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Abstract

We consider a model for interacting objects, where the
evolution of each object is given by a finite state Markov
chain, whose transition matrix depends on the present and
the past of the distribution of states of all objects. This is a
general model of wide applicability; we mention as exam-
ples: TCP connections, HTTP flows, robot swarms, reputa-
tion systems. We show that when the number of objects is
large, the occupancy measure of the system converges to a
deterministic dynamical system (the “mean field”) with di-
mension the number of states of an individual object. We
also prove a fast simulation result, which allows to simu-
late the evolution of a few particular objects imbedded in a
large system. We illustrate how this can be used to model
the determination of reputation in large populations, with
various liar strategies.

1 Introduction

We consider models in computer or communication sys-
tems where a large number of objects interact, and we are
interested in going from a detailed (microscopic) descrip-
tion of the system at the object level to a global (macro-
scopic) description.

To this end, we define a generic model for interacting
objects. Time is discrete. The evolution of each object
is given by a finite state Markov chain, whose transition
matrix depends on the present and the past of the distrib-
ution of states of all objects. In some form or another, this
framework has been applied to a variety of cases, ranging
from TCP connections [17, 2], HTTP flows [3], bandwidth
sharing between streaming and file transfers [10], to robot
swarms [11] and transportation systems [1]. In Section 3
we define the model and demonstrate its applicability on a
few selected examples ranging in complexity from simple,
memoryless, models to multiclass models with memory.

Next, our main result is that, as the number of objects
becomes large, the model can be approximated by a deter-
ministic equation, called the “mean field” (Theorem 4.1).
We prove this approximation as an almost sure convergence
result. This both provides a theoretical justification for the
common practice of deterministic approximation, and, per-
haps more importantly, a systematic method to derive such
an approximation. Further, we also prove a fast simulation
result (Theorem 5.1), which allows the simulation of the
evolution of a few particular objects imbedded in a large
system. This allows the computation, theoretically or by
simulation, of such quantities as the time until a specified
change of set occurs for a particular object starting in any
arbitrary initial conditions. In Section 6, we show how to
apply our modelling framework to a large, complex exam-
ple (a reputation system). We show how our modelling ap-
proach can be used to assess the impact of different liar
strategies. This section also serves as an illustration of the
different steps involved in going from a free text description
of the system to the application of the mean field conver-
gence theorems.

Our model and results belong to a large family of mean
field convergence results. The phrase “mean field” is of-
ten found in the literature, sometimes with slightly differ-
ent meanings. The mean-field idea was first introduced in
physics and has been used in the context of Markov process
models of systems like plasma and dense gases where inter-
action between particles is somewhat weak, meaning that
the strength of the interaction is inverse proportional to the
size of the system. A given particle is seen as under a col-
lective force generated by the other particles, similar to our
model, but in a continuous time and space setting, and the
interaction is usually assumed to depend on the first or sec-
ond moment of the distribution of particles. In contrast, in
this paper, we consider an arbitrary dependence. In [18] the
mean field refers to making an independence assumption
for one side of the master equation of a Markov process.
In recent years, the mean-field approach has also found an
appeal in the area of communication networks. To name
but a few of the many publications, the reader is referred to
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[9], [16], [8] and [7]. Perhaps closest to our model are [4],
which uses a continuous time limit, and [5], which uses a
combination of discrete and continuous time and assumes
a perfectly exchangeable system (i.e. all objects are i.i.d.,
whereas in our fast simulation result, objects may have dif-
ferent initial conditions).

2 Main Notation List

d dimension of �r
E = {1, . . . , S} set of states for one object
g() function used to update the memory
Ki,j(�r) limit of KN

i,j(�r) for largeN or,
value of KN

i,j(�r) when independent of N
KN

i,j(�r) transition probability from i to j
�MN (t) occupancy measure (random process)
MN

i (t) the ith component of �MN (t)
proportion of objects in state i

�m ∈ P(E) a possible value of �MN (t)
�μ(t) a deterministic approximation of �MN (t)
N ∈ N number of objects
P() same as PN () when K(�r) is used

instead of KN (�r)
PN (i, �r, u) program that computes the next state

for an object in state i when the memory is
�r and u is random uniform in [0, 1]

�RN (t) memory (random process)
�r ∈ R

d a possible value of �RN (t)
�ρ(t) a deterministic approximation of �RN (t)
S ∈ N number of possible states for one object
t ∈ N time
XN

n (t) state of object i at time t

3 A Model of Interacting Objects with Indi-
vidual State and Global Memory

3.1 Definition

We consider a system of N interacting objects. An ob-
ject has a state i in the finite set E = {1, . . . , S}. Time is
discrete. Let XN

n (t), n = 1 . . . N , be the state of object n at
time t. Also define the “occupancy measure” �MN (t) as the
row vector whose ith coordinate MN

i (t) is the proportion
of objects that are in state i at time t:

MN
i (t) =

1
N

N∑
n=1

1{XN
n (t)=i}

where 1{x=i} is equal to 1 when x = i and 0 otherwise.

At every time step, objects interact with their environ-
ment and may undergo a state transition. This model as-
sumes that an object’s state transition depends only on
this object’s current state and some function �RN (t) ∈ R

d

(where d is some fixed integer) of the history of the occu-
pancy measure.

More precisely, call P(E) the set of possible occupancy
measures, i.e. P(E) is the set of nonnegative row vectors
�μ ∈ R

S that sum to 1. We assume that there is a continuous
(deterministic) mapping g(): R

d × P(E) → R
d such that

the following update equation holds, for t ≥ 0

�RN (t + 1) = g(�RN (t), �MN (t + 1)) (1)

The initial value �RN (0) is chosen according to some prob-
ability distribution on R

d. With an appropriate choice of d
and of the mapping g(), �RN (t) represents the memory of
the occupancy measure (see below for examples).

