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Abstract— We propose and analyze a distributed backlog-
based CSMA policy to achieve fairness and throughput-
optimality in wireless multihop networks. The analysis is based
on a CSMA fixed point approximation that is accurate for large
networks with many small flows and a small sensing period.

I. INTRODUCTION

We propose and analyze a backlog-based CSMA policy
to achieve fairness and throughput-optimality in wireless
multihop networks with primary interference constraints.
Our analysis uses a novel CSMA fixed point approximation
that was presented in [1]. The proposed CSMA policy is
simple and can easily been implemented in a distributed
manner as it uses only local information, and does not
require any exchange of information (such as queue-lengths
or congestion signals) between nodes.

This paper adds to a new understanding of CSMA poli-
cies that shows CSMA policies can achieve fairness and
throughput optimality. Related to our work, Jiang and Wal-
rand considered in [2] CSMA policies for the idealized
situation of instantaneous channel feedback. The assumption
of instantaneous channel feedback eliminates packet colli-
sions which simplifies the analysis. Under this assumption
Jiang and Walrand derived a dynamic CSMA policy that,
combined with rate control, achieves throughput-optimality
while satisfying a given fairness criterion. Similar results
have been independently derived by Shah and Sreevastsa
in [3] in the context of optical networks. While these results
are obtained for an idealized model of CSMA policies, they
suggest that CSMA policies might be throughput-optimal.
In this paper, we confirm this conjecture for wireless net-
works with primary interference constraints. For a related
work on scheduling in wireless multihop networks we refer
to [1] and [2]

II. SYSTEM MODEL

We consider a fixed wireless network composed of a set
N of nodes with cardinality N, and a set L of directed links
with cardinality L. A directed link (i, j) ∈ L indicates that
node i is able to send data packets to node j. We assume
that the rate of transmission is the same for all links and
all packets are of a fixed length. Throughout the paper we
rescale time such that the time it takes to transmit one packet
is equal to one time unit.

For a given node i ∈ N , let Ui := {j ∈ N : (i, j) ∈ L}
be the set of upstream nodes, i.e. the set containing all nodes
which can receive packets from i. Similarly, let Di := {j ∈
N : (j, i) ∈ L} be set of downstream nodes, i.e. the set
containing all nodes j from which i can receive packets.
Collectively, we denote the set of all the neighbors of node
i as Ni := Ui ∪ Di. Also, we let Li := {(i, j) : j ∈ Di} be
the set of outgoing links from node i, i.e. the set of all links
from node i to its upstream nodes Ui.

Throughout the paper, we assume that Ui = Di, for all
i ∈ N so that we have Ui = Di = Ni, for each i ∈ N . This
assumption simplifies the notation as we can use a single set
Ni to represent both Di and Ui. Our analysis can be extended
to the more general case requiring only notational changes.

We assume that there is a fixed set of routes R which
defines the possible traffic paths in the network. For a given
route r ∈ R, let sr be its source node and dr be its
destination node. Furthermore, we use the convention that
r is given by the set of links that the route traverses, i.e. we
let

r = {(sr, i), (i, j), · · · , (v, w), (w, dr)}

be the set of links traversed by the route. We allow several
routes to be defined for a given source and destination pair
(s, d), s, d ∈ N .

In the following, we describe a network by the tuple
(L,R) since the set of nodes N can be derived from the
set L.

We focus on networks under the well-known primary
interference, or node exclusive interference, model [4].

Definition 1 (Primary Interference Model): A packet
transmission over link (i, j) ∈ Li is successful if only if
within the transmission duration there exist no other activity
over any other link (m,n) ∈ L which shares a node with
(i, j). �
The primary interference model applies, for example, to
wireless systems where multiple frequencies/codes are avail-
able (using FDMA or CDMA) to avoid interference, but each
node has only a single transceiver and hence can only send
to or receive from one other node at any time.

We characterize the network traffic with a rate vector λ :=
{λr}r∈R where λr, λr ≥ 0, is the mean packet arrival rate
in packets per unit time on route r ∈ R .



Given the rate vector λ = {λr}r∈R, we let

λ(i,j) :=
∑

r:(i,j)∈Rr

λr, (i, j) ∈ L, (1)

be the mean packet arrival rate to link (i, j). Similarly, we
let

Λi :=
∑
j∈Ni

[
λ(i,j) + λ(j,i)

]
, i ∈ N . (2)

be the mean packet arrival rate to node i ∈ N .
With each route r we associate a utility function Ur that

depends on the rate λr allocated to route r. We make the
following assumption.

Assumption 1: The utility function Ur(λr), r ∈ R,
is increasing and strictly concave with Ur(0) = 0 and
limλr→∞ U ′r(λr) = 0.

