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1 Introduction

We develop a simple mathematical model to analyze the interaction of TCP Reno rate
control and IEEE 802.11 medium access control in local area networks. Our work builds
on existing models proposed in the literature to study TCP Reno [3, 7] and IEEE
802.11 [6]. We show that under suitable assumptions combining these two models still
allows a formal analysis.

The paper is organized as follows. In Section 2, we model the interaction between
TCP Reno and 802.11 as a discrete-time system. In Section 3 we study the existence of
a system operating point, characterize the performance at an operating point, and study
local stability. In Section 4 we provide a case study to illustrate our results. Due to space
constraints proofs are omitted.

2 Models

In this section we develop the model that we use for our analysis. In particular, we define
the model for TCP Reno rate control and IEEE 802.11 medium access control. We assume
that the reader is familiar with these two protocols and we focus on the features of these
protocols that are relevant to our analysis. For an overview and detailed description of
TCP Reno and IEEE 802.11 we refer to [5] and [6].

2.1 Network Model

We consider a wireless local area network where nodes belonging to the set N' = {1,2,---, N}
access a base station. We assume that each node has one active TCP connection, and use
n to refer both to node n as well as the connection associated with node n. We assume
that all nodes have finite buffer space and use B, to denote the buffer space available at
node n. Let By denote the buffer space available at the base station. Naturally, we have
By > 0 and B,, > 0. We assume that the wireless local area network is the bottleneck for
all connections, and all packets (data packets and ACKs) are stored either at a wireless

*This research is supported through a grant by the Bell University Laboratories (BUL), Toronto,
Ontario, Canada



node or at the base station. Let B,, denote the total backlog of the connection associated
with node n, let by, denote the backlog of this connection at the base station and let b, ,,
denote that backlog at node n. Note that

Bn = bO,n + bl,n-

Let By be the total backlog at the base station.

Finally let N, be the set of nodes with upload traffic and Ny the set of nodes with
download traffic. Note that for a connection n € N, by, denotes the data packets stored
at node n and by, the ACKs belonging to connection n currently stored at the base
station.

2.2 TCP Reno Model

For our analysis, we adapt the TCP Reno model proposed by Kelly in [3] and used by
Low in [7] to the framework that we consider here. That is, we model TCP Reno as a
synchronous discrete time system where each slot has unit time and the transmission of
all packets (data packets and ACKs) requires L, time slots, i.e. we have that all packets
are of equal and deterministic length. Consider connection n € N and let w,(t) be the
window size (in terms of packets) of connection n at the beginning of the ¢th time slot.
The transmission rate A,(t) (in terms of packets per time slot) of connection n at time ¢

is then given by
An(t) = wn(t)/Da(t), (1)

where D,,(t) is the round-trip time (RTT) of connection n, i.e. D,(t) denotes the number
of time slots it takes for connection 7 to receive a positive ACK for a packet sent at the
beginning of slot .

TCP Reno uses packet loss as a congestion indicator, and halves the window w,, for
each packet that is not acknowledged. As in [3], we use a congestion indicator function
to characterize the likelihood that a given data packet belonging to connection n is not
acknowledged and the window w, is halved at the end of time slot t. We make the
following assumption.

Assumption 1 The congestion indicator function Py(By) depends on the total backlog
By at the base station. Furthermore, we have that Py : [0, Bo] — [0,1] is continuously
differentiable and strictly increasing with Py(0) = 0 and Py(By) = 1.

The above assumption states that the less buffer space that is available at the base
station, the more likely it is that a packet loss occurs and causes the window w,, to be
halved. This assumption is based on the observation that in a wireless local area network
the backlog of individual connections is concentrated at the base station [8].

