
A Queue-length-based Randomized Scheduler for
Wireless Networks

Atilla Eryilmaz
ECE Department

Ohio State University
Columbus, OH 43210

Email: eryilmaz@ece.osu.edu

Asuman Ozdaglar
EECS Department

Massachusetts Institute of Technology
Cambridge, MA, 02139
Email: asuman@mit.edu

Peter Marbach
CS Department

University of Toronto
Toronto, CA M5S 3G4

Email: marbach@cs.toronto.edu

Abstract— Dynamic queue-length-based controllers have
proven to be extremely effective in maximizing the throughput
performance of data networks. However, for interference-
limited networks, such as wireless and sensor networks,
their implementation is provably difficult. To resolve this,
randomized strategies with central controllers have been
suggested in the literature, which are later extended to
distributed implementations. In this work, we propose and
study a different randomized algorithm. For a bipartite network
topology, we study the stability region of our strategy. The
policy as presented in this work is centralized, but is amenable
to distributed implementation as we discuss in the paper.
Moreover, rate control can be added on top of this policy using
recent methods in the context of cross-layer network design.

I. INTRODUCTION

Throughput-optimal control of networks has been a topic
of wide interest lately. In particular, decision rules based on
appropriately maintained queue occupancy levels have proven
to be very effective in guaranteeing throughput-optimality (e.g.
[21], [22], [16], [7], [19], [6]). In particular, the scheduling is
performed using the queue-lengths as weights associated with
schedules.

Various scheduling strategies exist that utilize the special
structure of network topology in order to provide high perfor-
mance (e.g. [8]). Here, we are interested in the development
of state-based scheduling policies that are implementable in
general wireless network topologies. Thus, we compare the
performance of our policy to such policies.

However, for general interference-limited networks such as
switches or wireless and sensor networks, finding the optimum
schedule is difficult. In order to reduce the complexity, a
randomized strategy is suggested in [20]. According to this
strategy, instead of picking the optimum schedule, a random
schedule is picked in every time slot. Then, the weight
associated with the picked strategy is compared to the one used
in the previous slot, and the better of the two is implemented.
This simple strategy is shown in [20] to be throughput-optimal
under the condition that the randomly picked strategy has a
positive probability -however small it may be- of being the
optimum one. Although the original policy of [20] was not
operating distributively, several distributed implementations
are developed in recent works (e.g. [14], [4], [17]).

In this work, we propose and study a different randomized
algorithm with provably good throughput characteristics that
lends itself to distributed implementation. In the context of an
N×N switch, we study the throughput region of our strategy.
The policy as presented here is centralized, but is amenable
to distributed implementation as will be discussed. Distributed
implementations is part of a future work.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a fixed wireless network, which can be rep-
resented by a graph G = (N ,L), where N denotes the
set of nodes and L denotes the set of undirected links. We
assume that nodes are perfectly synchronized1 to a common
clock and operate over time-slots. In each slot, a given link
can be scheduled to be active or inactive. When a link is
activated, transmission of a single packet occurs over it. Such
a transmission is successful only if it does not interfere
with another transmission in the network. We define any
interference-free set of link activation vector as a feasible
schedule, denoted by s = (sl)l∈L ∈ {0, 1}|L|. We further
call a feasible schedule maximal when there exists no links
that can be activated without interfering with another active
link. Since maximal schedules provide strictly greater rates, it
is sufficient to consider maximal feasible schedules.

Due the wireless nature of the communication medium, con-
current transmissions between any two pairs of nodes interfere
with each other. Since the interference is strongest for close
by transmissions, it is natural to consider a collision-based
interference model that limits the proximity of simultaneous
transmissions. For example, the kth-order interference model
is the case when any two active links are separated by at least
k other links. To cover these different interference models, we
let S denote the set of feasible schedules. Therefore, for any
slot t, we must have s[t] ∈ S. Note that, for the 1st-order
interference model, S corresponds to the set of matchings2.

Regarding the traffic model, we assume a set, F , of end-to-
end flows with fixed routes compete for the network resources.
Each flow f ∈ F is described by a source-destination

1The assumption of perfect synchronization can be relaxed by extending
the duration of time-slots to accommodate buffer zones between consecutive
slots. The case of complete asynchronous operation is part of a future work.