III. THROUGHPUT-OPTIMALITY AND FAIRNESS

Consider a fixed network (L,R) with traffic vector λ =
{λr}r∈R. A scheduling policies π then defines the rules
that are used to schedule packet transmissions on each link
(i, j) ∈ L. In the following we focus on policies π that have
a well-defined link service rates as a function of the rate
vector λ = {λr}r∈R.

Definition 2: (Service Rate): Consider a fixed network
(L,R). The link service rate µπ(i,j)(λ), (i, j) ∈ L, of policy
π for the traffic vector λ = {λr}r∈R is the fraction of time
node i spends successfully transmitting packets on link (i, j)
under π and λ, i.e. the fraction of time node i sends packets
over link (i, j) that do not experience a collision.
Let P be the class of all policies π that have well-defined
link service rates. Note that this class contains a broad range
of scheduling policies, including dynamic policies such as
queue-length-based policies [5], as well as noncausal policies
that know the future arrival of the flows. We then define
network stability as follows.

Definition 3 (Stability): For a given network (L,R), let
µπ(λ) = {µπ(i,j)(λ)}(i,j)∈L the link service rates of policy
π, π ∈ P , for the rate vector λ = {λr}r∈R. We say that
policy π stabilizes the network for λ if

λ(i,j) < µπ(i,j)(λ), for all (i, j) ∈ L. �
This commonly used stability criteria [5] requires that for

each link (i, j) the link service rate µπ(i,j)(λ) is larger than the
arrival rate λ(i,j). The capacity region of a network (L,R)
is then defined as follows.

Definition 4: (Capacity Region) For a given a network
(L,R), the capacity region C is equal to the set of all traffic
vectors λ = {λr}r∈R such that there exists a policy π ∈ P
that stabilizes the network for λ, i.e. we have

C = {λ ≥ 0 : ∃π ∈ P with λ(i,j) < µπ(i,j)(λ), ∀(i, j) ∈ L}.
We say that an optimal solution λ∗ = {λ∗r}r∈R to the

maximization problem

max .λ∈C
∑
r∈R

Ur(λr)

achieves fairness and throughput-optimality.

IV. CSMA SCHEDULING POLICIES

In the following, we study whether CSMA policies can
achieve fairness and throughput-optimality as defined above.

A. CSMA Policies

We consider CSMA policies that are given by a transmis-
sion attempt probability vector p = (p(i,j))(i,j)∈L ∈ [0, 1]L

and a sensing period (or idle period) β > 0. The policy
works as follows: each node, say i, senses the activity on its
outgoing links l ∈ Li. If link (i, j) ∈ Li has been idle for
a duration of an idle period β, i.e. node i and j have not
sent, or received, a packet for β time units, then i starts a
transmission of a single packet on link (i, j) with probability
p(i,j), independent of all other events in the network. If node
i does not start a packet transmission, then link (i, j) has
to remain idle for another period of β time units before i
again has the chance to start a packet transmission. Thus,
the epochs at which node i has the chance to transmit a
packet on link (i, j) are separated by periods of length β
during which link (i, j) is idle, and the probability that i
starts a transmission on link (i, j) after the link has been
idle for β time units is equal to p(i,j),

We assume that packet transmission attempts are made
according to above description regardless of the availability
of packets at the transmitter. In the event of a transmission
decision in the absence of packets, the transmitting node
transmits a dummy packet, which is discarded at the receiving
end of the transmission.

The duration of an idle period β is again given relative
to the length of a packet transmission which is assumed to
take one unit time, i.e. if the length of an sensing period
is Li seconds and the length of a packet transmission is
Lp seconds, then we have β = Li/Lp. For a fixed Li, the
duration of an idle period β will become small if we increase
the packet lengths, and hence the packet transmission delay
Lp.

Given the length of an sensing period β, in the following
we will sometimes refer to p as the CSMA policy.

B. Achievable Rate Region of CSMA Policies

One can show [1] that a CSMA policy p has a well-defined
link service rate vector, i.e. CSMA policies are contained
in the set P . Given a sensing period β, we denote with
µ(p) = {µ(i,j)}(i,j)∈L the link service rate vector under the
CSMA policy p. Note that for a given β, the link service
rate under a CSMA policy depend only on the transmission
attempt probability vector p, but not on the arrival rates λ.
The achievable rate region of CSMA policies is then given
as follows.