Using the above definitions, we characterize the dynamics of TCP Reno as follows (see
also [3]). As TCP Reno increases the window size by for each positive acknowledged
packet and halves the window for each congestion 1nd1cat10n the expected rate of change
of the congestion window (i.e. the expected change of the congestion window per time
slot) at time ¢ is given by

1
wy, (t)

Assuming that the the wireless local area network is the bottle-neck and that the prop-
agation delay is negligibly small compared with the queueing delay, we have that all

Mn(0)(1= Po(Bo(t))) = Sum()Mn(0)Po(Bol). @



“active” packets (i.e. all data packets and ACKs within to the current window size) of
connection n are queued either at node n or at the base station, i.e. we have that

Wi (t) = bop(t) + b1n(t) = Bu(t).

Combining the above observation with Eq. (1) and (2), the expected rate of change in
the transmission rate A, at time ¢ is given by
An(t)?
B (t)?

An(t)?
2

(1= Po(Bo(1))) = 2= Po(Bo1)).

2.3 IEEE 802.11 Medium Access Control Model

The medium access control of IEEE 802.11 works roughly as follows. Before each trans-
mission attempt, a node senses the channel to detect whether the channel is free (idle).
If the channel is sensed to be free, a node will wait for some random time before start-
ing with the transmission as follows. Each node keeps track of a back-off timer and a
retry counter. The back-off timer interval is selected uniformly from the interval [1, CW],
where C'W is set equal to a given constant C'Wy, for the first transmission attempt of a
packet. The back-off timer is then decremented by one every time the channel is sensed
to be idle. When the back-off timer reaches zero, a transmission starts. If a collision
occurs (i.e. two or more nodes make a transmission attempt at the same time), CW is
doubled (up to some given constant C'Wi,x), the retry counter is incremented and the
packet is backlogged waiting for the next transmission. When the retry counter reaches
the maximal retry limit K, the packet is discarded.

For our analysis, we use a simplified model of IEEE 802.11 which was proposed
and analyzed first in [2] and then extended by Kumar et al. in [6]. Under suitable
assumptions, it is shown that the 802.11 protocol can be modeled as if each node makes
a transmission attempt (after sensing the channel to be idle) with probability ¢(1V,),
where N, is the number of nodes with a packet to send and ¢(N,) is the unique solution
to the following fixed-point equation [6]

9=1—(1—q)N"1
{ _ 149tk (3)
9= SordTwr++9Fwg

with wy = min{2kCWZ‘“i“+1, CW’?XH}, k = 0,1,..., K. In the above equation, ¥ is the
collision probability observed by a node.

Using the above result, we model 802.11 as a slotted CSMA/CD system as follows
(see for example [1]). Let L; be the number of slots a node has to detect the channel to be
idle before making a transmission attempt. We will refer to this time as an idle period. If
N, is the number of active nodes at the end of an idle period of L; slots (i.e. the number
of nodes that received a new packet during this idle period or have a backlogged packet
to retransmit), then each active node makes a transmission attempt with probability
q(N,). If exactly one node makes a transmission attempt, then the packet is successfully
transmitted within L, slots. It two or more nodes make a transmission attempt, then all
transmitted packets are lost and have to be retransmitted. The time to detect a collision
is equal to L, slots. Note that L, is equal to the transmission delay in the TCP Reno
model of the previous subsection.

Note that in the above CSMA/CD model, nodes make a transmission attempt only
after an idle period of length L;. Using this observation, we characterize the system




dynamics by considering the times when idle slots start. More precisely, we mark the
times when a new idle period starts as follows. Starting the system at time ¢t = 0, let #;
be the time at which the kth idle period of length L; ends. The probability that node n
makes a successful transmission attempt between ¢, and t;; is then equal to

[b1,n (k)] (Na (%)
f

) N
1= [y ()] (Na (8)) (1 - [Bo(k)]*q(Na(k))) 11 (1 - [bl,l(k)]fq(Na(k))),

=1

where [z]" = min{z, 1}, by, (k) is the backlog at node n at time t;, and

Na(k) = [Bo(R)]' + Y (b1 (k)]

is the number of active nodes at time t;. A standard simplification for the analysis
for CSMA/CD is to assume that ¢(N,(t)) is small and to approximate the probability
that node n makes a successful transmission attempt between ¢, and #;,; by (see for
example [1])

[b1,0 ()] Tq(Na(k))e™ ™),

where

G(k) = [Bo(k)]'q(Na(k)) + Y [b1a(k)]'g(Na(k)) = Na(k)q(Na(k)).