2A matching of a graph is a set of links where no two links share a node.

node pair (b(f), e(f)); a mean rate λ(f); and a route R(f)

containing a set of links that connects b(f) to e(f). We
assume, for simplicity, that the arrival process {a(f)[t]} for
flow f is independently and identically distributed over time
slots 3 with mean λ(f) and a finite second moment A(f). Note
that, under the fixed route assumption, we can find the mean
link rates from the mean flow rates as λl =

∑
f :l∈R(f) λ(f).

The incoming traffic can be inelastic or elastic. Inelastic
traffic corresponds to traffic with a fixed mean rate, while
elastic traffic corresponds to traffic with adjustable mean rate.
Therefore, in the case of elastic traffic λ(f) is an adjustable
parameter, and a congestion controller is necessary to achieve
fairness across competing flows, where the level fairness is
measured through utility functions (see [18] for more details).

Numerous works have addressed the problems of
scheduling-routing and congestion-control in wireless
networks (e.g. [10], [5], [15], [19], [1], [2]). In particular, the
seminal work of Tassiulas and Ephremides ([21]) tackled the
problem of scheduling and routing in a general framework.
They observed that properly maintained queue-length levels
can be utilized to perform scheduling and routing decisions to
achieve throughput-optimality4. In particular, they introduced
the back-pressure (BP) policy. In a separate line of work,
the seminal work of Kelly et al. ([9]) resolved the problem
of flow control in wireline networks through an optimization
formulation, which are then extended in [11], [18]. It has
recently been shown that these two frameworks can be
incorporated to obtain a fair and efficient scheduling-routing
and congestion-control policy (e.g. [3], [10], [6], [15], [19]).

The focus of this work is the scheduling component of
the queue-length-based policies. To that end, we describe a
queueing architecture that is described in [3]. We assume that
each node maintains a queue for each flow that traverses it.
We use q

(f)
n [t] to denote the length of the queue at node n

that contains flow f packets, at the beginning of slot t. We
further let s

(f)
l [t] denote the number of flow f packets that

are scheduled for transmission over link l in slot t. Since at
most a single packet can be scheduled over a given link, we
have s

(f)
l [t] ∈ {0, 1} and

∑
f∈F s

(f)
l [t] = s

(f)
l [t] for all l ∈ L.

Then, the evolution of q
(f)
n [t] satisfies

q(f)
n [t + 1] ≤


q(f)

n [t]−
∑

m:(n,m)∈R(f)

s
(f)
(n,m)[t]




+

+
∑

k:(k,n)∈R(f)

s
(f)
(k,n)[t] + a(f)

n [t]In=b(f),

where (y)+ = max(0, y) and IA is the indicator for event
A. We use q[t] to denote the vector of queue-length levels at
slot t. These queue-length levels are then used to obtain link
weights. While there could be numerous choices for the queue-
length to link weight transformation, it has been observed
that the following transformation, referred to as differential

3This assumption is not restrictive, and can be eliminated easily (see [...]).
4A policy is called throughput-optimal if it can stably support any flow rate

vector that is stably supportable by any other policy.

backlog, yields attractive throughput characteristics(e.g. [21],
[16], [7]):

w(n,m)(q) := max
f∈F

∣∣∣q(f)
n − q(f)

m

∣∣∣ , ∀(n,m) ∈ L. (1)

Notice that this transformation is locally computable since it
only requires neighbor’s queue-length information. Next, we
describe the MAXWEIGHT scheduler that is implemented by
the BP policy.

Definition 1 (MAXWEIGHT Scheduler): In slot t, the
MAXWEIGHT Scheduler serves the schedule s?[t] ∈ S that
satisfies

s?[t] ∈ arg max
s∈S

〈w[t], s〉, (2)

where 〈w[t], s〉 :=
∑

l∈L wl[t]sl. ¦
The operation (2) of picking the maximum weight schedule
in every time slot is generally a high-complexity operation.
Next, we provide a partial overview of the literature on low-
complexity, distributed schedulers in this context.

A. Overview of the Distributed Implementations

There have been a large number of algorithms proposed in
the literature to obtain low-complexity scheduling/routing poli-
cies, while providing throughput guarantees. In this subsection,
we aim to give an partial overview of those policies while
stressing how they contribute to our intuition in proposing our
policy.