Definition 5 (Achievable Rate Region of CSMA Policies):
For a given network (L,R) and a given sensing period β,
the achievable rate region of CSMA policies is given by the
set of rate vectors λ = {λr}r∈R for which there exists a
CSMA policy p that stabilizes the network for λ, i.e. we
have that λ(i,j) < µ(i,j)(p), (i, j) ∈ L.
Let CCSMA be the achievable rate region of CSMA poli-
cies. We are interested in the following questions: (a) can



we characterize CCSMA, (b) how close is CCSMA to the
capacity region C, (c) can we characterize and compute solu-
tions to maxλ∈CCSMA

∑
r∈R Uf (λr), and (d) can we obtain

solutions to maxλ∈CCSMA

∑
r∈R Uf (λr) using a distributed

mechanism.
In [1], it was shown that the achievable rate region of

CSMA policies is equal to the capacity region C under the
limiting regime of large networks with many small flows and
a small sensing period β. This result was obtained using a
novel CSMA fixed point approximation that extends the well-
known infinite node approximation for single-hop networks
to the case of multihop networks. In this paper we using the
CSMA fixed point approximation to address above question
(c) and (d). In the next section, we provide a summary
of the results given [1] regarding the CSMA fixed point
approximation.

V. CSMA FIXED POINT APPROXIMATION

In this section, we present the CSMA fixed point ap-
proximation, where we first briefly review the infinite node
approximation for single-hop networks. In the following
we will use τ to denote the services rates obtained under
our analytical formulations that we use to approximate the
actual service rates µ under a CSMA policy as defined in
Section IV.

A. Infinite Node Approximation for Single-Hop Networks

Consider a single-hop network where N nodes share a sin-
gle communication channel, i.e. where nodes are all within
transmission range of each other. In this case, a CSMA policy
is given by the vector p = (p1, · · · , pN ) ∈ [0, 1]N where pn
is the probability that node n starts a packet transmission
after an idle period of length β [6].

The network throughput, i.e. the fraction of time the
channel is used to transmit packets that do not experience a
collision, can then be approximated by (see for example [6])

τ(G(p)) =
G(p)e−G(p)

β + 1− e−G(p)
(3)

where

G(p) =
N∑
n=1

pn.

Note that G(p) captures the expected number of transmis-
sions attempt after an sensing period β for a given CSMA
policy p.

This well-known approximation is based on the assump-
tion that a large (infinite) number of nodes share the com-
munication channel. It is asymptotically accurate as the
number of nodes N becomes large and each node makes
a transmission attempt with a probability pn, n ∈ N that
approaches zero while the offered load G =

∑N
n=1 pn stays

constant (see for example [6]).
The following results are well-known. For β > 0, we have

that τ(G) < 1, G ≥ 0, and for G+(β) =
√

2β, β > 0, we
have that limβ↓0 τ(G+(β)) = 1.

Using (3), the service rate µn(p) of node n under a given
static CSMA policy p can be approximated by

τn(p) =
pne
−G(p)

1 + β − e−G(p)
, n = 1, ..., N. (4)

In the above expression, pn is the probability that node n
starts a packet transmission if the channel has been idle for
a sensing period of duration β, and e−G(p) characterizes the
probability that this attempt is successful, i.e. the attempt
does not collide with an attempt by any other node.

Similarly, the fraction of time that the channel is idle can
be approximated by

ρ(p) = ρ(G(p)) =
β

β + 1− e−G(p)
, (5)

where we have that limβ↓0 ρ(G+(β)) = 0.

B. CSMA Fixed Point Approximation for Multihop Networks

We extend the above approximation for single-hop net-
works to multihop networks as follows.

For a given a sensing period β, we approximate the
fraction of time ρi(p) that node i is idle under the CSMA
policy p by the following fixed point equation,

ρi(p) =
β

β + 1− e−Gi(p)
, i = 1, · · · , N, (6)

where

Gi(p) =
∑
j∈Ni

[
p(i,j) + p(j,i)

]
ρj(p), i = 1, · · · , N. (7)

which approximately measures the transmission attempt rate
of node i given that it is idle. We refer to the above
fixed point equation as the CSMA fixed point equation, and
to a solution ρ(p) = (ρ1(p), · · · , ρN (p)) and G(p) =
(G1(p), · · · , GN (p)) to the fixed point equation as a CSMA
fixed point.

The intuition behind the CSMA fixed point equation
Eq. (6) and Eq. (7) is as follows: suppose that the fraction
of time that node i is idle under the static CSMA policy p
is equal to ρi(p), and suppose that the times when node i
is idle are independent of the processes at all other nodes.
If node i has been idle for β time units, i.e. node i has not
received or transmitted a packet for β time units, then node
i can start a transmission attempt on link (i, j), j ∈ Ni,
only if node j also has been idle for an idle period of β
time units. Under the above independence assumption, this
will be (roughly) the case with probability ρj(p), and the
probability that node i start a packet transmission on the link
(i, j), j ∈ Ni, given that it has been idle for β time units is
(roughly) equal to p(i,j)ρj(p). Similarly, the probability that
node j ∈ Ni starts a packet transmission on the link (j, i)
after node i has been idle for β time units is (roughly) equal
to p(j,i)ρj(p). Hence, the expected number of transmission
attempts that node i makes or receives, after it has been idle
for β time units is (roughly) given by Eq. (7). Using Eq. (5)
of Section V-A, the fraction of time that node i is idle under
p can then be approximated by Eq. (6).



