TCP Congestion Control

1 Motivation of TCP Congestion Control

During the transmission in the networks, sometimes the externally offered load is larger than the
actual network capacity can be handled. In such situation, packet delays will increase and the
actual network throughput will decreases. So how to avoid this type of congestion is one of most
important problems in networkding. Usually there are two kinds of Congestion Control:

e Open-Loop Control:
During connection setup, the transmission rate of a connection is determined.

— Call Admission Control: Before the connection setup, there is a “conversation” between
two process and they negotiate on some “service contract”, an agreement on some service
parameters for the session’s input traffic(maximum rate, minimum rate, maximum burst
size etc.). A typical situation is that of the voice telephone network and circuit switched
networks. For example, in the voice telephone service, the sender requires the minimum
transmission rate is ¢ and the receiver can provide such a service, then there is an
agreement between them and the setup is connected.

— Policing: Leaky Bucket: There is a problem in call admission control, which is how do
we make sure that the connection does not transmit packet at a higher rate after the
connection is setup. So a related method to regulate the burstiness of the transmitted
traffic is leaky bucket schema. The packet in the queue can be transmitted only after
getting a permit and the permits are generated at the desired input rate r of the session.
By this schema, we can make sure that the transmission rate in the connection won’t
exceed the extent r what we want. For the details of leaky bucket, please refer to the
book.

¢ Closed-Loop Control / Feed Back Control:
Connections are informed dynamically about the congestion state of the network, and asked
to adapted their rate accordingly.

— TCP Congestion Control: TCP provides a reliable transport service between two pro-
cesses running on different hosts. TCP congestion control regulates the transmission
rate dynamically according to the congestion state of the network using the feedback
from end to end.

When multiple TCP connections share the bandwidth of a link, the goal of TCP Congestion-
control mechanism is to control the transmission rate so that the sum of the transmission rate of all
connections is less than the capacity of the shared link. If there are R connections in the network,
the transmission rate of r** connection is X, and the the capacity of the whole link is C, then their
relation must satisfy the following inequality:
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2 TCP Congestion Control Algorithm

TCP uses ARQ to provide the reliable service between different hosts. A TCP connection controls
its transmission rate by limiting its number of transmitted-but-yet-to-be-acknowledged segments.
This number of permissible unacknowledged segments is often referred to as the TCP window
size. Ideally, TCP connections should be allowed to transmit as fast as possible(that is, to have as
large a number of outstanding unacknowledged segments as possible) as long as segments are not
lost (dropped at routers) due to congestion. To avoid congestion, there are two kinds of controls
for different purposes: Flow Control and Congestion Control.

2.1 Flow Control:

A mechanism to prevent the sender from sending data when the receiver buffer is full. This is
necesary between two users for speed matching, that is, for ensuring that a faster transmitter does
not overwhelm a slow receiver with more packets than the latter can handle.

In “flow control” we use RcvWin to mark the upperbound that a receiver can handle. The
amount of unacknowledged data that a host can within a TCP connection may not exceed RcoWin
in order to prevent the faster sender from overwhelming the slow receiver with more packets than
can be handled.

2.2 Congestion Control:

A mechanism to prevent congestion within the network by regulating the packet population, hence
the transmission rate within the subnetwork.

In “congestion control” we define another variable: the CongWin. This window size imposes
an additional constraint on how much traffic a host can send into a connection without leading to
congestion.

Next we will look at how the congestion window constraints the transmission rate:
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Figure 1: Congestion Window-Transmission Rate

e w: window size, that is the number of of permissible unacknowledged segments

e MSS: Maximum Segment Size, TCP encapsulates each chunk of client data with a TCP
header, thereby forming TCP segments and M SS is the maximum amount of data that can
be grabbed and placed in a segment.



e RTT: Round-trip time, that is the time between the staring point when the sender begin to
transmit segments and the time that the sender receives acknowledgements for these segments.

If a TCP sender transmits all w segments back to back, it must wait for one round-trip time
(RTT) until it receives acknowledgements for these segments, at which point it can send w additional
segments. If a connection transmits w segments of size M SS bytes every RTT seconds, then
the congestion window is wM SS bytes and the connection’s throughput, or transmission rate is
(wMSS)/RTT bytes per second.

wMSS
RTT

CongWin = wMSS z(w) =

2.3 TCP Congestion Algorithm Description(Tahoe):
Parameters

o RcvWin

e threshold

o w

o CongWin=wMSS

e n = min{RecvWin,CongWin}

We have explained the meaning of RcvWin, CongWin and w before, then what is threshold?
It is a variable that affects how CongWin grows. CongWin has different growing patterns below
and above the threshold value. We will discuss in detail below.