We will refer to G(k) as the offered load at time tj.

In addition, for our analysis we assume that when the base station makes a trans-
mission attempt then the probability that this packet belongs to connection n is equal
to b]‘;—’:. If Bo(k) > 0, then the probability that the base station makes a transmission
attempt between time ?; and t;,; of a packet belonging to connection n is given by

_ bon(k)
~ By(k)

Gon(k) [Bo(k)]Ta(Na(k)),

and Gy (k) = 0if By(k) = 0. The probability that a packet of connection n is successfully
transmitted between ¢, and ¢y, by the base station is then given by

Go,n(k)e_G(k).

Finally, the probability that no node makes a transmission attempt between ¢, and #5141
is equal to e~C¢(*),

2.4 System Model

Using the models of the previous two subsections, we model the system consisting of
TCP Reno rate and 802.11 medium access control by a synchronous discrete time system
where the system state at time ¢ is given by the vector

z(t) = (A1), bo(1),br(8)), >0

where A(t) = (A1(t), ..., An () indicates the transmission rates, by(t) = (bg.1(t), -.., bo,n ())
the backlog at the base station, and by (t) = (b1,1(¢), ..., b1~ (t)) the backlog at the wireless
node, of connection n =1, ..., V.



Again, let ¢, be the time at which the kth idle period of length L; ends and let z(k)
denote the system state at time ¢,. We can then represent expected change of the system
state between time t; and %5, by a nonlinear equation

z(k+1) =o(z(k), k=1,

which is given as follows.
The expected change in the transmission rate of connection m is given by

o1 — Py(Bo(k)) o Po(Bo(k))

An(k+1) = A (k) + A (k) B, (k)? 2

L(k) = An(k) L(k),

where
L(k) = Li + G(k)e ®®L, + (1 e — G(k)e )L
is the expected time between time ¢, and #;4.

For a node n € N, the expected change of the backlog of connection n at node n
between time t; and t;, is given by

byp(k +1) = by (k) + A (k) LK) — [byn (k)] Tq(Na(k))e™ @),

where \,(k)L(k) is the expected number of new packet arrivals at node node n in the
interval between t; and t;.; and [by,(k)]fq(Na(k))e=¢™® is the probability of a packet
departure at node n (i.e. a successful transmission by node n) between ¢; and 5.

The expected change in the backlog of connection n at the base station between time
tr and tyy; is given by

B+ 1) = by (K) = Go(B)e™®® -+ [by (k) fa(Na())e O,

where Go,n(k)e’G(k) is the probability that the base station successfully transmits an
ACK belonging to connection n and [b,(k)]fq(N.(k))e ¢*) is the probability that a
new ACK belonging to connection n arrives at the base station. Here we assumed that
a successful packet transmission by node n will immediately generate a new ACK at the
base station.

Similarly, for a node n € Ny, the expected change of the backlog of connection n at
node n between time ¢, and t;1 is given by

bin(k +1) = bin(k) + Gon(K)e™ O — by n (k)]"g(Na(k))e™“®,

and the expected change in the backlog of connection n at the base station between time
tr and tgq is given by

bon(k +1) = bop (k) + M (k)L(E) — Gop(k)e” 9%

3 Analysis

Having modeled the dynamics, we wish next to study the system performance. In order
to do that, we study the system performance at an operating point.

Definition 1 We call * an operating point if we have that

= ¢(x).



Note that an operating point is a fixed-point of the system dynamics given by ¢, i.e.
the expected change of the state variables is equal to 0 at an operating point. We are
interested in the following questions.