For a given an sensing period β, we can then use the
CSMA fixed point G(p) for a policy p to approximate the
link service rate µ(i,j)(p) under a CSMA policy p by

τ(i,j)(p) =
p(i,j)ρj(p)e−Gi(p)

1 + β − e−Gi(p)
e−Gj(p), (i, j) ∈ L. (8)

Note that the above equation is similar to (4) where
p(i,j)ρj(p) captures the probability that node i starts a packet
transmission on link (i, j) if node i has been idle for β time
units, and exp [−(Gi(p) +Gj(p))] is the probability that
this attempt is successful, i.e. the attempt does not overlap
with an attempt by any other node to capture a link that has
an endpoint in common with link (i, j).

There are two important questions regarding the CSMA
fixed point approximation. First, one needs to show that
the CSMA fixed point is well-defined, i.e. that there always
exists a unique CSMA fixed point. In [1] it was shown that
this is indeed the case. Second, one would like to know
how accurate the CSMA fixed point approximation is. In [1]
it was shown that the CSMA fixed point approximation is
asymptotically accurate for large networks with many small
flows and a small sensing period β.

C. Approximate Achievable Rate Region

In this section we use the CSMA fixed point approxi-
mation to characterize the achievable rate region of CSMA
policies.

Consider a network (L,R) with sensing time β > 0 as
described in Section II, and let Γ(β) be given by

Γ(β) =
{
λ = {λr}r∈R|Λi < τ(G+(β))e−(G+(β)), i ∈ N

}
,

where G+(β) =
√

2β and τ(G+(β) are as defined in
Section V-A, and

Λi =
∑
j∈Ni

[
λ(i,j) + λ(j,i)

]
, i ∈ N ,

is as defined in Section II.
The next result states that for a network (L,R) with

sensing time β > 0 the achievable rate region of CSMA
policies under the CSMA fixed point approximation contains
the set Γ(β).

Theorem 1: Given a network (L,R) with sensing time
β > 0, for every λ ∈ Γ(β) there exists a CSMA policy p
such that

λ(i,j) < τ(i,j)(p), (i, j) ∈ L,

where τ(i,j)(p) is the service rate for link (i, j) under the
CSMA fixed point approximation as given by Eq. (8).
We refer to [1] for a proof of Theorem 1. The proof of
Theorem 1 given in [1] is constructive in the sense that given
a rate vector λ ∈ Γ(β), it constructs a CSMA policy p such
that λ(i,j) < τ(i,j)(p), (i, j) ∈ L. We will use this result in
the next section.

Note that from Section V-A, we have that

lim
β→0

G+(β) = 0

and
lim
β→0

τ(G+(β)) = 1

Using these results, we obtain that

lim
β↓0

Γ(β) = {λ = {λr}r∈R|Λi < 1 i = 1, · · · , N} .

Furthermore, note that any rate vector λ for which there
exists a node i with Λi ≥ 1 cannot be stabilized, as the
service rate at each node is upper-bounded by 1. Hence, the
above result suggests that for network with a small sensing
time the achievable rate region of static CSMA policies is
equal to the capacity region. In [1] it was shown that this
is indeed true (i.e. the characterization of the achievable
rate region using the CSMA fixed point approximation is
accurate) for the limiting regime of large networks with many
small flows and a small sensing period β. We will use this
limiting regime for our analysis in Section VI and VIII-E.

VI. A CENTRALIZED MECHANISM FOR MULTIHOP
NETWORKS

Consider a network (L,R) with sensing time β > 0 as
described in Section II. For

C(β) = τ(G+(β))e−(G+(β)),

let λ∗ be the optimal rate vector for the utility maximization
problem

max .
∑
r∈R

Ur(λr)

s.t.

 ∑
r:(i,j)∈r

λr +
∑

r:(j,i)∈r

λr

 ≤ C(β)(1− δ), i ∈ N

λr ≥ 0, r ∈ R,

where δ > 0 is a small positive constant. Note that

λ∗ ∈ Γ(β),

and using the proof of [1] we can construct a CSMA policy
p∗ that supports λ∗ in the sense that

λ(i,j) < τ(i,j)(p∗), (i, j) ∈ L.