State transitions for individual objects are assumed to
satisfy the following rules. The next state for an object de-
pends only on its current state and the value of the global
memory �RN (t + 1): for all objects n

P

{
XN

n (t + 1) = j|�RN (t) = �r,XN
n (t) = i

}
= KN

i,j(�r)
(2)

It is possible for an object not to do any transition during one
time step (this may occur when KN

i,i(�r) > 0). The S × S

matrix KN (�r) is the state transition matrix for an individual
object. It depends on the population N and on the value �r of
the global memory. KN

i,j(�r) is a transition probability from
state i to state j, therefore we assume that KN

i,j(�r) ≥ 0 and∑S
j=1 KN

i,j(�r) = 1. We further assume that

H For all i, j, for N → ∞, KN
i,j(�r) converges uniformly in

�r to some Ki,j(�r), which is a continuous function of �r.

Hypothesis H is true in particular if KN
i,j(�r) does not depend

on N and is continuous in �r (if so we write K instead of
KN ). Note that �RN (t) and �MN (t) are random vectors, but
�RN (t) depends deterministically upon �MN (t).

Typically, the number of states for each object S and
the dimension of the memory d is not large, in contrast the
number of objects N is very large; the number of possible
states for the complete system is lower bounded by SN , yet
a larger number.

3.2 Example without Memory

A simple, special case of the model is when �RN (t) =
�MN (t), i.e. the global memory is in fact the last value of



the occupancy measure. In this case we say that the model
is “without memory”. Here d = S, the mapping g() is
reduced to g(�r, �m) = �m, the state transition matrix is a
function of �MN (t) and does not depend on N .

Consider for example a model of Robot Swarm found
in [11]. We give here a simplified version, more realistic
models are given in [11]. A set of N robots travel across an
area where there are G0 grip sites. In each grip site there is
a task to be performed; the task requires two robots and is
performed in one time slot. The robot is either in search (s)
or grip (g) state. A robot in state s moves to state g when
it finds an empty grip site. A robot in state g can be helped
by some other robot, in which case it returns to state s; else,
it may continue waiting, or gives up and returns to state s.
See Figure 1 for the transition probabilities. This model

Figure 1. Finite State Machine for one robot,
with transition probabilities; Ns [resp. Ng] =
number of robots in state s [resp. g]; G0, pg1 ,
pg2 and Tg are fixed parameters.

fits in our framework; an object is a robot, E = {s, g},
�RN (t) = �MN (t) = 1

N (Ns(t), Ng(t)). To keep a discrete
time setting meaningful, we need to assume that the values
of pg1 , pg2 and G0 scale with N according to pg1 = p1

N ,
pg2 = p2

N and G0 = g0N . We then have a model with

transition matrix independent of N : Ks,g( �MN (t)) = (g0−
Ms(t))p1, Kg,s( �MN (t)) = Ms(t)p2 + 1

Tg
. A deterministic

approximation of this model is [11]:

Ns(t+1) = Ns(t) (1 − pg1(G0 − Ng(t)))

+Ng(t)
(

Ns(t)pg2 +
1
Tg

)
(3)

We see later (Equation (9)) how to derive this approxima-
tion in a systematic way, and show that it is indeed valid for
a large number of robots.

3.3 Example with Memory

This model is for TCP connections over a RED/ECN
Gateway. It was introduced and analyzed (including con-
vergence to mean field) in [17]. The set of objects is the set

Figure 2. Finite State Machine for one TCP
connection.

of N TCP connections sharing a RED (random early de-
tection) bottleneck. The state of an object is an index that
defines its sending rate, i.e. when the state of a connection
is i the sending rate is si; there is a finite number of pos-
sible sending rates and S = {0, 1, ..., I}. The occupancy
measure �MN (t) is the distribution of sending rates of all
connections. Here d = 1 and the memory RN (t) is the
re-scaled queue size at the bottleneck, i.e. the buffer back-
log divided by N . It is assumed in [17] that the bottleneck
capacity is NC, so that the update equation is:

RN (t + 1) = max
(
RN (t) + SN (t + 1) − C, 0

)
(4)

where SN (t) is the per connection average sending rate at
time t, i.e.

SN (t) =
∑

i

siM
N
i (t).

The mapping g() is thus defined by

g(r, �m) = max

(
r +

∑
i

simi − C, 0

)

The state of a connection is updated according to an in-
crease/decrease rule. A TCP connection receives a negative
feedback with a probability q(RN (t)) that depends on the
re-scaled queue size RN (t). If no feedback is received, the
rate is increased and the rate index goes from i to i + 1
(with si+1 > si), except for i = I in which case there
is no increase. If a negative feedback is received, the rate
is decreased and the rate index goes from i to d(i) (with
d(i) < i and consequently sd(i) < si, except for i = 0
where d(0) = 0) (Figure 2). Here, too, the state transition
matrix for an individual object does not depend on N ; its
non zero entries are:

Ki,i+1(r) = (1 − q(r))1{i<I}
KI,I(r) = 1 − q(r)

Ki,d(i)(r) = q(r)

A mean field approximation of this system is



MN
i (t + 1) =

(
1 − q(RN (t))

)
MN

i−1(t)1{i>0}

+ q(RN (t))
∑

j:d(j)=i

MN
j (t) for i < I (5)

MN
I (t + 1) =

(
1 − q(RN (t))

) (
MN

I−1(t) + MN
I (t)

)
where RN (t) is updated by Equation (4). It is a special case
of the deterministic approximation in Equation (9).

3.4 Heterogeneous Example

The model of interacting objects can easily model a het-
erogeneous population of objects, by introducing object
classes. We illustrate this on one example.

Consider the same RED/ECN gateway example, but as-
sume now that TCP connections are of two classes: normal
and aggressive. An object (i.e. a TCP connection) now has
a state (c, i), where c denotes the class (c = 1 [resp. 2] for
the normal [resp. aggressive] class) and i is, as before, the
index of the sending rate. When a normal [resp. aggres-
sive] TCP connection receives a feedback, its rate index is
decreased from i to d1(i) [resp. d2(i)], with d1(i) ≤ d2(i).
The rest is as in the previous example.

