CSC 358 - Introduction to Computer Networks

Tutorial 2

Topic

In the course, we will use probabilistic models for packet lengths and packet arrivals. The goal of this tutorial is to get familiar with these models.

Question 1: Packet Length

The length of data packets can vary in a wide range (some packets are very short and some packets are very long). To capture this, we model packet lengths as a random variable with a geometric distribution. That is, the probability that a packet is L bits long is given by.

$$
P(L=l)=\mu(1-\mu)^{l-1}, \quad l \geq 1 .
$$

(a) Derive the average packet length, i.e. derive $E[L]$.
(b) Consider a specific packet. Assume that we know that the length of this packet is larger than l_{0}. Find the probability that the packet is l bits long, $l>l_{0}$.
(c) Derive the expected packet length when we know that $L>l_{0}$, i.e. derive $E[L \mid L>$ l_{0}].

Question 2: Packet Arrivals

In the course, we will use the following discrete-time model to characterize packet arrivals.
Suppose that time is divided into slots of length Δ_{t} and consider the following packet arrival process with rate λ :

1. the probability of one packet arriving during a time-slot is equal to $\lambda \Delta_{t}$.
2. the probability of zero arrival in the interval Δ_{t} is $1-\lambda \Delta_{t}$.
3. arrivals are memoryless: An arrival (event) in one time interval of length Δ_{t} is independent of events in previous intervals.

Using this model, answer the following questions.
(a) Consider a time interval of length $k \Delta_{t}$. What is the probability that we have n arrivals in the time interval $\left[0, k \Delta_{t}\right]$ for $n=0, \ldots, k$?
(b) What is the distribution of the time between two successive packet arrivals (interarrival time)?

Question 3: Poisson and Exponential Distribution

In this question, we show what happens for the model of Question 2 as we make Δ_{t} smaller and smaller, letting it approach 0 .

Consider a time interval of fixed length T which is divided into N slots of equal length $\Delta_{t}=T / N$. In each time slot, exactly one new packet arrives with probability $\lambda \Delta_{t}$, and no packet arrives with probability $1-\lambda \Delta_{t}$. The probability that two more packets arrive is equal to 0 .
(a) What is the probability P_{n} that $n, n=0,1, \ldots, N$, packets arrive in the time interval $[0, T]$.
(b) Find the probability P_{n} as the number of time slots N approaches infinity $(N \rightarrow \infty)$ (and the interval Δ_{t} approaches $0, \Delta_{t} \rightarrow 0$). Hint: Use $\lim _{x \rightarrow 0}(1+a x)^{\frac{k}{x}}=e^{a k}$ and for N very large, $N!\approx \frac{(N / e)^{N}}{\sqrt{2 N \pi}}$ (Stirling's approximation).
(c) Assuming that $\Delta_{t} \rightarrow 0$, what is the distribution of the time between two successive packet arrivals?