1. Does an operating point exist?
2. Does a unique operating point exist?
3. What is the system performance at an operating point?

4. Are the operating points locally stable?

3.1 Existence of an Operating Point

We make the following additional assumptions for our analysis.
Assumption 2 We have that Py(1) < 2/3.

The above assumption is a very mild assumption which ensures that there is some minimal
buffer space available at the base station.

For a given operating point z*, let N* = 3" [b*]" denote the number of active nodes
at z*, and let G* = N}q(N}). We will refer to G* as the offered load at x*.

Using this notation, we have the following result.

Proposition 1 Under Assumption 1 and 2 there always exists a unique operating point
x*. Furthermore, for x* we have N} =2 and G* = 2q(2).

The above result states that the number of active nodes at the operating point is always
equal to 2, independent of the number of active connections N. Similarly, the offered
load G* is always equal to G* = 2¢(2), independent of N. Intuitively, the above results
states that on average there are 2 nodes active, the base station and one of the wireless
nodes in the set N.

3.2 System Performance

Using the fact that there exists a unique operating point, we can characterize the system
performance as follows. For slotted CSMA /CD, it is well known that the system through-
put T(G) (in packets per time slot) as a function of the expected number of transmission
attempts is given as follows (see for example [1]),

B Ge ¢
Li+ Lo+ (GL,, 1+ G)LC) =G

T(G)

Therefore, the throughput at the operating point is equal to
T(G") = T(2¢(2))-

More precisely, we have the following result.



Proposition 2 Let Assumption 1 and 2 hold, and let x* be an operating point. Then
the backlog at the base station Bj at the operating point is equal to the unique solution to

the equation
2(1 — Py(By))
By =N{|———— +1,
° \/ Py(Bg)

and for every connection n € N we have
(a) X, = 55,
(b) bin =7
(c) by =3

3.3 Local Stability

In the previous subsection, we characterized the throughput and backlog at an operating
point. In this subsection, we study whether an operating point is locally stable and the
system will indeed spend most of the time in the vicinity of the operating point.

Given two system states = (\, by, b1) and 2’ = (X, bf, b)) let

oo = 3 (= X) S (bon o) + D0 (b — 1)
neN neN neN

Definition 2 We call an operating point x* locally stable if there exists an € > 0 such
that for all initial states x(1) with |z(1) — 2*| < € we have

lim z(k) = z*
k—o0

where z(k + 1) = ¢(z(k)), k > 1.

The following lemma can be used to determine whether an operating point z* is
locally stable.

Lemma 1 Consider a nonlinear discrete time dynamical system x(k + 1) = ¢(z(k)),
¢ : R* — R™. Suppose the system has a fized point x* and the system can be linearized
as ©(k+1) = Bx(k)+ D around x*, where B is a n X n matriz and D is a n-dimensional
constant column vector. Suppose |B| # 0. Let {(1,---,(.} be the eigenvalues of B and
let Cmax = max;—y__, |(;|. Then the fized point x* is locally stable if and only if (max < 1.

The above lemma states that an operating point x* is locally stable if and only if the
largest absolute value of all eigenvalues is strictly smaller than 1. We have the following
result.

Proposition 3 Under Assumptions 1 and 2 we have (nax > 1 and the operating point

x* is not locally stable.

To get a better understanding of the local stability, we next characterize the (asymp-
totic) behavior of the (.« as the number of nodes N becomes large. To do that, we
consider a series of systems indexed by N, N > 1, where N refers to the number of wire-
less nodes present in the network. Let P (By) be the the congestion indicator function
for system N. We have the following assumption.



Assumption 3 There exists a constant g > 0 such that
PY(N) <1 — ¢, N > 1.

The above assumption ensures that there is enough buffer space available at the base
station to accommodate at least one packet for each TCP connection.

Let (Y. be the absolute value of the largest eigenvalue for the linearized dynamics
around the operating point for system N. Then we have the following result.

Ne=1

Proposition 4 Under Assumptions 1, 2, and 3, we have that limy_,o Chax =

The above results state that the operating point xz* is not locally stable with (pax
being close to 1. This suggests that the dynamics is such that the system will “oscillate”
in an area around the operating point. We illustrate this in the next section through a
numerical case study.

4 Numerical Results

In this subsection, we illustrate the above results using a numerical case study. For this,
we implemented the actual TCP Reno protocol and IEEE 802.11 protocol without making
the simplifying assumptions used to formulate the above system model. This explains why
the numerical results below do not perfectly match the theoretical predictions obtained
in the previous section.

For the simulation, we assumed that all data packets and ACKs are of the same
lengths and equal to 1 MSS. The buffer size at each wireless node was set equal to 10 MSS,
and the buffer size at the base station was set equal to 100 MSS. For the IEEE 802.11
medium access control we used the following parameter values: we set CWy, = 32,
CWhax = 1024, and K = 7. The values for L;, L,, and L. that we considered are given
in the table below, along with the corresponding throughput 7'(G*) at the operating
point predicted by the model in the previous section.

(Li’ Lm LC) T(G*)

(1,100,1) | 0.0091
(1,100,17) | 0.0090
(1,100, 100) | 0.0086

We simulated the above system with the total number of nodes N equal to 5, 10,
15, 20, and 30, to investigate how the system performance changes as the number of
nodes increases. In the simulation, all nodes were uploading traffic to the base station.
Using this setup, we simulated the system for 90000, 150000 180000, 210000, and 240000
time steps for the case of the total number of nodes N equal to 5, 10, 15, 20, and 30,
respectively.

4.1 Throughput

Fig. 1 shows the time-average system throughput obtained through simulation for the
different scenarios described above, as well as the corresponding theoretical results in-
dicated in the above table. We note that the experimental results indeed confirm the
results of the previous section, i.e. the throughput stays (roughly) constant as the num-
ber of nodes increases. In addition, we note that the values predicted by the model of the
previous section match reasonably well the values obtained in the numerical case study.
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Figure 1: Time-average system throughput for different values of (L;, L,, L.) as a function
of the number of wireless nodes .

4.2 Local Stability
Fig. 2 shows the trajectory of the total system backlog

B=DBy+ Y By,

and the total system throughput
A=2 A

as well as the histogram of the distribution of the system throughput for the case of
(Li, Ly, L, N) = (1,100,17,15). We note that the trajectory “oscillates” around the
operating point as predicted by the theoretical results of the previous section.

As we do not know the actual congestion indicator function, we use the following two
example functions to investigate local stability. Using the congestion indicator

65B/l_30 -1

Po(B) = — 57—

B >0,
the value of (ayx is equal to |14 0.0018i|, i.e. |(max| is very close to 1. For the congestion
indicator

eSOB/Bo -1

e —1 7

Py(B) = B >0,

the value of (max is equal to |1 4= 0.0009i|. This confirms the theoretical result on local
stability obtained in the previous Section.

5 Conclusion

We developed a simple model to study the interaction among TCP Reno and IEEE
802.11 in local area networks. Even though we used several simplifying assumptions, the
numerical results suggest that the model does capture the important features and does
reasonably well predict the actual system behavior and performance.

There are several issues that we did ignore in our analysis. One such issue is the well-
known asymmetry between upload and download traffic in wireless local area networks
using TCP Reno and IEEE 802.11. This asymmetry is due to the fact that losses of
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Figure 2: Trajectory of the system backlog and transmission rate (left), and histogram
of the system throughput (right), for (L;, Ly, L., M4, Mp) = (1,100, 17, 3,15).

data packets and ACK’s are interpreted/handled by TCP Reno in a slightly different
manner [8]. This characteristic of TCP Reno could be incorporated into our model by
using different congestion indicator functions for upload and download traffic.
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