Initiate
e Set threshold
e Setw=1

Congestion Control Process:

In order to focus on congestion control, we assume that the TCP RcvWin is so large that its
constraint can be ignored. In this case, the amount of unackknowledged data that a host can have
within a TCP connection is solely limited by CongWin. Furthure we assume that a sender has a
very large amount of data to send to a receiver.

Once a TCP connection is established between that two end systems, the application process
at the sender writes bytes to the sender’s TCP send buffer. TCP grabs chunks of size MSS,
encapsulates each chunk within a TCP segment, and passes these segments to the network layer
for transmission acorss the network. The TCP congestion window regulates the times at which the
segments are send into the network(that is, passed to the network layer).

e Slow start

— As long as w < threshold, for every received ACK set

w=w-+1



Initially, the congestion window is equal to one M'SS. TCP snds the first segment into
the network and waits for an acknowldgement. If this segment is acknowledged before its
timer times out, the sender increases the congestion window by one M SS and send out
two maximum-size segments. If these segments are acknowledged before their timeouts,
the sender increases the congestion window by on M SS for each of the acknowledged
segments, giving a congestion window of four M SS, and sends out four maximum-sized
segments. This procedure continues as long as (1) the congestion window is below the
threshold and (2) the acknowledgements arrive before their corresponding timeouts.

During this phase of the congestion-control procedure, the congestion window increases
exponentionally fast. The congestion window is intialized to one M SS; after one RTT,
the window is increased to two segments; after two round-trip times, the window is
increased to four segments; after four round-trip times, the window is increased to eight
segments, and so forth. This phase of the algorithm is called ”slow start” because it
begins with a small congestion window equal to one M SS. (The transmission rate of
the connection starts slowly but accelerates rapidly.)

e Congestion Avoidance

e Loss

When w > threshold, for every w ACK received set
w=w-+1

The slow-start phase ends when the window size exceeds the value of threshold. Once the
congestion window is larger than the current value of threshold, the congestion window
grows linearly rather than exponentially. Specifically, if w is the current value of the
congestion window, and w is larger than threshold, then after w acknowledgments have
arrived, TCP replaces w with w + 1. This has the effect of increasing the congestion
window by 1 in each RTT for which an entire window’s worth of acknowledgments
arrives.

When a ACK is not received when time-out expires, set
threshold = %

w=1

Got to “slow start”

The congestion-avoidance phase continues as long as the acknowledgments arrive before
their correspnding timeouts. But the window size, and hence the rate at which the TCP
sender can send, cannot increase forever. Eventually, the TCP rate will be such that
one of the links along the path becomes saturated, at which point loss(and a resulting
timeout at the sender) will occurs, the value of threshold is set to half the value of
the current congestion window and the congestion window is reset to one M'SS. the
sender then again grows the congestion window exponentially fast using the slow-start
procedure.

In summary:



e When the congestion window is below the threshold, the congestion window grows exponen-

tially.

e When the congestion window is above the threshold, the congestion window grows linearly.

e Whenever there is a timeout, the threshold is set to one-half of the current congestion window
and the congestion window is then set to 1.

If we ignore the slow-start phase, we see that TCP essentially increases its window size by 1

each RTT (and thus increase its transmission rate by an additive factor) when its network path is

not congested, and decreases its window size by a factor of 2 each RTT when the path is congested.
For this reason, TCP is often referred to as an additive-increase,multiplicative-decrease(AIMD)

algorithm. (Similarly, there are other three terms AIAD, MIAD, MIMD.)
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trasmission 9. Note that the current congestion window is 14M SS, so the new threshold is set to

0.5CongWin = 7TMSS and the congestion window is set 1. The process goes on.



3 Questions

3.1 Average Throughput

An important measure of the performance of a TCP connection is its throughput, that is the rate
at which it transmits data from the snder to the receiver. So next we will discuss in detail what is
the average throughput of TCP connection?

For simplicity, we here use a simple model making two assumptions: Ignore ”Slow Start” Phase
and assume constant threshold = W. Under such assumptions, the evolution of congestion window
will be as shown in Figure 3.

W/2

Figure 3: Simple TCP Model

Congestion window starts as W /2 and increases linearly by 1 after each transmission until it
reaches the thresholdW and starts from W/2 again. During this process the congestion window
size varies from W/2 to W repeatly. There are W/2 + 1 states in all, so the average transmission
rate is:
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We make the approximation because when W is large enough, W/2 >> 1 and 0.75W?2 >> 1.5W,
so we can ignore them and get the result.



3.2 Fairness

A goal of TCP congestion-control mechanism is to share a link’s bandwidth evenly among multiple
TCP connections that are bottlenecked at that link.This is what we referred as Fairness!. How
TCP additive-increase, multiplicative-decrease algorithm achieves this goal, particularly given that
different TCP connections may start different times and thus may have different window sizes at a

given point in time?