As we have that
lim
β→0

C(β) = 1,

it follows that under the CSMA fixed point approximation
this procedure can be used to construct a CSMA policy
that achieves fairness and throughput-optimality in wireless
multihop networks in the limiting regime as β becomes
small.

While the above result was obtained under the CSMA
fixed point approximation, we next consider actual link rates
µ(i,j)(p∗) under the CSMA policy λ∗ that we obtain through
the above procedure, and study whether we have

λ(i,j) < µ(i,j)(p∗), (i, j) ∈ L,

and p∗ indeed stabilizes the network for the rate vector λ∗.
The next result states that this is indeed the case under the



limiting regime of large network with many small flows and
a small sensing period β.

Consider a sequence of networks with N nodes and
sensing period β(N) such that

lim
N→∞

Nβ(N) = 0.

Furthermore, let R(N) be the set of routes and let N (N)
i ,

i ∈ N (N), the neighbor nodes of node i in the network of
size N . Let then λ(N) be the optimal solution to

max .
∑

r∈R(N)

Ur(λr) (9)

s.t.
∑

r:(i,j)∈r

λr +
∑

r:(j,i)∈r

λr ≤ C(β(N))(1− δ), i ∈ N (N)

λr ≥ 0, r ∈ R(N).

Then we have the following result.
Proposition 1: If for the optimal solutions λ(N), N ≥ 1,to

Eq. (9 we have that

lim
N→∞

(
max

(i,j)∈R(N)
λ

(N)
(i,j)

)
= 0,

then we obtain that

lim
N→∞

 min
(i,j)∈L(N)

µ(i,j)(p(N))

λ
(N)
(i,j)

 > 1.

The above result states that if the network serves many small
flows, then for large N the CSMA policy p(N) will indeed
stabilize the network for the rate vector λ(N), and hence
CSMA policies achieve fairness and throughput optimality
for large networks with many small flows as we have that
limβ→0 C(β) = 1.

VII. A DISTRIBUTED MECHANISM FOR SINGLE-HOP
NETWORKS

The previous section provides a centralized algorithm for
finding a CSMA policy that (asymptotically) achieves fair-
ness and throughput-optimality. Next, we derive a distributed
mechanism to achieve this. In this section, we first focus on
the special case of a single-hop networks in order to obtain
insight into the structure of a distributed mechanism. In the
next section, we extend the analysis to multihop networks.

A. Schedulers that Implement a Distributed Queue

Consider a single-cell ad hoc network where a set of
N nodes are within transmission range of each other, and
suppose that each node has a single buffer. Let λn, n =
1, ..., N , be the packet arrival rate to the buffer at node n.
Consider a scheduler π ∈ P , and let Dn be the expected
delay of a packet at node n, and let Pn be the probability
that a packet is dropped at node n due to a buffer-overflow
under π. For

λ =
N∑
n=1

λn,

let X(λ) be the network throughput under the network arrival
rate λ under π. We are interested in schedulers with the
following property.

Property 1: For a single-cell wireless network consisting
of nodes n = 1, ..., N , we say that a scheduler π implements
a distributed buffer with service rate µ if the following is true.

(a) The expected delay Dn under π is identical at all
nodes, i.e. we have Dn = D, n = 1, ..., N .

(b) The packet-drop probability Pn under π is identical at
all nodes, i.e. we have Pn = P , n = 1, ..., N .

(c) The throughput X(λ) under π is an non-decreasing
function in λ with limλ→∞X(λ) = µ.

The above property imply that a scheduler serves packets as
if the network traffic shares a common buffer with service
rate µ, i.e. all packets entering the network should experience
the same expected delay and the same probability of being
dropped.

B. Centralized Scheduler

We first consider a centralized scheduler that satisfies
Property 1. We assume that the scheduler has perfect in-
formation about the backlog at each node, but does not have
any knowledge about the packet arrival rates.

Algorithm 1: Consider a single-cell wireless network with
N nodes. If at least one buffer has a packet ready to be
transmitted and there is currently no packet being transmit-
ted, then initiate a new transmission by scheduling node n
with probability

qn =
bn
B
, n = 1, ..., N,

where bn, n = 1, ..., N , is the current backlog at node n and

B =
N∑
n=1

bn

is the total backlog over all nodes. If node n is scheduled,
then it will transmit the packet at the head of its local queue.

The above algorithm schedules nodes proportionally to
their current backlog, hence nodes with a high arrival rate
(and a higher backlog) tend to be scheduled more often
resulting. We have the following result.