Assume first that there is no class change. Then the state
transition matrix is independent of N :

Kc,i,c,i+1 = (1 − q(r))1{i<I}
Kc,I,c,I = 1 − q(r)

Kc,i,c,dc(i)(r) = q(r)

for c = 1, 2 and i = 0, . . . , I and Kc,i,c′,i′ = 0 in all other
cases. A deterministic approximation can be derived for
MN

c,i(t) similar to Equation (5). Let pc be the proportion of
class c TCP connections; pc is independent of time since we
assume there is no class change. The proportion of class c
connections in state i at time t is then 1

pc
MN

c,i(t).

Assume next that a connection may change class, and
let qc,c′(R(t)) be the probability that a connection that is in
class c at time t switches to class c′ for the next time slot.
The state transition matrix is now given by

Kc,i,c′,i+1 = (1 − q(r))1{i<I}qc,c′(r)
Kc,I,c′,I = (1 − q(r))qc,c′(r)

Kc,i,c′,dc(i)(r) = q(r)qc,c′(r)

for c = 1, 2 and i = 0, . . . , I and Kc,i,c′,i′ = 0 in all other
cases. The proportion of class c connections at time t is now
pc(t) =

∑
i MN

c,i(t) and the proportion of class c connec-
tions that are in state i is 1

pc(t)
MN

c,i(t).

In Section 6 we analyze in detail a real size applica-
tion (reputation determination), which uses models with and
without memory, and where the transition matrix depends
on N .

4 Convergence to Mean Field

4.1 Convergence Result

The occupancy measure �MN (t) and thus the global
memory �RN (t) are random: for two different simulation
runs, one obtains different values. The following theorem
says that, as N → ∞, randomness goes away and one can
replace �MN (t) and �RN (t) by deterministic approximations
�μ(t) and �ρ(t). A weaker form of this theorem (convergence
in probability instead of almost sure) was first introduced,
in the case without memory, and proven in [3]. A similar,
but less general, theorem was proven in [17] for the specific
case, with memory, of the example in Section 3.3.

Theorem 4.1 (Convergence to Mean Field) Assume that
the initial occupancy measure �MN (0) and memory �RN (0)
converge almost surely to deterministic limits �μ(0) and �ρ(0)
respectively. Define �μ(t) and �ρ(t) iteratively by their initial
values �μ(0), �ρ(0) and for t ≥ 0:

�μ(t + 1) = �μ(t) · K(�ρ(t)) (6)

�ρ(t + 1) = g(�ρ(t), �μ(t + 1)) (7)

Then for any fixed time t, almost surely:

lim
N→∞

�MN (t) = �μ(t) and lim
N→∞

�RN (t) = �ρ(t).

We give a proof in appendix.

Comments. Equation (6) means that for any state i:

μi(t + 1) =
S∑

j=1

μj(t)Kj,i(�ρ(t)) (8)

The conditions �MN (0) → �μ(0), �RN (0) → �ρ(0) are true in
particular if �MN (0) = �μ(0) and �RN (0) = �ρ(0), which is
often the case in practice.

The theorem implies that, over any finite time horizon the
global memory and the occupancy measure (i.e. the num-
ber of objects in any given state) can be approximated, for
a large population size N , by the dynamical system defined
by Equations (6) and (7). Note that the theorem says noth-
ing about the limit when time (rather than population size)
goes to ∞.

The time dependent deterministic vector �μ(t) is called
the mean field limit of the occupancy measure �MN (t).

4.2 Deterministic Approximation

We can use the convergence result to justify the com-
mon practice that consists in approximating the stochastic



system by a deterministic one. Let Ni(t) be the number of
objects that are in state i at time t, i.e. Ni(t) = NMN

i (t).
Since N is fixed, knowing �N(t) or �MN (t) is one and the
same. In the rest of this subsection, we consider that N is
fixed and drop superscript N .

A common approximation consists in assuming that
Ni(t) is deterministic and:

Ni(t + 1) = Ni(t)

⎛
⎝1 −

∑
j �=i

Ki,j(�ρ(t))

⎞
⎠

+
∑
j �=i

Nj(t)Ki,j(�ρ(t)) (9)

with �ρ(t) = g(�ρ(t − 1), �N(t)/N); see for example Equa-
tion (3).

It is immediate that Equation (9) is a re-writing of Equa-
tion (8). Thus the deterministic limit is asymptotically valid
for a large population of objects.

5 Fast Simulation

We extend Theorem 4.1 to a more detailed result, which
can be used to perform accelerated simulation. The idea is
as follows. Assume we want to simulate the evolution of
a few specific objects, perhaps because we want to evaluate
the time it takes to reach some specific state. We can do
this in an accelerated way by replacing the true occupation
measure �MN (t) and the global memory �RN (t) (the exact
evaluation of which requires simulating N objects) by their
deterministic approximation �μ(t) and �ρ(t) (obtained from
the dynamical system in Equations (6) and (7)). The differ-
ence is that now we need to do a stochastic simulation only
for the objects we are interested in. One may even consider
doing analytical computations, since for one object the di-
mension of the Markov chain is S, a small number. The
main result in this section is that, for large N , this is a valid
approximation.

To make this precise, call PN (i, �r, u) a program that re-
turns a sample of the next state for an object that is in state
i when the global memory is �r, according to Equation (2).
The argument u is a random number in the interval (0, 1),
typically provided by a pseudo-random number generator.
More precisely, PN (i, �r, u) = j if and only if

j−1∑
j′=1

KN
i,j′(�r) < u ≤

j∑
j′=1

KN
i,j′(�r) (10)

where we use the convention that
∑0

j′=1 KN
i,j′(�r) = 0.

An exact simulation of the complete system can be de-
scribed as follows (Algorithm 1). We are given a time hori-
zon t, a total number of objects N , the collection XN (0) =

(XN
1 (0), . . . , XN

N (0)) of initial values for all objects, and
the initial value of global memory �RN (0). The program
outputs XN (1 : t), a sample of the states of all objects at
times s = 1 to t.