A class of policies, called PICK & COMPARE policies,
exist in the literature that are based on the algorithm first
introduced in [20]. In a given slot t, this policy simply picks
a random schedule, say s̃, and compares the weights of the
schedules s[t − 1] and s̃, i.e. 〈w[t], s[t − 1]〉 ≷ 〈w[t], s̃〉, and
sets s[t] to the schedule that yields the greater weight. This
evolutionary policy is shown to be throughput-optimal in the
same work. While centralized in its original form, subsequent
works built on this approach to provide distributed policies
(e.g. [14], [4], [17]) with varying complexity characteristics.

In a different line of work, several policies with attractive
distributive properties are proposed (e.g. [10], [23], [12]),
while sacrificing from throughput optimality. These policies
can reduce the queue-length information sharing to one-
hop neighborhood, thus rendering them easily implementable.
However, they are guarantees to support only a fraction of
the capacity region. The precise fraction varies based on the
interference model, and the topology of the network, but
typically no more than half the region can be guaranteed.

Our goal in this work is to provide a scheduling algo-
rithm with provably good throughput characteristics that are
amenable to distributed implementation. To that end, we first
propose a randomized algorithm and study its throughput
characteristics for a bipartite graph. Then, we discuss how
it can be implemented in a distributed fashion.

III. DESCRIPTION OF THE RANDOMIZED POLICY

In this section, we propose a randomized scheduling policy,
called the RANDWEIGHT Scheduler, that will be analyzed in

the following sections. The policy has three key characteristics:
it exploits queue-length information, which provides attractive
throughput properties; it implicitly takes advantage of the
topology information and the interference model, which are
assumed to be fixed and known; and its randomized nature
allows for distributed implementation.

Before we give the formal description of the scheduler, we
provide a few definitions that will simplify our notation: for a
given queue-length vector, q,

• let the total weight of schedule s ∈ S be defined as

Ws(q) :=
∑

l∈s

wl(q). (3)

• let the total weight of a link l ∈ L be defined as

Wl(q) :=
∑

s:l∈s

Ws(q). (4)

• let the total weight of the network be defined as

W (q) :=
∑

s∈S
Ws(q). (5)

Definition 2 (RANDWEIGHT Scheduler): In slot t, the
RANDWEIGHT Scheduler picks a schedule s̃[t] such that :

P (s̃[t] = s) =
Ws(q[t])
W (q[t])

for all s ∈ S. (6)

¦
Note that the RANDWEIGHT Scheduler picks a schedule

with a probability that is proportional to its weight. Thus,
those schedules with a high weight are more likely to be
scheduled. Yet, it is still possible for low-weight schedules
to be chosen for activation. When compared to (2), it can be
seen that (6) relaxes the decision criterion. Also note that, in
its current form, RANDWEIGHT Scheduler still requires global
queue-length information. After we analyze the throughput
characteristics of this policy, we will investigate ways in which
it can be implemented in a distributed fashion.

IV. ANALYSIS AND DISCUSSIONS

In this section, we investigate the throughput characteristics
of the RANDWEIGHT Scheduler described in Definition 2. Our
goal is to identify the extend to which the non-optimal and
randomized nature of the proposed policy reduces the stably
supportable rates from the whole stability region. Although the
policy is applicable to the general network model of Section II,
we analyze the case of an N × N switch represented as a
bipartite graph since the stability region of such graphs leads
to tractable formulations. To that end, we introduce the model
for an N × N switch and a few relevant definitions in the
following section.

A. System Model for an N ×N Switch

The graph associated with an N × N switch is a bipartite
graph with N input and N output ports with N2 flows,
one for each input-output pair. We use I = {1, ..., N} and
O = {N + 1, ..., 2N} to denote the indices of the input
and output ports, respectively. As before, we assume a time

slotted system where each slot can accommodate a single
packet transmission. We assume a given link level load λ,
i.e., associated with every link (i, j) ∈ L, there is an arrival
process a(i,j)[t] with mean λ(i,j) and a finite second moment,
A. We consider the 1st-order interference model, i.e., at any
given slot, at most one link incident to any given port can be
active. Then, S corresponds to the set of maximal matchings5.
The capacity (stability) region of an N ×N switch is defined
as

Definition 3 (Capacity (Stability) Region of an N ×N switch):
The capacity region of an N ×N switch is the set of arrival
rates given by

C =

{
λ ∈ RN2

+ :
∑

i∈I
λ(i,j) < 1, ∀ j ∈ O,

and
∑

j∈O
λ(i,j) < 1, ∀ i ∈ I



 .