Lemma 1: Consider a single-cell wireless network where
each node has an infinite buffer, and suppose that packets
arrive to node n according to an independent Poisson process
with rate λn, and that packet service times are indepen-
dently and exponentially distributed with mean 1

µ . Then
Algorithm 1 implements a distributed buffer with rate µ, i.e.
the expected delay D is equal to the expected delay at a
M/M/1 queue with arrival rate λ =

∑N
n=1 λn and service

rate µ.
Lemma 1 states that when the packet arrival process is
Poisson and the service rates are exponentially distributed,
then the above scheduler satisfies Property 1. Lemma 1 can
be proved using Little’s theorem [6].

C. Distributed Scheduler

The above centralized algorithm suggests that the proba-
bility that a node is scheduled should depend on the current
backlog at this node. Using this insight, we consider a



distributed algorithm which implements a scheduler with
backlog-dependent transmission probabilities.

Let q, 0 < q < 1, be a constant which is assumed to
be small. Each node n, n = 1, ..., N uses the following
algorithm to schedule its packet transmissions.

Before each transmission attempt, node n senses whether
the channel is idle (no other node is currently transmitting).
If the channel has been sensed to be idle for a duration β
time units, then the node makes a transmission attempt with
probability qn = min{1 − ε, qbn}, where bn is the current
backlog at node n and ε > 0 is a small constant to ensure
that the attempt probability is strictly smaller than 1.

The above algorithm implements a CSMA policy with
backlog-dependent transmission probabilities: the larger the
backlog at a node, the more aggressive a node will be in
making a transmission attempt. Below we characterize the
throughput under this algorithm.

Suppose that the current backlog at node n is equal to bn
such that node n makes transmission attempts with probabil-
ity qbn. The expected number of transmission attempts after
an idle slot is then given by

G = qB (10)

where B =
∑N
n=1 bn is the total backlog over all nodes.

Using the infinite-node approximation of Section V-A, the
instantaneous throughput τ(G) is given by

τ(G) =
Ge−G

β + (1− e−G)
, G ≥ 0. (11)

D. Active Queue Management

Eq. (11) states that the throughput under the above
backlog-based CSMA policy depends on G = qB where B
backlog over all nodes. We use this observation as follows to
achieve a high throughput. Consider an active queue manage-
ment mechanism that randomly drops incoming packets in
order to keep the expected number of transmission attempts
G at the desired level G∗. We let the probability that a new
packet is dropped (called the packet-drop probability p(u))
depend on a congestion signal u.

Consider the packet-drop probability p(u) given by

p(u) =
{
κu, 0 ≤ u ≤ 1/κ,
1, u > 1/κ,

where κ > 0 characterizes the slope of the of the function
p(u). The congestion signal u is computed as follows: after
each idle period the signal u is additively decreased by a
constant α > 0 and after each busy period the signal u is
additively increased by a constant γ > 0. If ui becomes
negative then we set it equal to 0. Note that this rule follows
the intuition that the congestion signal u should be increased
when the channel is busy, and be decreased when the channel
is idle.

One can show that the probability Pb that at least one node
makes a transmission attempt after an idle slot is given by
Pb = 1 − e−G (see for example [6]). The expected change

∆u in the signal u between two idle periods of length Li is
then equal to

∆u = −α(1− Pb) + (−α+ γ)Pb
= −α+ γPb = −α+ γ(1− e−G).

Let G∗ be given by

G∗ = ln
( γ

γ − α
)
. (12)

Note that for G = G∗, the expected change in the
congestion signal is equal to 0, i.e. we have

−α+ γ(1− e−G
∗
) = 0.

Furthermore, it can be shown that if the offered load G
is smaller than G∗ then the congestion signal u tends to
decrease (and hence the packet-drop probability tends to
decrease), whereas for G > G∗ the congestion signal u tends
to increase (and hence the packet-drop probability tends to
increase). It follows that G∗ is the unique operating point and
the above active queue management mechanism will stabilize
the offered load at G∗.

Eq. (12) provides a simple way for setting the system
throughput. Suppose that we wish to set the throughput equal
to X(G∗), 0 < G∗ ≤ G+(β); this can be achieved by
choosing γ > 0 and set α equal to

α = γ(1− e−G
∗
). (13)

Using an operating point analysis similar to the one given
in [7], one can show that the performance at the operating
point of the above distributed scheduling and active queue
management algorithm satisfies Property 1

VIII. A DISTRIBUTED MECHANISM FOR MULTIHOP
NETWORKS

In this section, we extend the above mechanism to multi-
hop networks, where instead of an active queue management
we consider a packet marking mechanism as it was proposed
and analyzed by Lapsley and Low in the context of rate
control in wireline networks [8].

A. Packet Marking and Scheduling

We consider the following packet marking and scheduling
mechanism. Each node monitors the activities to update its
congestion signal ui. We say that node i has been idle for
β time units if i hasn’t sent, nor received, a packet for β
time units. We refer to such a period as an idle period.
The signal ui is then updated as follows. After each idle
period, node i decreases its signal ui by a factor α > 0.
After each busy period (which could either be a successful
transmission or a collision), node i increases its congestion
signal ui by a factor β > 0. More precisely, after an idle
period the congestion signal gets updated to max{0, ui−α}
and after a busy period the congestion signal gets update to
ui + γ.

Using the signal ui, node i then marks incoming packets
with probability

mi = 1− φ−ui ,



where φ > 1 is a given constant (see also [8]).
Using packet marking, scheduling is then done as follows.

Consider the backlogged packets at node i. We say that a
backlogged packet at node i is unmarked if it has not been
marked by node i nor by any other node along its route
before node i. Let b̄(i,j) be the number of unmarked packets
at node i that are to be transmitted over link (i, j), i ∈ Ni.
When node i senses that link (i, j) has been idle for a period
of β time units, then it starts a packet transmission on link
(i, j) with probability min{qb̄(i,j), 1− ε} where ε is a small
constant. Note that the resulting transmission probabilities
are proportional to the number of unmarked backlog packets
for a given link (i, j).

Let Gi be the offered load at node i (expected number of
transmission attempts between two idle periods of length β)
and let

G∗ = ln
(

γ

γ − α

)
. (14)

The same analysis as given in Section VII-D shows that
under the above packet marking and scheduling mechanism
node i tries to stabilize Gi ant G∗.

B. Rate Control

We can use the above packet marking mechanism to imple-
ment a rate control scheme as it was proposed and analyzed
by Lapsley and Low in the context wireline networks [8].

Suppose that for each route r ∈ R, the source node sr
receives from the receiving node r about the fraction of
packets that were dropped along route r. The end-to-end
probability that a packet along r is marked is given by

mr = 1−
∏
j∈r

(1−mj) = 1− φ−
P

j∈r uj .

Let ur =
∑
j∈r ur be the sum of the congestion signals along

route r, then the source node sr sets its packet transmission
rate λr for route r equal to

λr = U ′−1
r (ur)

and U ′−1
r is the inverse of the derivative of the utility Ur.

C. Bottleneck Node

Using the CSMA fixed point approximation of Section V,
we define a backlogged node i under the above scheduling
and rate control mechanism as follows.

Let b̄ = {b̄(i,j)}(i,j)∈L be the current backlog of unmarked
packets at links (i, j) ∈ L, and suppose that we have that

qp(i,j) ≤ 1− ε, (i, j) ∈ L.

Then b̄ defines a CSMA policy p given by

p = qb̄.

Let G(p) be the corresponding CSMA fixed point and let
Gi(p) be the offered load at node i (expected number of
transmission attempts between two idle periods of length

β). Then under the CSMA fixed point approximation, the
throughput τi(p) at node i is given by

τi(p) =
Gi(p)e−Gi(p)

1 + β − e−Gi(p)

∑
j∈Ni

κ(i,j)(p)e−Gj(p)

where

κ(i,j)(p) =
(p(i,j) + p(j,i))ρj(p)

Gi(p)
.

Given a vector b̄ such that

qp(i,j) ≤ 1− ε, (i, j) ∈ L,

we say that node i is a bottleneck node if for p = qb̄ we
have that Gi(p∗) = G∗ = ln

(
β

β−α

)
.

For a given vector b̄ and CSMA policy p = qb̄, suppose
that node i is a bottleneck node. Then under the CSMA fixed
point approximation the node throughput τi(p) is bounded
by

τ(G∗)e−G
∗
≤ τi(p) ≤ τ(G∗)

where

τ(G∗) =
G∗e−G

∗

1 + β − e−G∗

where G∗ is as given in Eq. (14).

D. Operating Point Analysis

In the following, we use an operating point analysis to
characterize the rate allocation under the above scheduling
and rate control mechanisms. Throughout this subsection we
assume that G∗ given by Eq. (14) is such that

τ(G∗) ≤ τ(G+(β))e−G
+(β)

where G+(β) is as defined in Subsection V-A.
To do that, suppose that we are given a network (L,R)

and suppose that the parameters of the marking algorithm
described above are equal to α and γ. Let G∗ = ln(γ/(γ −
α)) as defined above. We then characterize the system state
the two vectors by (λ, b̄) where λ = {λr}r∈R characterizes
the rate allocation and b̄ = {b̄(i,j)}(i,j)∈L characterizes the
backlog of unmarked packets at links (i, j) ∈ L. At a
state (λ, b̄), the CSMA policy p used to schedule packet
transmission is then given by p(i,j) = min{qb̄(i,j), 1 − ε},
(i, j) ∈ L. Let G(p), i ∈ N the corresponding CSMA fixed
point and let then Ci(p) be given by

Ci(p) = τ(G∗)
∑
j∈Ni

κ(i,j)(p)e−Gj(p), i ∈ N ,

where τ(G∗) and κ(i,j)(p) are as defined in the previous
subsection.