Algorithm 1 Exact Simulation of N Objects

1: function EXACTSIM(t, N , XN (0), �RN (0))
2: �r := �RN (0)
3: Compute �m := �MN (0) (from XN (0))
4: for s := 0 : (t − 1) do
5: �m := �0
6: for n := 1 : N do
7: draw U uniformly in (0, 1)
8: XN

n (s + 1) := j := PN
(
XN

n (s), �r, U
)

9: mj := mj + 1
N

10: end for
11: �r := g (�r, �m)
12: end for
13: return

(
XN (1 : t)

)
14: end function

The fast simulation is defined as follows (Algorithm 2).
Define P similar to PN but with KN replaced by K. We
are given a time horizon t, the initial state y(0) of, say, ob-
ject number n = 1, the initial occupancy measure �μ(0) and
the initial value of global memory �ρ(0). The program out-
puts Y1(s), a sample of the state of object 1 at times s = 1
to t.

Algorithm 2 Fast Simulation of One Object

1: function FASTSIM(t, y(0), �μ(0), �ρ(0))
2: Y1(0) := y(0), �m := �μ(0), �r := �ρ(0)
3: for s := 0 : (t − 1) do
4: draw U uniformly in (0, 1)
5: Y1(s + 1) := P (Y1(s), �r, U)
6: �m := �m · K (�r)
7: �r := g(�r, �m)
8: end for
9: return(Y1(1 : t))

10: end function

Note that in the case without memory, the argument �ρ(0)
need not be specified.

Theorem 5.1 Assume that we perform a collection of sim-
ulations using the above algorithms, indexed by N , such
that:

• for all N the initial state of object 1 is y(0)
• the initial occupancy measure �MN (0) and memory

�RN (0) converge almost surely to deterministic limits
�μ(0) and �ρ(0) respectively



• the random numbers used by FASTSIM are the same
as those used by EXACTSIM when computing XN

1 (s).

Then, almost surely, for N large enough, XN
1 (s) = Y1(s)

for s = 1 to t.

The proof is given in appendix. We give a detailed applica-
tion example in the next section.

We can apply Theorem 5.1 many times in parallel and
simulate not just one object but n0 of them, perhaps each
with different initial conditions (see Figure 3, bottom, for
an example with n0 = 3). It follows from the theorem
that the simulations can be done independently, since the
random numbers used by FASTSIM are all drawn indepen-
dently. Thus, as long as we are interested in a finite number
of objects over a finite horizon and when the total number
of objects N is large, the evolutions of n0 objects are inde-
pendent of each other (but are controlled by the value of the
global memory).

If, in addition, the initial states of the n0 objects are
drawn independent of each other and from a common dis-
tribution, then, asymptotically in N , the n0 objects are in-
dependent identically distributed at all times. This is called
in the literature “propagation of chaos”. Note that in the ex-
amples of the next section, this does not hold as the initial
states of the objects of interest are not drawn from the same
distribution.

6 Application to Reputation determination

In this section we illustrate how the mean field conver-
gence and simulation results can be applied to the analysis
of a reputation system.

6.1 Reputation determination

The setting is a simplified version of a reputation sys-
tem in [6]. A number of peers keep a reputation rating of a
single subject (for example a TV show or a restaurant); the
rating maintained by peer n is a number Zn in the interval
[0, 1]. At every time step, peer n either makes a direct or
an indirect observation. The reputation system attempts to
model the effects of forgetting and confirmation bias (ex-
plained next).

A direct observation is assumed to be positive or nega-
tive. The probability that a direct observation is positive is
θ, interpreted as the true value of the subject. When peer n
makes a positive direct observation at time t+1, he sets his
rating to

Zn(t + 1) = wZn(t) + (1 − w) (11)

and if the observation is negative, to:

Zn(t + 1) = wZn(t). (12)

In these equations, w is a constant close to 1, which repre-
sents the decay of stored information (“forgetting”).

An indirect observation consists in observing the reputa-
tion rating maintained by some arbitrary peer. We assume
that there are honest peers and liars. If the sampled peer is
honest, the rating is her reputation value. If he is a liar, we
assume first (“Strategy 1: Non Sophisticated Liar” model)
that the sampled rating is 0, in other words, liars attempt to
propagate the worst possible reputation. Later in the paper
we will consider more sophisticated strategies. A peer, say
n, who observes a reputation value z makes a deviation test.
If the sampled rating z differs by more than Δ, the observa-
tion is discarded. Otherwise, it is updated in a form similar
to direct observation. The deviation test represents what is
called in social sciences the “confirmation bias”. Thus the
update for an indirect observation z is

Zn(t + 1) = Zn(t) if |z − Zn(t)| > Δ (13)

Zn(t + 1) = wZn(t) + (1 − w)z otherwise (14)

We assume that an observation is direct with probability p,
indirect with a liar with probability q, and indirect with
an honest peer with probability r. The probability that
an object makes an observation in one time slot is thus
p + q + r. In the rest of the paper, we assume, to simplify,
that p + q + r = 1.

This system was introduced and studied in [14], with
generalizations analysed in [13] and [15]. The approach
there was to derive an ordinary differential equation from
the stochastic process by averaging the dynamics and pass-
ing to a fast-time scaling limit. (That is, scaling time so that
events occur more frequently, i.e. users make observations
at a higher rate, but at the same time the impact of each ob-
servation is reduced by the same factor.) From this, its fixed
points reputation ratings were obtained. It has not been rig-
orously shown that the set of fixed point solutions of the
stochastic process is contained in the set of fixed point so-
lutions of differential equation, but results were verified by
means of simulation of up to several hundred peers as well
as direct computation of the distribution.

It was found that, depending on the parameters, there are
up to two attracting reputation ratings. One of them is the
true value θ, the other is θp/(p + q). If Δ < pθ

p+q only

the former (θ) exists; if pθ
p+q < Δ < θ both exist and if

Δ < θ, only the latter. For example, when θ > Δ, in
order to have an impact, the number of liars in the network
needs to exceed a certain threshold, i.e. one must have q >
p
(

θ
Δ − 1

)
. Full details and derivations can be found in [12].