¦
A queue is maintained for each link (i, j) ∈ I × O. We

use q(i,j)[t] to denote the length of queue associated with
link (i, j) at the beginning of time slot t. We use s[t] :=
[s(i,j)[t]](i,j)∈I×O to denote the link activation vector at slot
t. Then, the evolution of each queue between time slots is
given by

q(i,j)[t + 1] =
(
q(i,j)[t]− s(i,j)[t]

)+ + a(i,j)[t]
= q(i,j)[t]− s(i,j)[t] + u(i,j)[t] + a(i,j)[t],(7)

where u(i,j)[t] denotes the unused service that is offered to
Queue-(i, j) in slot t. Note that q[t] forms a Markov Chain,
and we say that Queue-(i, j) is stable if E[q(i,j)[∞]] < ∞
where q[∞] denotes the stationary distribution of the Markov
Chain. The network is said to be stable if all its queues are
stable.

B. Throughput Analysis of RANDWEIGHT

In this section, we specify a region of stabilizable mean rates
under the RANDWEIGHT Scheduler for an N ×N switch and
prove its stabilizing properties. We start with two lemmas that
will be useful in the theorem.

Lemma 1: Under the RANDWEIGHT Scheduler, for a given
queue-length vector w, the average rate provided to link (i, j)
is given by

E[s̃(i,j)[t] | q[t]] =
W(i,j)(q[t])

W (q[t])
(8)

Proof: By the definition of RANDWEIGHT

E[s̃(i,j)[t] | q[t]] =
∑

s∈S:(i,j)∈s

Ws(q[t])
W (q[t])

=
W(i,j)(q[t])

W (q[t])

Lemma 2:
∑

(i,j)∈I×O
q(i,j) =

1
(N − 1)!

W (q).

5A matching is maximal if no new link can be included into the matching
without violating the matching constraint.

Proof: This follows from a simple counting argument and
the fact that every matching in S contains exactly N links.

Next theorem identifies a region of rates supportable by the
RANDWEIGHT Scheduler. It states that the policy achieves that
portion of the stability region that yields sufficiently symmetric
arrival rates.

Theorem 1: The RANDWEIGHT Policy stabilizes the net-
work for any arrival rate λ ∈ C satisfying λ(i,j) ∈ [0, 1/N).

Proof: Our goal is to show that for any rate satisfying
the conditions of the theorem, the queues evolve to the
origin starting from any initial condition. We use Lyapunov
arguments and Foster’s criterion to prove this result. We know
from Foster’s criterion ([13]) that a Markov Chain X[t] that
satisfies

E[f(X[t + 1])− f(X[t]) |X[t] = X]
≤ −δg(X)IX∈A + BIX∈Ac ,

for some positive δ, bounded value B, bounded set A and non-
negative functions f(·) and g(·), satisfies E[g(X[∞])] < ∞.

Let us define the Lyapunov function

V (q) =
1
2

∑

(i,j)∈I×O
q2
(i,j).

Then, we consider the mean drift of V (·) at time t for a given
queue-length state q.

∆V (q) := E[V (q[t + 1])− V (q[t]) | q[t] = q]

=
1
2

∑

(i,j)

(
E[q2

(i,j)[t + 1] | q[t] = q]− q2
(i,j)

)

=
1
2

∑

(i,j)

(
E

[
(q(i,j)[t] + a(i,j)[t]− s(i,j)[t])2

+2(q(i,j)[t] + a(i,j)[t]− s(i,j)[t])u(i,j)[t] (9)

+ u2
(i,j)[t] | q[t] = q

]
− q2

(i,j)

)

Since u(i,j)[t] is nonzero only if q(i,j)[t] < s(i,j)[t], we can
upper-bound (9) with 2λ(i,j)E[u(i,j)[t] |q[t] = q]. Also, using
the fact that u(i,j)[t] ≤ 1 for all (i, j) and t, we can upper-
bound the mean drift as

∆V (q)

≤ 1
2

∑

(i,j)

