary 3: Let PN be the probability that the user graph
Gc,N is fully connected. If limN→∞N/IN = b for some
positive constant b and

lim
N→∞

NmN

logNIN
> ∞,

then we have that limN→∞ PN = 1.
For the second case where

lim
N→∞

NmN

IN logIN
< ∞

we obtain the following result.
Theorem 2: Let PN the the probability that the graph Gc,N

is fully connected, and suppose that limN→∞N/IN = b for
some positive constant b. If

Nm2
N

IN
= ω(logN),

then we have limN→∞ PN = 1. If

Nm2
N

IN
= logN + a + o(1)

for a positive constant a, then we have

lim
N→∞

PN ≤ e−e−a

.

Whereas the proofs of the above lemmas was rather straight-
forward, the proof of Theorem 2 is more involved. The proof
is of independent interest as it makes an interesting extension
of the proof-techniques for Erdos-Renyi random graphs, to
random graphs were edges are not created independently but
tend to be clustered (see the comments in the next paragraph).

Note that each user creates mN (mN−1) ≈ m2
N edges in the

item graph KN . Therefore, the conditions for full connectivity
in Theorem 2 are similar to the condition for fully connectivity
for the random graph G(IN , Nm2

N ) where in a graph consist-
ing of IN nodes a total of Nm2

N edges are created at random
and uniformly over all possible edge selections. Note however
that the graph KN is not a G(IN , Nm2

N ) random graph. To
see this, note that the mN (mN − 1) created by a given user
form a clique in KN consisting of the mN items chosen by
this user.

IX. THE MANY-ITEM CASE

For the many-item case, we have the following result.
Theorem 3: Let PN the the probability that the graph Gc,N

is fully connected, and suppose that limN→∞
NmN

IN
= 0. If

Nm2
N

IN
= ω(logN),

then we have limN→∞ PN = 1. If

Nm2
N

IN
= logN + a + o(1)

for a positive constant a, then we have

lim
N→∞

PN ≤ e−e−a

.

The proof for this case is an extension of the standard proof
techniques for Erdos-Renyi graphs [1].

X. THE GENERAL CASE

The above discussion does not fully cover all situations for
which Theorem 1 applies. In particular, it does not cover all
the situations for which there exist positive constants b1 and
b2 such that

lim
N→∞

N

IN
≤ logIN + b1

and
lim

N→∞

NmN

IN
≥ b2.

Theorem 1 for these cases can be shown using the same line
of argument used to prove Theorem 2.

XI. CONCLUSIONS

We derived a lower-bound on the number of rankings
required by recommender systems using collaborative filtering
for a ranking model where it is assumed that users can be
clustered into different classes, and users in the same class
have all the same ranking vector. To derive a lower-bound for
this ranking model, we considered the special case of complete
separation: users in different classes have different rankings
for all items, i.e. if c′ 6= c′′ then we have rc′(i) = rc′′(i),
i = 1, ..., I . Our analysis is based on a random graph model
on the set of all users.

We do not show that lower-bound on the number of rankings
per user that we derive in this paper is tight, i.e. we did not
show that there exists an algorithm that is able to accurately
predict the full user-item ranking matrix given that each users
ranks this minimal number of items. This question is on-going
work, and preliminary results indicate that such an algorithm
might indeed exists. For the derivation of such an algorithm we
do not use the assumption of complete separation, but allow
the ranking vector of different classes to “overlap”.

Besides the lower-bound on the number of rankings, an im-
portant contribution of the paper is to show that recommender
systems using collaborative filtering can be studied using a
random graph model. This allows to apply the rich literature,
and wealth of results, on random graphs to this problem. We
are not aware of prior work in the literature that explicitly
makes this connection.
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