We will see next that this heuristic method is confirmed by
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Figure 3. Simulation results for the setting in Section 6.4. Top Panels: Histogram of reputation
ratings, with one panel per time instant, for selected times from t = 0 to t = 8192, “many liars” case;
x-axis is the rating value on a 0 − 1 scale, y-axis: fraction of peers that have this value. Bottom:
sample paths for three different honest users, starting with initial reputation rating ∈ {0, 0.5, 1}; x-
axis is time, y-axis is rating value on a 0−1 scale. Left: N = 100 honest users; right: N = ∞. Dashed
vertical or horizontal lines are at the true value θ. There are two attracting values for the ratings, the
true value θ = and a false value close to 0.

the asymptotic results in this paper, but we will also see how
we can get a more accurate picture.

6.2 Discretization

The ratings, as originally defined, are floating point num-
bers. In order to apply the modelling approach in this paper,
we need to transform the problem so that the set of reputa-
tion rating values is discrete. We describe this in this sec-
tion.

We replace the original ratings Zn(t) ∈ [0, 1] by inte-
ger valued ratings Xn(t) ∈ {0, . . . , 2L}, for some fixed
value of L. In the rest of the paper we take L = 8, so that
there are 257 possible reputation rating values. Of course,
we re-scale the updates in Equations (11) to (14) appropri-

ately. However, in doing so, the results may not be integers,
even if all state variables are, because of the decay factor
w (which is not re-scaled). A simple fix would consist in
rounding the right-hand sides of these equations to the near-
est integers, but this may not be very accurate because the
decay factor w is typically close to 1. Indeed, with this form
of discretization, many small updates may simply result in
no change at all, if each update is small compared to the
discretization step.

To avoid this problem, we use probabilistic rounding.
We use the function RANDROUND(x), defined for x ∈
R, which returns a random number equal to one of the
two integers nearest to x, and is in expectation equal to
x. Specifically, RANDROUND(x) = x if x ∈ Z, else
RANDROUND(x) = �x� with probability frac(x) and 	x

with probability 1 − frac(x). We used the following nota-



tion: 	x
 is the largest integer ≤ x, �x� the smallest integer
≥ x and frac(x) = x − 	x
. Note that, for x non integer,
	x
 < x < �x� = 	x
 + 1 and, for x integer, 	x
 = x =
�x�. Further, for any x ∈ R, E(RANDROUND(x)) = x.

Equations (11) to (14) are replaced by the following. In
case of a positive direct observation:

Xn(t + 1) = wXn(t) + 2L(1 − w), (15)

and in case of a negative direct observation:

Xn(t + 1) = wXn(t). (16)

In case of indirect observation x such that |x − Xn(t)| ≤
Δ2L

Xn(t + 1) = wXn(t) + (1 − w)x, (17)

otherwise
Xn(t + 1) = Xn(t). (18)

6.3 Formulation as a System of Interact-
ing Objects

We first consider strategy 1. We model only the ratings
of honest peers. We can cast the reputation system in the
framework of Section 3, as follows. The N objects are the
reputation ratings of the N honest peers. The state of an
object is the rating value, thus E = {0, 1, 2, . . . , 2L}. The
next state is determined only by the current state and the
distribution of states of all honest peers. Thus, this fits in
our modelling framework, in fact we have a model without
memory. We will see later that for strategy 2 we have a
model with memory.

Specifically, we can express the state update equation by
using Equations (15) to (18). The probability that an indi-
rect observation by peer n, sampled from an honest peer, is
k is equal to

NMN
k (t) − 1{k=Xn(t)}

N − 1
because a peer does not meet with herself. Thus

Xn(t + 1) = Xn(t) + RANDROUND ((1 − w)U)

with U =

(2L − Xn(t)) with probability pθ
−Xn(t) with probability p(1 − θ)
−Xn(t)1{Xn≤Δ2L} with probability q
(k − Xn(t))1{|k−Xn(t)|≤Δ2L}

w. p. (1 − p − q)NMN
k (t)−1{k=Xn(t)}

N−1

(19)

The limiting state transition matrix Ki,j(�m) can be derived
by letting N → ∞, which amounts to replacing the term

NMN
k (t)−1{k=Xn(t)}

N−1 in Equation (19) by MN
k (t). The rest

follows in a straightforward but tedious way. First define
K∗ by

K∗
i,j(�m) = K1

i,j + K2
i,j +

2L∑
k=0

K3,k
i,j (�m) (20)

with

K1
i,j = pθ×(

π1
i 1{j=i+�(1−w)(2L−i)	} + (1 − π1

i )1{j=i+
(1−w)(2L−i)�}
)

K2
i,j =

(
p(1 − θ) + q1{0≤i≤Δ2L}

)×(
π2

i 1{j=i+�−(1−w)i	} + (1 − π2
i )1{j=i+
−(1−w)i�}

)
K3,k

i,j (�m) =
(
(1 − p − q)mk1{|k−i|≤Δ2L}

)×(
π3,k

i 1{j=1+�(1−w)(k−i)	} + (1 − π3,k
i )1{j=1+
(1−w)(k−i)�}

)

π1
i = frac((1 − w)(2L − i))

π2
i = frac(−(1 − w)i)

π3,k
i = frac((1 − w)(k − i))

and finally let Ki,j(�m) = K∗
i,j(�m) for i �= j and

Ki,i(�m) = 1 −∑j K∗
i,j(�m).

We do not write in detail the N -dependent value
KN

i,j(�m) but it can easily be seen that it differs from
Ki,j(�m) by at most 2

N−1 (due to the last line in Equa-
tion (19)). It follows that KN

i,j(�m) converges uniformly in
�m to Ki,j(�m), and the limit is continuously in �m (in fact,
linear), as required by hypothesis H. Thus, for large N , we
have convergence towards the mean field. We illustrate this
in the next section.