We then say that (λ, b̄) is an operating point if the
following two conditions hold: (1) λ is the solution to

max .
∑
r∈R

Ur(λr)

s.t.

 ∑
r:(i,j)∈r

λr +
∑

r:(j,i)∈r

λr ≤ Ci(p), i ∈ N

λr ≥ 0, r ∈ R,



and (2) we have Gi(p) ≤ G∗, i ∈ N .
Suppose that node i is a bottleneck node at an operating

point (λ, b̄) where a bottleneck node is given as defined in
the previous subsection. Then we have for node i that∑

r:(i,j)∈r

λr +
∑

r:(j,i)∈r

λr = Ci(p).

One can show that the network is in equilibrium at an
operating point (λ, b̄) in the sense that the following two
properties hold: (1) we have that

λ(i,j) =
∑

r:(i,j)∈r

λr = τ(p)(i,j)

where τ(i,j)(p) is the service rate for link (i, j) under the
CSMA policy p = qb̄ at the operating point (λ, b̄), and (2)
the expected change of the congestion signal ui is equal to
0 for all nodes i ∈ N .

Given that the parameter ε that is used to define a
scheduling policy p as a function of the vector of unmarked
backlogged packets b̄, one can show that there always exists
an operating point. The next proposition characterizes the
rate vector λ at an operating point.

Proposition 2: Let (λ, b̄) be an operating point, then there
exists a constant K such that

|λ∗r − λr| ≤ Ke−G
∗
, r ∈ R

where the rate vector λ∗ is the optimal solution to

max .
∑
r∈R

Ur(λr) (15)

s.t.

 ∑
r:(i,j)∈r

λr +
∑

r:(j,i)∈r

λr

 ≤ X(G∗)e−G
∗
, i ∈ N

λr ≥ 0, r ∈ R.
The above result states that the rate vector λ at an operating
point will be close to the unique solution λ∗ to the optimiza-
tion problem given by Eq. (15). Furthermore, λ will converge
to λ∗ as the sensing period β becomes small.

The above result provides a performance characterization
of the CSMA policy and rate control mechanism given in
Section VIII-A and VIII-B using the CSMA fixed point
approximation. Similar to Section V-C, this characterization
is accurate in the limiting regime of a large network with
many small flows as shown in the next subsection.

E. Asymptotic Accuracy

Consider a sequence of networks with N and sensing
period β(N) such that limN→∞Nβ(N) = 0. Furthermore,
consider a sequence of marking policies given by α(N) and
γ(N) such that for

G(N) = ln
( γ(N)

γ(N) − α(N)

)
we have that limN→∞ = G∞ and

τ(G∞) < 1.

Let then λ(N) be the optimal solution to

max .
∑

r∈R(N)

Ur(λr) (16)

s.t.

 ∑
r:(i,j)∈r

λr +
∑

r:(j,i)∈r

λr


≤ τ(G∞)e−G∞ , i ∈ N (N)

λr ≥ 0, r ∈ R(N),

and let p(N) the corresponding CSMA policy such that

λ
(N)
(i,j) < τ(i,j)(p(N)), (i, j) ∈ L(N), .

Then we have the following result.
Proposition 3: Let λ̄(N) be the actual end-to-end rate

vector obtained at an operating point (λ(N), b̄(N)) for the
network with N in the above scaling. If

lim
N→∞

(
max
(i,j)

λ
(N)
(i,j)

)
= 0,

then we have that

lim
N→∞

(
max
r∈R∈

∣∣∣∣∣ λ̄(N)
r

λ
(N)
r

− 1

∣∣∣∣∣
)

= 11.

The above result states that if the network serves many
small flows, then for large N the rate allocation under the
scheduling and rate control mechanism of Section VIII-
A and VIII-B is indeed accurately given by the utility
maximization problem given by Eq. (16). Furthermore, the
mechanism can be used to achieve arbitrarily close fairness
and throughput-optimality.

We presented a distributed scheduling and rate control
to achieve fairness and throughput-optimality in multihop
wireless networks. Our results are based on an operating
point analysis. Future work is to investigate the dynamics
of the proposed mechanisms and shows that they indeed
converge to an operating point.
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