TCP connection 1

O

\ Link capacity C

O

-

TCP connection 2

Qﬁ

Figure 4: Two TCP connections sharing a single link

Let’s consider the simple case as shown in Figure 4. Two connections sharing a single link
with transmission capacity C. We assume that the two connections have the same M SS and RTT
(So that if they have the same congestion window size, they will have the same throughput), that
they have a large amount of data to send, and that no other connections travers this shared link.
Also we will ignore the slow-start phase of TCP and assume the TCP connections are operating in
additive-increase, multiplicative-decrease algorithm at all times.

Figure 5 plots the throughput realized by the two TCP connections. The 45-degree arrow is
the line that the two connections equally share the link bandwidth, Ideally, the sum of the two
throughputs should equal C.

Figure 5: Throughput realized by connections 1 and 2

Suppose that the TCP window sizes are such that at a given point in time, connections 1 and 2
realize throughputs indicated by point A. Because the amount of link bandwidth jointly consumed

!For the defination and detail of fairness, see Appendix.



by the two connections is less than C, no loss will happen and both connections will increase their
congestion windows by 1 per RTT. Thus, the joint throughput of the two connections proceeds
along a 45° line (equal increase for both connections) starting from point A. Eventually, the link
bandwidth jointly consumed by the two connections will be greater than C and packet loss will
occur. Suppose that connections 1 and 2 experience packet loss when realizing throughput indicated
by point B. Connection 1 and 2 then decrease their congestion windows by a factor of two. The
resulting throughput realized are thus at point C, halfway along a vector starting at B and ending
at the origin. Because the joint bandwidth use is less than C at point C, the two connections again
increase their throughputs along a 45° line starting from point C. Eventually, loss will occur again,
for example, at point D, and the two connections again decrease their window sizes by a factor
two, and so on. Indeally, the bandwidth realized by the two connections eventually fluctuate along
the equal bandwidth share line. Similarly, suppose the two TCP window sizes are such that at a
given point E, the two congestion window sizes will also vary and eventually fall long the equal
bandwidth share line. In fact,the two connections will converge to this behavior no matter which
point is as given start point in the two-demensional space.



4 Advantages and Drawbacks

TCP is one of the protocals used in transport layer, compared with other protocals (such as UDP),
TCP has its own advantages and disadvantages. next we will discuss in detail.

4.1 Advantages:

The mechanism of TCP congestion control is very simple and easy to impliment. It don’t need to
make any assumptions about the Network Layer. Moreover it realizes to treat all sessions fairly
when it is necessary to turn traffic away from the network. Many network applications run over
TCP rather than UDP because they not only want to make use of TCP’s reliable transport service
but also gets its congestion control to regulate applications’ transmission rate. In summary, TCP
congestion control has the following advantages:

e Simple and Scalable
e Does not make any assumptions about Network Layer

o Fairness

4.2 Drawbacks:

TCP is not a perfect protocal, it still has some disadvantages need to be improved.

e Based on Packet Loss

When the sender doesn’t receive ACK after timeout, there are usually two main reasons:
packet loss or delay. The above algorithm we described is referred as Tahoe and there are
other two as Reno and Vegas. The first two algorithms are based on packet loss(Congestion).
But when congestion happends, the transmission rate has already been slowed down. We not
only want to react to congestion but furthermore also should try to avoid congestion. Vegas,
which can improve Reno’s preformace, attempts to avoid congestion while maintaining good
throughput.

o No QoS-Guarantees

In TCP congestion control, it only provides a reliable service that guarantee all packets will
be arrived in the end no matter how much times it has been transmitted and how long is the
delay. So it can not gurantee the service quality such as the transmission rate or the delay
etc. Therefore, when a session want to keep its transmission at a certain rate, it can’t be
realized in TCP. That is why many multimedia applications do not run over TCP for the
reason that they do not want their transmission rate throttled, even if the network is very
congested.

e Fairness issue
Sometimes different applications require different fairness, so the fairness realized in TCP may
not all the time what we want. For example, there can have different priorities in different
applications, such as email can have a low priority because it doesn’t matter even if its delay is
more than 10 minutes, however, many multimedia applications do not want their transmission



rate throttled, even if the network is very congested. Such as Internet telephone and Internet
video conferencing applications prefer to pump their audio and video into the network at a
constant rate rather than reduce their rates to "fair” levels at times of congestion.

Assumes User Cooperation

TCP congestion control is based on the assumption that users are all cooperated. But it is
only an ideal case, we can’t guarantee user cooperation. If a user doesn’t do as the protocal,
but keep or even increase the transmission rate when congestion, then TCP congestion control
would fail.

Vulnerable to UDP sessions

The multimedia applications running over UDP are not being fair-they do not cooperate
with the other connections nor adjust their transmissionrates appropriately. So when TCP
sessions and UDP sessions work together, TCP sessions are vulnerable to UDP ones.

Average Transmission Rate dependent on RTT

According to the formular we derived before, Aver. Trans. Rate = 0‘75%[/#'74/[%, we know

that when the window sizes are the same, the transmission rate is in inverse proportional to
round-trip time RT'T, so TCP “favors” short distance connection because it needs smaller
RTT and its corresponding average transmission rate is faster. So from this point of view, it
cannot realize the true fairness in the network.
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Appendix: Fairness

When multiple sessions share a common link, how to treat all of them fairly when it is necessary
to turn traffic away from the network? It is one of the most difficult aspects of flow control. What
is the intuition of the defination of fairness? We can define it in such a way that any session is
entailed to as much network use as is any other session.

Consider a simple case in a single link. when there are R sessions that share a common link
which capacity is C as shown in Figure 6, how to allocate the capacity to each session fairly? We
can imagine it as the case how to distribute the cake fairly to R kids during a birthday party. Then
you must have the idea that to cut the cake into R equal pieces. It is the same in the transmission
link. The fair allocation of the link capacity is to distribute it equally to R sessions and each session
has the transmission rate of X; = %.

S\ .

C
R sessions X=R

Figure 6: Fairness

The idea of maximizing the network use allocated to the sessions with the minimum allocation
leads to the term Max-Min Fairness. A way to express the idea is to maximize the allocation
of each session 7 subject to the constraint that an incremental increase in i’s allocation does not
cause a decrease in some other session’s allocation that is already as small as 7’s or smaller.

Example 1 Maz-Min Fairness

Figure 7: Max-Min Fairness
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Figure 7 clarifies some ambiguities in this notion. One session(session 0) flows through the
tandem connection of all links and each other session goes through only one link. Suppose the
capacity of both links is 1. at the first link, to allocate the network use to session 0,1 and 2 fairly,
it should limit each of these three session to a rate of 1/3. The at the second link, based on the
rate of session 0, session 8 might be allocated with 2/3 for mazmizing the network use. This is the
Maz-Min Fairness because now we can’t increase any session’s allocation because any increase will
lead to the decrease of other session’s allocation which is as small as it or smaller than it.

Having some idea about the meaning of max-min fairness, now we give out its accurate defination.
We assume a directed graph G = (N, A) for the network and a set of sessions P using the network.
Each session p has an associated fixed path in the network. We use p both refer to the session and
to its path (if several sessions use the same path, several indices p refer to the same path). Thus,
in our model we assume a fixed, single-path routing method.

We denote by r, the allocated rate for session p. The allocated flow on link a of the network is
then

F, = Z Tp
all sessions p crossing link a
Letting C, be the capacity of link a, we have the following constraints on the vector r = {r |

p € P} of allocated rates:

0 forallpe P
C, foralla e A

Tp
F,

IN IV

A vector r satisfying these constraints is said to be feasible.

A vector of rates r is said to be maz-min fair if it is feasible and for each p € P, r, cannot be
increased while maintaining feasible without decreasing r, for some session p’ for which ry < rp.
(More formally, r is max-min fair if it is feasible, and for each p € P and feasible 7 for which
rp < Tp, there is some p, with r, > r and rpy > r5y.) Our problem is to find a rate vector that is
max-min fair.

Given a feasible rate vector r, we say that link a is a bottleneck link with respect to r for a
session p crossing a if F, = C, and rp > 1y for all sessions p’ crossing link a. Figure 8 provides an
example of a max-min fair rate vector and illustrates the concept of a bottleneck link.
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Example 2 Maz-Min Fair and bottleneck link

Session 4 (rate 1)

Session 5(rate 1/3)
Session 3(rate 1/3) [ 2 ) [
Session 2(rate 1/3)

Figure 8: Max-min fair and bottleneck link

This figure gives a maz-min solution to an example network. The bottleneck links of sessions
1,2,3,4 and 5 are (3,5),(2,3),(2,3),(4,5),and (2,3), respectively. Link (3,5) is not a bottleneck link
for session § since sessions 1 and 5 share this link and session 1 has alarger rate than session 5.
Link (1,3) is not a bottleneck link of any session since it has an excess capacity of 1/3 in the fair

solution.

In the above example, every session has a bottleneck link. It turns out that this property holds

in general as shown in the following proposition:

Proposition. A feasible rate vector r is max-min fair if and only if each session has a bottleneck

link with respect to r.
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