6.4 Simulation Results

We can apply Theorem 4.1 and compute the distribu-
tion of reputations ratings as a function of time. We used
the following parameters. The reputation value is coded on
L = 8 bits. The deviation test threshold is Δ = 0.40 and
the decay factor is w = 0.9. The true value of the subject
is θ = 0.90625. At every time slot, an honest peer makes
a direct experience with probability p = 0.01, learns indi-
rect information from a liar with probability q = 0.01 (“few
liars” case) or 0.3 (“many liars” case), and from an honest
peer with probability 1− p− q. The initial occupancy mea-
sure �μ(0) is such that a fraction α = 0.3 of honest peers
initially believes that the subject is bad (Zn(0) = 0), a
fraction β ∈ {0.3, 0.38, 0.45} of honest peers is undecided
(Zn = 0.5) and the rest believes that the subject is good
(Zn(0) = 1).
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Figure 4. “Few liars” case, N = ∞. There is
only one attracting value for the ratings, the
true value θ.

Figure 3 shows the evolution of the occupancy measure
and samples of reputation records for 3 typical peers with
different initial values (β = 0.3, “many liars” case), both
for a system with N = 100 honest peers (obtained with the
EXACTSIM algorithm) and for the large N asymptotics (by
application of Theorem 4.1 and Algorithm 2). We see that
the asymptotic method agrees with the N = 100 case.

The approximate analysis in [14, 13, 15] predicts that
for the “many liars” case, there are two attracting reputa-
tion values, one of them is the true value θ, the other is
θp/(p + q). This is confirmed by Figure 3, where we see
that the distribution of reputation records converges towards
a distribution concentrated around the two predicted attract-
ing reputation ratings. In the “few liars case”, the approx-
imate analysis predicts that only the true value is remains,
which is indeed confirmed by Figure 4 (shown for β = 0.3).

Not only does the mean field approach justify the ap-
proximate analysis, in the former case (“many liars”) it also
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Figure 5. Stationary values of the occupancy
measure for N large and for different initial
conditions (“many liars” case). The initial
number of peers with rating =0.5 is β = 0.3,
0.38 or 0.45. The final distribution depends on
the initial conditions

gives a more accurate result: we see that there are indeed
two concentration of the occupancy measures around the
two attracting reputation values, but we see also that the
masses depend on the initial values (Figure 5).

We can also recover the attracting reputation values com-
puted in [14, 13, 15] as follows. Assume that the occupancy
measure converges to a mass concentrated at a single value
i∗, i.e. �μ(t) = δi∗, where δi∗ is a row vector with S columns
such that (δi∗)i = 0 for i �= i∗ and (δi∗)i = 1. By appli-
cation of Equation (6), one founds δi∗ = δi∗K(δi∗), which
gives an equation for i∗. Solving the equation gives the two
attracting reputation values discussed above.

6.5 Other Liar Strategies

In this section we show how we can model other liar
strategies.

Strategy 2: Inferring Liar

A liar tries to guess the rating of the honest peer she meets,
by assuming the next meeting will be similar to some pre-
vious reputation rating. A liar says her value is1 x =
(Y − Δ′)+, where Y is sampled from the occupancy mea-
sure at the previous time slot and where Δ′ ≈ 0.75Δ. The
coefficient 0.75 is a safety margin. We assume for simplic-
ity (and without much loss of generality) that Δ′ is chosen
such that (1 − w)Δ′2L ∈ N.

We continue to model honest peers only, but now use
now a model with memory, since liars base their value on
the occupancy measure at the previous time slot. We take

�RN (t) =
(

�MN (t), �MN (t − 1)
)

1We use the notation (z)+ = max(z, 0).



so that the mapping g() is defined by

g (�r, �mnew) = (�mnew, �m)

with �r = (�m, �m′). The formulation as a system of interact-
ing objects is the same as before, except that we replace the
limit for large N of Equation (19) by U =

(2L − Xn(t)) with probability pθ
−Xn(t) with probability p(1 − θ)(
(k′ − Δ′2L)+ − Xn(t)

)
1{|(k′−Δ′2L)+−Xn(t)|≤Δ2L}

with probability qMN
k′ (t − 1)

(k − Xn(t))1{|k−Xn(t)|≤Δ2L}
with probability (1 − p − q)MN

k (t)
(21)

The fast simulation is obtained by replacing Equation (20)
by

K∗
i,j(�m, �m′) = K1

i,j+K2
i,j+

2L∑
k=0

K3,k
i,j (�m)+

2L∑
k′=0

K4,k′
i,j (�m′)

(22)
with K1

i,j ,K
3,k
i,j , π1

i , π2
i , π3

i,j as with Strategy 1 and

K2
i,j = (p(1 − θ))×(

π2
i 1{j=i+�−(1−w)i	} + (1 − π2

i )1{j=i+
−(1−w)i�}
)

K4,k′
i,j (�m′) =

(
qm′

k′1{|(k′−Δ′2L)+−i|≤Δ2L}
)×(

π4,k′
i 1{j=1+�(1−w)((k′−Δ′2L)+−i)	}+

(1 − π4,k′
i )1{j=1+
(1−w)((k′−Δ′2L)+−i)�}

)
π4,k′

i = frac((1 − w)((k′ − Δ′2L)+ − i))

Here, too, the matrix K depends continuously on �r =
(�m, �m′), so we can apply the convergence results. See Fig-
ure 6 and Figure 7 for some numerical examples.

Strategy 3: Side Information

This is the extreme case where a liar knows the rating X of
the honest peer he meets. The liar pretends that his value is
x = (X − Δ′, 0)+, with Δ′ as in Strategy 2. This may not
be realistic, but serves as an upper bound on what liars can
achieve.

This can also be modelled as a system of interacting ob-
jects; replace Equation (21) by U =

(2L − Xn(t)) with probability pθ
−Xn(t) with probability p(1 − θ)
−min

(
Xn(t),Δ′2L

)
with probability q

(k − Xn(t))1{|k−Xn(t)|≤Δ2L}
with probability (1 − p − q)MN

k (t)

(23)
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Figure 6. Different liar strategies. Top: Strat-
egy 2 (Infer Peer Distribution); bottom: Strat-
egy 3 (Side Information). Parameters are the
same as Figure 3 but time is from 0 to 512
time units. All reputation ratings are quickly
coming close to 0.