(
E

[
(q(i,j)[t] + a(i,j)[t]− s(i,j)[t])2 | q[t] = q

]

−q2
(i,j)

)
+ B1

=
∑

(i,j)

(
q(i,j)E[a(i,j)[t]− s(i,j)[t] | q[t] = q]

+
E[(a(i,j)[t]− s(i,j)[t])2 | q[t] = q]

2

)
+ B1

≤
∑

(i,j)

[
q(i,j)

(
λ(i,j)[t]−

W(i,j)(q)
W (q)

)]
+ B1 + B2,

where B1 = N2 +2
∑

(i,j) λ(i,j) ≤ N2 +2N, B2 ≤ (N2(A+
1) + 2N) since E[a2

(i,j)[t]] ≤ A, and the last inequality uses

Lemma 1. Let us define λ̃ = (λ̃(i,j))(i,j) := (λ(i,j) + ε)(i,j),

where ε ∈
(

0, min
(i,j)∈I×O

(
1
N
− λ(i,j)

))
. Such an ε exists

due to our assumption about λ. Note that λ̃(i,j) < 1/N for all
(i, j) ∈ I × O under this choice of ε. Then, we can re-write
the last upper-bound as

∆V (q) ≤ −ε
∑

(i,j)

q(i,j) + B1 + B2

+
∑

(i,j)

[
q(i,j)

(
λ̃(i,j)[t]−

W(i,j)(q)
W (q)

)]

≤ −ε
∑

(i,j)

q(i,j) + B1 + B2 (10)

+
∑

(i,j)

[
q(i,j)

(
1
N
− W(i,j)(q)

W (q)

)]
, (11)

where the last inequality is strict unless q = 0. Next, we focus
on (11) and show that it is non-positive.

(11) =
1
N

∑

(i,j)

q(i,j) +
1

W (q)

∑

(i,j)


q(i,j)

∑

{s:(i,j)∈s}
Ws(q)




=
1

N !
W (q)− 1

W (q)

∑

s∈S


Ws(q)

∑

(i,j)∈s

q(i,j)


 (12)

=
1

N !
W (q)− 1

W (q)

∑

s∈S
W 2

s (q), (13)

where (12) follows from Lemma 2, and (13) follows from the
reordering of the sums. Finally, we utilize Jensen’s Inequality:
(

1
N !

W (q)
)2

=

(
1

N !

∑

s∈S
Ws(q)

)2

≤ 1
N !

∑

s∈S
W 2

s (q)

in (13) to complete the proof of our claim that (11) ≤ 0.
After substituting this upper bound in (10)-(11), we have

∆V (q) ≤ −ε
∑

(i,j)

q(i,j) + B1 + B2

which satisfies Foster’s criterion, and hence we have
E[

∑
(i,j) q(i,j)[∞]] < ∞, and the network stability is obtained.

Noting that the maximum symmetric rate achievable by a
switch is given by λ(i,j) = 1/N − δ for all (i, j) with δ > 0
arbitrarily small, Theorem 1 proves that the RANDWEIGHT
scheduler can achieve the largest possible symmetric rate. In
contrast to other schedulers in this context that support half of
the stability region for all rates, this scheduler yields optimal
throughput performance under symmetric rates.

C. On the Distributed Implementation

In this section, we discuss how the RANDWEIGHT sched-
uler may be implemented in a distributed fashion. To that
end, we recall from Lemma 1, that link (i, j) needs to be
activated with a probability of W(i,j)(q[t])/W (q[t]). Finding
this probability could be straight-forward for some cases. For

example, for an N ×N switch, its form is given in the next
lemma.

Lemma 3: For an N × N switch, the probability with
which a given link, say (i, j) ∈ I × O, is active under the
RANDWEIGHT scheduler is given by

P[s̃(i,j)[t] = 1 | q[t]] =


q(i,j)[t] +

∑

{(n,m):n 6=i,m 6=j}
q(n,m)[t]




(N − 1)
∑

(n,m)

q(n,m)[t]

Proof: First, note from Lemma 2 that

W (q[t]) = (N − 1)!
∑

(n,m)

q(n,m)[t]. (14)

Next, we must find W(i,j)(q[t]), which is the sum of the
weights of all maximal matchings that contain (i, j). There
exists (N − 1)! such matchings since there are (N − 1) input
and (N − 1) output ports that can be freely matched, once
ports i and j are fixed. Lemma 2 applies to the resulting
(N − 1)× (N − 1) switch, which results in

W(i,j)(q[t]) = (N − 2)!


q(i,j) +

∑

{(n,m):n 6=i,m 6=j}
q(n,m)[t]


 .

