
Faculty of Arts and Science
University of Toronto
CSC 358 - Introduction to Computer Networks

Tutorial 8

Topic

Congestion Control

1



Question 1

In class, we introduced the leaky bucket as a way to police the transmission rate of a
session. One can do very clever things using the leaky bucket - in particular, one can
do call admission control (resource allocation) to provide a good quality-of-service (to all
sessions). In this problem, we get a glimpse of how this could be done.
First, consider the simple leaky bucket that we introduced in class, where a session receives
permits (tokens) at the rate r (the rate allocated to the session). The session needs a permit
(token) in order to transmit a packet, and unused permits are lost. We assume that all
packets have the same length of L = 10 bits.

one permit every 1/r seconds

(a) Consider the network below. There are already 2 sessions, a (with the route 2-5-6)
and b (with the route 7-6-4-3), using the network. The rates (of the leaky bucket)
allocated to the two sessions are ra = 0.3 packets per second, and rb = 1.7 packets
per second, respectively. Assume that session c wants to use the route 1-5-6-4; where
the capacity of the link between router 1 and 5 is C1,5 = 10 bits per second, the
capacity of the link between router 5 and 6 is C5,6 = 15 bits per second, and the
capacity of the link between router 6 and 4 is C6,4 = 20 bits per second. What is the
maximal rate rc of the leaky bucket that we can allocate to session c without causing
congestion in the network?

1

2 3

5

7 6

4

a

b

c
10

15
20

(b) Next consider the leaky bucket where (up to β) unused permits can be stored and
used later by the session. Again we assume that all packets have the same length
L = 10 bits.

To model this case, we use a fluid-flow model (kitchen-sink model) and assume that
the transmission capacity C of the link between the leaky bucket and the network is

2



one permit every 1/r seconds

β

C

equal to ∞ (very fast). We then say that the total traffic (fluid) A(t, τ) that a session
with the above leaky bucket can submit in the interval [t, τ ] is is upper-bounded by

A(t, τ) ≤ Lr(t − τ) + Lβ.

Note that the term Lr captures the average transmission rate and Lβ captures the
maximal burst size (where β is the maximal number of saved permits).

Consider the situation below, where three sessions (a, b, and c) access a single link
with transmission capacity C = 10 bits per second and space (in buffer or in service)
for B = 100 bits. The amount of traffic (fluid) B(t, τ) that the link can transmit in
the interval [t, τ ] is then given by,

B(t, τ) = C(t − τ).

The parameters for the first two sessions are as follows,

ra = 0.2 packets per second, βa = 5,

rb = 0.5 packets per second, βb = 2,

What is the maximal rate rc and the maximal number of saved permits βc that we
can allocate to session c so that there will never be a buffer overflow (packet loss)?

C=10 bpsC=10 bpsC=10 bpsC=10 bpsC=10 bps

B=100

a

b

c

The analysis that we did here is very simple, but it should give you a flavor of how the
leaky bucket can be used to prevent congestion and provide a good quality-of-service. Note
however that this comes at a price: for each new session we have to decided on the rate
and maximal number of saved permits that we allocate to the sessions. Now think about
the cost of doing this (for each session) in the global Internet! As we will see, the TCP
congestion control mechanism is less expensive to implement (and therefore can be done
in a global network), but it does not provide any quality-of-service guarantees.

3