The fast simulation is obtained by replacing Equa-
tion (20) by

K∗
i,j(�m) = K1

i,j + K2
i,j +

2L∑
k=0

K3,k
i,j (�m) + K4

i,j (24)

with K1
i,j ,K

3,k
i,j , π1

i , π2
i , π3

i,j as with strategy 1 and

K2
i,j =

(
p(1 − θ) + q1{i≤Δ′2L}

)×(
π2

i 1{j=i+�−(1−w)i	} + (1 − π2
i )1{j=i+
−(1−w)i�}

)
K4,k′

i,j = 1{i>Δ′2L}q1{j=i−(1−w)Δ′2L}

On Figure 6 we see that the mean field converges very much
in the same way for strategies 2 and 3, but Figure 7 shows
that there is a difference in what happens to a honest peer
after the occupancy measure has converged. This nicely il-
lustrates the importance of being able not only to approx-
imate the occupancy measure by Theorem 4.1, but also to
simulate the state of individual objects as per Theorem 5.1.
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Figure 7. Three honest peers when liars use
strategy 2 (top) or strategy 3 (bottom), after
the occupancy measure has converged to the
final values in Figure 6. Strategy 2 (unlike
strategy 3) fails to deceive the honest peer,
who is protected by the deviation test.

7 Conclusion

We have given a generic result that allows a reduction of
a large Markov chain model of interacting objects to a dy-
namical system whose state is the occupancy measure (i.e.
the distribution of states of all objects), or, more generally,
a function of the history of the occupancy measure. The re-
sulting dynamical system is deterministic, but it can be used
to study a stochastic system (with considerably smaller di-
mension) that reflects the state of one or several tagged ob-
jects.
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8 Appendix

8.1 Proof of Theorems 4.1 and 5.1
We give a combined proof for both theorems. First, we

construct a generalization of the fast simulation; we intro-
duce a collection X̃N

1 (t) of N interacting objects, obtained
by replacing the occupancy measure by its deterministic ap-
proximation. Specifically, assume we are given some deter-
ministic occupancy measure �μ(0). Define X̃N

n (t) by:

• �ρ(t+1) = g (�ρ(t), �μ(t)) and �μ(t+1) = �μ(t)·K(�ρ(t)),
for t ≥ 0. In other words, we compute some determin-
istic �ρ(t) and �μ(t) as in Theorem 5.1.

• At t = 0, X̃N
n (0) = XN

n (0).
• Call Un(t) the random numbers drawn to sim-

ulate XN
n (t), i.e., assume that XN

n (t) =
PN (XN

n (t), �RN (t), Un) (Un(s), s = 1...t, are
iid uniform in (0, 1)) and let, for t ≥ 0:

X̃N
n (t + 1) = P

(
X̃N

n (t), �ρ(t), Un(t)
)

Note that if we would impose X̃N
1 (0) = y(0) then we

would have X̃N
1 (t) = Y1(t). The collection X̃N

n (t) de-
pends on N only because its initial distribution (i.e. at time
t = 0) does.

Theorem 4.1 follows directly from Lemma 8.3 and The-
orem 5.1 from Lemma 8.4.

8.2 Lemmas
Lemma 8.1 Let M̃N (t) be the occupancy measure for
X̃N

n (t). Assume limN→∞ �MN (0) = �μ(0) almost surely.
Then for any t ≥ 0, limN→∞ M̃N (t) = �μ(t) a.s.

Proof. By induction on t. It is true for t = 0 by hypothesis
and by the fact that �MN (0) = M̃N (0). Assume it is true at
t. Then for any fixed state j ∈ E :

M̃N
j (t + 1) =

1
N

N∑
n=1

1{X̃N
n (t+1)=j} =

∑
i∈E

V N
i,j (25)

with

V N
i,j =

1
N

N∑
n=1

1{X̃N
n (t)=i}1{P(i,�ρ(t),Un(t+1))=j}

Consider now a fixed i and let θ = Ki,j(�ρ(t)), m = μi(t).
Consider first the case m = 0. We have then

0 ≤ V N
i,j ≤ 1

N

N∑
n=1

1{X̃N
n (t)=i} = M̃N

i (t)

and by induction hypothesis M̃N
i (t) → 0 a.s. Thus, in this

case, limN→∞ V N
i,j = mθ a.s.

We can now assume m > 0. We apply Lemma 8.2
with BN = NM̃N

i (t) and (Y N
b )b=1...BN the list of all

1{P(i,�ρ(t),Un(t+1))=j} for n = 1 to N such that X̃N
n (t) = i.

With the notation of Lemma 8.2 we have

V N
i,j =

BN

N
ZN

and thus limN→∞ V N
i,j = mθ a.s. in this case as well.

Using Equation (25), it follows that

lim
N→∞

M̃N
j (t + 1) =

∑
i

μi(t)Ki,j(�ρ(t)) = μj(t + 1)

�

Lemma 8.2 For N ∈ N let BN be a random integer in the
set {0, 1, . . . , N}, such that almost surely limN→∞ BN

N =
m > 0. Let Y N

b , b = 1...BN be iid Bernoulli ran-
dom variables, independent of the sequence BN , such that

E(Y N
b ) = θ. Let ZN = 1

BN

∑BN

b=1 Y N
b if BN > 0 and

ZN = 0 otherwise. Almost surely: limN→∞ ZN = θ

Proof. Fix some arbitrary ε > 0. By Cramer’s inequality,
there exists some fixed α > 0 such that for any b ∈ Z:

P
(|ZN − θ| > ε|BN = b

) ≤ e−αb (26)

Now let (Ω,F , P) be the underlying probability space. Let

Ωn = {ω ∈ Ω such that for all N ≥ n,
BN (ω)

N
>

m

2
}

Since limN→∞ BN

N = m > 0

P

(⋃
n∈N

Ωn

)
= lim

n→∞ ↑ P(Ωn) = 1

Now, by Equation (26),

P
(|ZN − θ| > ε, ω ∈ Ωn

) ≤ E

(
e−αBN

1{ω∈Ωn}
)

≤ e−
αmN

2 P (Ωn)

By the Borel-Cantelli lemma, it follows that

P (|ZN − θ| > ε i.o, ω ∈ Ωn) = 0

(where i.o denotes infinitely often). By monotone conver-
gence then, P (|ZN − θ| > ε i.o) = 0 for all ε so ZN → θ
a.s. �



Lemma 8.3 Assume limN→∞( �MN (0), �RN (0)) =
(�μ(0), �ρ(0)) almost surely. For any t ≥ 0,
a.s.: limN→∞ 1

N

∑N
n=1 1{XN

n (t) �=X̃N
n (t)} = 0 and

limN→∞( �MN (t), �RN (t)) = (�μ(t), �ρ(t)).