Substituting this expression and (14) in (8) completes the
proof.

Lemma 3 yields an easily computable expression for link
activation probabilities by using the queue-length values avail-
able at the input. Then, the individual links can be activated
independently according to these probabilities in a distributed
fashion. Although such an operation does not achieve the
same average rates as the RANDWEIGHT policy, it is of
interest to study the performance of the resulting distributed
implementation. We leave this to a future work.

V. CONCLUSIONS

In this work, we proposed a randomized queue-length-
based scheduling policy that is applicable to general wireless
networks, and studied its throughput properties. For a bipartite
graph and 1st-order interference model, we showed that the
policy can achieve rates that can be arbitrarily close to the
boundary of the capacity region as long as they are symmetric.
We also discussed how the global effects of the policy can
be mapped to individual link activation probabilities. As a
distributed implementation, we proposed a random access
strategy where the transmission probabilities are given by the
obtained link activation probabilities. We leave the study of
these distributed implementations to a future research. Also,
in a future, we will investigate the rate of convergence and
delay characteristics of the policy.

REFERENCES

[1] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in wireless networks. In Proceedings of the Allerton
Conference on Control, Communications and Computing, 2005.

[2] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Jointly optimal
congestion control, routing, and scheduling for wireless ad hoc networks.
In Proceedings of IEEE Infocom, Barcelona, Spain, April 2006.

[3] A. Eryilmaz. Efficient and fair scheduling for wireless networks. PhD
thesis, University of Illinois at Urbana, Champaign, August 2005.

[4] A. Eryilmaz, A. Ozdaglar, and E. Modiano. Polynomial complexity
algorithms for full utilization of multi-hop wireless networks. 2007.
Proceedings of IEEE Infocom.

[5] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless
networks using queue-length based scheduling and congestion control.
In Proceedings of IEEE Infocom, volume 3, pages 1794–1803, Miami,
FL, March 2005.

[6] A. Eryilmaz and R. Srikant. Resource allocation of multi-hop wireless
networks. In Proceedings of International Zurich Seminar on Commu-
nications, February 2006.

[7] A. Eryilmaz, R. Srikant, and J. R. Perkins. Stable scheduling policies
for fading wireless channels. IEEE/ACM Transactions on Networking,
13:411–425, April 2005.

[8] P. Giaccone, B. Prabhakar, and D. Shah. Towards simple, high-
performance schedulers for high-aggregate bandwidth switches. In
Proceedings of IEEE Infocom, 2002.

[9] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal of
the Operational Research Society, 49:237–252, 1998.

[10] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. In Proceedings of
IEEE Infocom, Miami, FL, March 2005.

[11] S. H. Low and D. E. Lapsley. Optimization flow control, I: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
7:861–875, December 1999.

[12] P. Marbach. Rate control for random access networks: The finite node
case. In IEEE Conference on Decision and Control, 2004.

[13] S. Meyn and R. Tweedie. Markov Chains and Stochastic Stability.
Springer-Verlag, 1993.

[14] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wire-
less networks via gossiping. In ACM SIGMETRICS/IFIP Performance,
2006.

[15] M.J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. In Proceedings of IEEE Infocom,
pages 1723–1734, Miami, FL, March 2005.

[16] M.J. Neely, E. Modiano, and C.E. Rohrs. Dynamic power allocation
and routing for time varying wireless networks. In Proceedings of IEEE
Infocom, pages 745–755, April 2003.

[17] S. Sanghavi, L. Bui, and R. Srikant. Distributed link scheduling with
constant overhead, 2007. Technical Report.

[18] R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser,
Boston, MA, 2004.

[19] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, 50(4):401–457, 2005.

[20] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. In Proceedings of IEEE
Infocom, pages 533–539, 1998.

[21] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
36:1936–1948, December 1992.

[22] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, 39:466–478, March 1993.

[23] X. Wu and R. Srikant. Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks with node-
exclusive spectrum sharing. In Proceedings of IEEE Conference on
Decision and Control., 2005.