Proof. By induction on t. The conclusion is true at t = 0 by
hypothesis and construction of X̃N

n . Assume the conclusion
holds up to time t. We now prove that

lim
N→∞

1
N

N∑
n=1

1{XN
n (t+1) �=X̃N

n (t+1)} = 0 a.s (27)

We have

1
N

∑N
n=1 1{XN

n (t+1) �=X̃N
n (t+1)} =

1
N

∑N
n=1

(
1{XN

n (t+1) �=X̃N
n (t+1),XN

n (t) �=X̃N
n (t)}

+ 1{XN
n (t+1) �=X̃N

n (t+1),XN
n (t)=X̃N

n (t)}
)

≤ 1
N

∑N
n=1 1{XN

n (t) �=X̃N
n (t)} +

∑S
i=1 AN

i

with

AN
i =

1
N

N∑
n=1

1{XN
n (t+1) �=X̃N

n (t+1),XN
n (t)=X̃N

n (t)=i}

The first term in the last inequality converges to 0 almost
surely by induction hypothesis; thus, in order to prove
Equation (27), all we need is to show that AN

i → 0 a.s.

It follows from Equation (10) that

AN
i = 1

N

∑N
n=1 1{Un(t+1)∈IN

i } (28)

where IN
i is the union of intervals defined by

IN
i =

⋃S
j=1

(
LN

i,j , V
N
i,j

]
LN

i,j = min
(∑j

j′=1 KN
i,j′(�RN (t)),

∑j
j′=1 Ki,j′(�ρ(t))

)
V N

i,j = max
(∑j

j′=1 KN
i,j′(�RN (t)),

∑j
j′=1 Ki,j′(�ρ(t))

)
Let GN () be the empirical distribution function of the
N uniforms Un(t + 1), n = 1, . . . , N , i.e. GN (x) =
1
N

∑N
n=1 1{Un(t+1)≤x}. Then

AN
i ≤

∑
j

(
GN (V N

i,j ) − GN (LN
i,j)
)

Hence

AN
i ≤∑j

(|GN (V N
i,j ) − V N

i,j | + |GN (LN
i,j) − LN

i,j |
+|V N

i,j − LN
i,j |
)

≤ 2S supx∈[0,1] |GN (x) − x| +∑j |V N
i,j − LN

i,j |
(29)

By the Glivenko-Cantelli lemma

lim
N→∞

sup
x∈[0,1]

|GN (x) − x| = 0 a.s.

thus the first term in Equation (29) converges to 0 a.s. Now
by induction hypothesis, �RN (t) → �ρ(t), and thus, by hy-
pothesis H, |V N

i,j −LN
i,j | → 0 a.s. This shows Equation (27).

Next:∥∥∥ �MN (t+1) − �μ(t+1)
∥∥∥ ≤

∥∥∥ �MN (t+1) − M̃N (t+1)
∥∥∥

+
∥∥∥M̃N (t+1) − �μ(t+1)

∥∥∥
(30)

where we can take any norm since �MN (t) is in a space
of finite dimension. We take the L1 norm (which is, up
to a constant, the same as the norm of total variation):
‖�m‖ =

∑
i |mi|. The latter term in the right hand-side of

Equation (30) converges to 0 a.s. by Lemma 8.1. As to the
former:∥∥∥ �MN (t+1) − M̃N (t+1)

∥∥∥
=
∑

i |MN
i (t+1) − M̃N

i (t+1)|
= 1

N

∑
i |
∑N

n=1 1{XN
i (t+1)=i} − 1{X̃N

i (t+1)=i}|
≤ 1

N

∑N
n=1

∑
i |1{XN

i (t+1)=i} − 1{X̃N
i (t+1)=i}|

≤ 2
N

∑N
n=1 |1{XN

i (t+1) �=X̃N
i (t+1)}|

thus it also converges to 0 a.s. This shows that
limN→∞ �MN (t+1) = �μ(t+1) a.s.; by continuity of g(), it
follows that limN→∞ �RN (t+1) = �ρ(t+1) a.s. as well. �

Lemma 8.4 Assume limN→∞( �MN (0), �RN (0)) =
(�μ(0), �ρ(0)) a.s. For any fixed t, almost surely there
exists some random number N0 such that, for N ≥ N0

X̃N
1 (s) = XN

1 (s) for all s = 0, . . . , t.

Proof. Let X be the set of numbers in x ∈ [0, 1] that can be
written x =

∑j
j′=1 Ki,j′(ρ(s)) for some i, j and s. Since X

is enumerable, its Lebesgue measure is 0 and thus, almost
surely, U1(s) ∈/X for all s.

The proof now proceeds by induction on t. The conclu-
sion is true at t = 0; assume now it is true up to t. Then for
N ≥ N0, X̃N (t) = XN (t) = i. Let j = X̃N (t + 1). We
can assume U1(t + 1) ∈/X thus

j−1∑
j′=1

Ki,j′(�ρ(t)) < U1(t + 1) <

j∑
j′=1

Ki,j′(�ρ(t))

By Lemma 8.3, limN→∞ �RN (t) = �ρ(t) a.s. and by hypoth-
esis H there exists N1 ≥ N0 such that

j−1∑
j′=1

KN
i,j′(�RN (t)) < U1(t + 1) <

j∑
j′=1

KN
i,j′(�RN (t))

and thus XN
1 (t + 1) = j = X̃N

n (t + 1) for N1 ≥ N0. �




